ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Multilayers of Fluorinated Amphiphilic Polyions for Marine Fouling Prevention

View Author Information
Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research), 3 Research Link Singapore 117602
Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road Singapore 119227
§ Institute of Chemical and Engineering Sciences A*STAR, 1, Pesek Road, Jurong Island, Singapore627833
MESA+ Institute for Nanotechnology, Materials Science and Technology of Polymers, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
*Tel: +65 6874 5443; Fax: +65 6872 0785; E-mail: [email protected] (D.J.).
*Tel: +31 53 489 2974; Fax: +31 53 489 3823; E-mail: [email protected] (G.J.V.).
Cite this: Langmuir 2014, 30, 1, 288–296
Publication Date (Web):December 11, 2013
https://doi.org/10.1021/la404300r
Copyright © 2013 American Chemical Society

    Article Views

    1680

    Altmetric

    -

    Citations

    51
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Sequential layer-by-layer (LbL) deposition of polyelectrolytes followed by chemical cross-linking was investigated as a method to fabricate functional amphiphilic surfaces for marine biofouling prevention applications. A novel polyanion, grafted with amphiphilic perfluoroalkyl polyethylene glycol (fPEG) side chains, was synthesized and subsequently used to introduce amphiphilic character to the LbL film. The structure of the polyanion was confirmed by FTIR and NMR. Amphiphilicity of the film assembly was demonstrated by both water and hexadecane static contact angles. XPS studies of the cross-linked and annealed amphiphilic LbL films revealed the increased concentration of fPEG content at the film interface. In antifouling assays, the amphiphilic LbL films effectively prevented the adhesion of the marine bacterium Pseudomonas (NCIMB 2021).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    ImageJ examples. FTIR and NMR spectra. DLS results. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 51 publications.

    1. Jackson Benda, Hayato Narikiyo, Shane J. Stafslien, Lyndsi J. VanderWal, John A. Finlay, Nick Aldred, Anthony S. Clare, Dean C. Webster. Studying the Effect of Pre-Polymer Composition and Incorporation of Surface-Modifying Amphiphilic Additives on the Fouling-Release Performance of Amphiphilic Siloxane-Polyurethane Coatings. ACS Applied Materials & Interfaces 2022, 14 (32) , 37229-37247. https://doi.org/10.1021/acsami.2c10983
    2. Thuvarakhan Gnanasampanthan, Jana F. Karthäuser, Stephan Spöllmann, Robin Wanka, Hans-Werner Becker, Axel Rosenhahn. Amphiphilic Alginate-Based Layer-by-Layer Coatings Exhibiting Resistance against Nonspecific Protein Adsorption and Marine Biofouling. ACS Applied Materials & Interfaces 2022, 14 (14) , 16062-16073. https://doi.org/10.1021/acsami.2c01809
    3. Gang Xu, Koon Gee Neoh, En-Tang Kang, Serena Lay-Ming Teo. Switchable Antimicrobial and Antifouling Coatings from Tannic Acid-Scaffolded Binary Polymer Brushes. ACS Sustainable Chemistry & Engineering 2020, 8 (6) , 2586-2595. https://doi.org/10.1021/acssuschemeng.9b07836
    4. Hai-Xia Wu, Xiao-Hong Zhang, Lin Huang, Lu-Fang Ma, Chuan-Jun Liu. Diblock Polymer Brush (PHEAA-b-PFMA): Microphase Separation Behavior and Anti-Protein Adsorption Performance. Langmuir 2018, 34 (37) , 11101-11109. https://doi.org/10.1021/acs.langmuir.8b02584
    5. Lucie Grebíková, Stuart G. Whittington, Julius G. Vancso. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption–Desorption Transition. Journal of the American Chemical Society 2018, 140 (20) , 6408-6415. https://doi.org/10.1021/jacs.8b02851
    6. Victoria Jakobi, Jana Schwarze, John A. Finlay, Kim A. Nolte, Stephan Spöllmann, Hans-Werner Becker, Anthony S. Clare, and Axel Rosenhahn . Amphiphilic Alginates for Marine Antifouling Applications. Biomacromolecules 2018, 19 (2) , 402-408. https://doi.org/10.1021/acs.biomac.7b01498
    7. Alina Kirillova, Claudia Marschelke, Jens Friedrichs, Carsten Werner, and Alla Synytska . Hybrid Hairy Janus Particles as Building Blocks for Antibiofouling Surfaces. ACS Applied Materials & Interfaces 2016, 8 (47) , 32591-32603. https://doi.org/10.1021/acsami.6b10588
    8. Xiaoying Zhu, Shifeng Guo, Tao He, Shan Jiang, Dominik Jańczewski, and G. Julius Vancso . Engineered, Robust Polyelectrolyte Multilayers by Precise Control of Surface Potential for Designer Protein, Cell, and Bacteria Adsorption. Langmuir 2016, 32 (5) , 1338-1346. https://doi.org/10.1021/acs.langmuir.5b04118
    9. Eleni J. Kepola, Elena Loizou, Costas S. Patrickios, Epameinondas Leontidis, Chrysovalantis Voutouri, Triantafyllos Stylianopoulos, Ralf Schweins, Michael Gradzielski, Christian Krumm, Joerg C. Tiller, Michelle Kushnir, and Chrys Wesdemiotis . Amphiphilic Polymer Conetworks Based on End-Linked “Core-First” Star Block Copolymers: Structure Formation with Long-Range Order. ACS Macro Letters 2015, 4 (10) , 1163-1168. https://doi.org/10.1021/acsmacrolett.5b00608
    10. Qinghua Zhang, Qiongyan Wang, Jingxian Jiang, Xiaoli Zhan, and Fengqiu Chen . Microphase Structure, Crystallization Behavior, and Wettability Properties of Novel Fluorinated Copolymers Poly(perfluoroalkyl acrylate-co-stearyl acrylate) Containing Short Perfluorohexyl Chains. Langmuir 2015, 31 (16) , 4752-4760. https://doi.org/10.1021/la504467m
    11. Dicky Pranantyo, Li Qun Xu, Koon-Gee Neoh, and En-Tang Kang , Ying Xian Ng and Serena Lay-Ming Teo . Tea Stains-Inspired Initiator Primer for Surface Grafting of Antifouling and Antimicrobial Polymer Brush Coatings. Biomacromolecules 2015, 16 (3) , 723-732. https://doi.org/10.1021/bm501623c
    12. Xiaoying Zhu, Dominik Jańczewski, Shifeng Guo, Serina Siew Chen Lee, Fernando Jose Parra Velandia, Serena Lay-Ming Teo, Tao He, Sreenivasa Reddy Puniredd, and G. Julius Vancso . Polyion Multilayers with Precise Surface Charge Control for Antifouling. ACS Applied Materials & Interfaces 2015, 7 (1) , 852-861. https://doi.org/10.1021/am507371a
    13. Mohammed Suleman Beg, Ella Nicole Gibbons, Spyridon Gavalas, Mark A. Holden, Marta Krysmann, Antonios Kelarakis. Antimicrobial coatings based on amine-terminated graphene oxide and Nafion with remarkable thermal resistance. Nanoscale Advances 2024, 6 (10) , 2594-2601. https://doi.org/10.1039/D3NA01154B
    14. Xinlei Wu, Jun Yao, Yingjie Guo, Sijia Zheng, Zhihai Cao. Manipulation of surface properties and long-term antibacterial performance of composite films via alkyl side chain engineering. Progress in Organic Coatings 2023, 184 , 107852. https://doi.org/10.1016/j.porgcoat.2023.107852
    15. Xinlei Wu, Jia Cao, Sijia Zheng, Zhihai Cao. Hierarchical surface structure and performance of fluorinated copolymer films derived from side chain structure and α-position substitution of fluorinated monomeric units. Progress in Organic Coatings 2023, 181 , 107605. https://doi.org/10.1016/j.porgcoat.2023.107605
    16. Peng Wang, Baoluo He, Yixuan Du, Biwen Wang, Jingde Gao, Shujuan Liu, Qian Ye, Feng Zhou. Functionalized Ti3C2Tx-based nanocomposite coatings for anticorrosion and antifouling applications. Chemical Engineering Journal 2022, 448 , 137668. https://doi.org/10.1016/j.cej.2022.137668
    17. Fadoua Mayoussi, Yunong Chen, Daniela Mössner, Santiago Franco Corredor, Andreas Goralczyk, Markus Mader, Andreas Warmbold, Frederik Kotz‐Helmer, Dorothea Helmer, Bastian E. Rapp. Smooth Transparent Omniphobic Coatings with Remarkable Liquid Repellence. Advanced Materials Interfaces 2022, 9 (28) https://doi.org/10.1002/admi.202201080
    18. Jesiya Susan George, Poornima Vijayan P, Anh Tuan Hoang, Nandakumar Kalarikkal, Phuong Nguyen-Tri, Sabu Thomas. Recent advances in bio-inspired multifunctional coatings for corrosion protection. Progress in Organic Coatings 2022, 168 , 106858. https://doi.org/10.1016/j.porgcoat.2022.106858
    19. Jun Yin. Fabrication of a Modified Polyethersulfone Membrane with Anti-Fouling and Self-Cleaning Properties from SiO2-g-PHEMA NPs for Application in Oil/Water Separation. Polymers 2022, 14 (11) , 2169. https://doi.org/10.3390/polym14112169
    20. Haoyi Qiu, Kang Feng, Anna Gapeeva, Kerstin Meurisch, Sören Kaps, Xia Li, Liangmin Yu, Yogendra Kumar Mishra, Rainer Adelung, Martina Baum. Functional polymer materials for modern marine biofouling control. Progress in Polymer Science 2022, 127 , 101516. https://doi.org/10.1016/j.progpolymsci.2022.101516
    21. Peng Wang, Baoluo He, Yixuan Du, Biwen Wang, Jingde Gao, Shujuan Liu, Qian Ye, Feng Zhou. Functionalized Ti3c2tx-Based Nanocomposite Coatings for Anticorrosion and Antifouling Applications. SSRN Electronic Journal 2022, 7 https://doi.org/10.2139/ssrn.4092253
    22. Tiwa Yimyai, Raweewan Thiramanas, Treethip Phakkeeree, Supitchaya Iamsaard, Daniel Crespy. Adaptive Coatings with Anticorrosion and Antibiofouling Properties. Advanced Functional Materials 2021, 31 (37) https://doi.org/10.1002/adfm.202102568
    23. Xin Su, Ming Yang, Dezhao Hao, Xinglin Guo, Lei Jiang. Marine antifouling coatings with surface topographies triggered by phase segregation. Journal of Colloid and Interface Science 2021, 598 , 104-112. https://doi.org/10.1016/j.jcis.2021.04.031
    24. Jia Lv, Yiyun Cheng. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chemical Society Reviews 2021, 50 (9) , 5435-5467. https://doi.org/10.1039/D0CS00258E
    25. Chao Zhou, Jun-Tao Zhou, Cheng-Ju Sheng, Dicky Pranantyo, Yan Pan, Xiao-Jia Huang. Robust and Self-healable Antibiofilm Multilayer Coatings. Chinese Journal of Polymer Science 2021, 39 (4) , 425-440. https://doi.org/10.1007/s10118-021-2513-3
    26. Jiapeng Yang, Bin Xue, Yanyan Zhou, Meng Qin, Wei Wang, Yi Cao. Spray‐Painted Hydrogel Coating for Marine Antifouling. Advanced Materials Technologies 2021, 6 (3) https://doi.org/10.1002/admt.202000911
    27. Vishal Vignesh, Shane Stafslien, Morgan Evans, Kellen Wise, Alec Marmo, Michael Tonks, Anthony Brennan. Comparative analysis of two isocyanate-free urethane-based gels for antifouling applications. Biofouling 2021, 37 (2) , 131-144. https://doi.org/10.1080/08927014.2020.1870679
    28. Costas S Patrickios, Krzysztof Matyjaszewski. Amphiphilic polymer co‐networks: 32 years old and growing stronger – a perspective. Polymer International 2021, 70 (1) , 10-13. https://doi.org/10.1002/pi.6138
    29. Songbo Xie, Jing Wang, Lida Wang, Wen Sun, Zhaoxia Lu, Guichang Liu, Baorong Hou. Fluorinated diols modified polythiourethane copolymer for marine antifouling coatings. Progress in Organic Coatings 2020, 146 , 105733. https://doi.org/10.1016/j.porgcoat.2020.105733
    30. Temmy Pegarro Vales, Jun-Pil Jee, Won Young Lee, Sung Cho, Gye Myung Lee, Ho-Joong Kim, Jung Suk Kim. Development of Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogels for Reducing Protein and Bacterial Adsorption. Materials 2020, 13 (4) , 943. https://doi.org/10.3390/ma13040943
    31. Ella N. Gibbons, Charis Winder, Elliot Barron, Diogo Fernandes, Marta J. Krysmann, Antonios Kelarakis, Adam V. S. Parry, Stephen G. Yeates. Layer by Layer Antimicrobial Coatings Based on Nafion, Lysozyme, and Chitosan. Nanomaterials 2019, 9 (11) , 1563. https://doi.org/10.3390/nano9111563
    32. Amanda K. Leonardi, Christopher K. Ober. Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. Annual Review of Chemical and Biomolecular Engineering 2019, 10 (1) , 241-264. https://doi.org/10.1146/annurev-chembioeng-060718-030401
    33. Guruprakash Subbiahdoss, Guanghong Zeng, Hüsnü Aslan, Jakob Ege Friis, Joseph Iruthayaraj, Alexander N. Zelikin, Rikke Louise Meyer. Antifouling properties of layer by layer DNA coatings. Biofouling 2019, 35 (1) , 75-88. https://doi.org/10.1080/08927014.2019.1568417
    34. Elisa Martinelli, Carlo Pretti, Matteo Oliva, Antonella Glisenti, Giancarlo Galli. Sol-gel polysiloxane films containing different surface-active trialkoxysilanes for the release of the marine foulant Ficopomatus enigmaticus. Polymer 2018, 145 , 426-433. https://doi.org/10.1016/j.polymer.2018.05.026
    35. Giancarlo Galli, Elisa Martinelli. Amphiphilic Polymer Platforms: Surface Engineering of Films for Marine Antibiofouling. Macromolecular Rapid Communications 2017, 38 (8) , 1600704. https://doi.org/10.1002/marc.201600704
    36. Eleni J. Kepola, Kyriacos Kyriacou, Costas S. Patrickios, Miriam Simon, Michael Gradzielski, Michelle Kushnir, Chrys Wesdemiotis. Amphiphilic Polymer Conetworks Based on Interconnected Hydrophobic Star Block Copolymers: Synthesis and Characterization. Macromolecular Symposia 2017, 372 (1) , 69-86. https://doi.org/10.1002/masy.201600172
    37. Matteo Oliva, Elisa Martinelli, Giancarlo Galli, Carlo Pretti. PDMS-based films containing surface-active amphiphilic block copolymers to combat fouling from barnacles B. amphitrite and B. improvisus. Polymer 2017, 108 , 476-482. https://doi.org/10.1016/j.polymer.2016.12.021
    38. Eleftheria Diamanti, Nicolas Muzzio, Danijela Gregurec, Joseba Irigoyen, Miguel Pasquale, Omar Azzaroni, Martin Brinkmann, Sergio Enrique Moya. Impact of thermal annealing on wettability and antifouling characteristics of alginate poly-l-lysine polyelectrolyte multilayer films. Colloids and Surfaces B: Biointerfaces 2016, 145 , 328-337. https://doi.org/10.1016/j.colsurfb.2016.05.013
    39. May Mei, Quan-Li Li, Chun Chu. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating. Materials 2016, 9 (6) , 414. https://doi.org/10.3390/ma9060414
    40. Zhanhua Wang, Sidharam P. Pujari, Barend van Lagen, Maarten M. J. Smulders, Han Zuilhof. Highly Polymer‐Repellent yet Atomically Flat Surfaces Based on Organic Monolayers with a Single Fluorine Atom. Advanced Materials Interfaces 2016, 3 (4) https://doi.org/10.1002/admi.201500514
    41. Elisa Martinelli, Deniz Gunes, Brandon M. Wenning, Christopher K. Ober, John A. Finlay, Maureen E. Callow, James A. Callow, Alessio Di Fino, Anthony S. Clare, Giancarlo Galli. Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films. Biofouling 2016, 32 (1) , 81-93. https://doi.org/10.1080/08927014.2015.1131822
    42. David K. Hood, Osama M. Musa. Application of Maleic Anhydride in Coatings, Adhesives and Printing. 2016, 509-575. https://doi.org/10.1007/978-3-319-29454-4_9
    43. Elisa Martinelli, Sophie D. Hill, John A. Finlay, Maureen E. Callow, James A. Callow, Antonella Glisenti, Giancarlo Galli. Amphiphilic modified-styrene copolymer films: Antifouling/fouling release properties against the green alga Ulva linza. Progress in Organic Coatings 2016, 90 , 235-242. https://doi.org/10.1016/j.porgcoat.2015.10.005
    44. Gang Xu, Dicky Pranantyo, Bin Zhang, Liqun Xu, Koon-Gee Neoh, En-Tang Kang. Tannic acid anchored layer-by-layer covalent deposition of parasin I peptide for antifouling and antimicrobial coatings. RSC Advances 2016, 6 (18) , 14809-14818. https://doi.org/10.1039/C5RA23374G
    45. Giancarlo Galli, David Barsi, Elisa Martinelli, Antonella Glisenti, John A. Finlay, Maureen E. Callow, James A. Callow. Copolymer films containing amphiphilic side chains of well-defined fluoroalkyl-segment length with biofouling-release potential. RSC Advances 2016, 6 (71) , 67127-67135. https://doi.org/10.1039/C6RA15104C
    46. Jun‐Pil Jee, Ho‐Joong Kim. Development of Hydrogel Lenses with Surface‐immobilized PEG Layers to Reduce Protein Adsorption. Bulletin of the Korean Chemical Society 2015, 36 (11) , 2682-2687. https://doi.org/10.1002/bkcs.10545
    47. Yunjiao Gu, Shuxue Zhou. Novel Marine Antifouling Coatings. 2015, 296-337. https://doi.org/10.1002/9781118883051.ch11
    48. Javeed Shaikh Mohammed. Micro- and nanotechnologies in plankton research. Progress in Oceanography 2015, 134 , 451-473. https://doi.org/10.1016/j.pocean.2015.03.010
    49. Sreenivasa Reddy Puniredd, Dominik Jańczewski, Dewi Pitrasari Go, Xiaoying Zhu, Shifeng Guo, Serena Lay Ming Teo, Serina Siew Chen Lee, G. Julius Vancso. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling. Chemical Science 2015, 6 (1) , 372-383. https://doi.org/10.1039/C4SC02367F
    50. Xiaoying Zhu, Xian Jun Loh. Layer-by-layer assemblies for antibacterial applications. Biomater. Sci. 2015, 3 (12) , 1505-1518. https://doi.org/10.1039/C5BM00307E
    51. Jasmine L. Kerstetter, William M. Gramlich. Nanometer-scale self-assembly of amphiphilic copolymers to control and prevent biofouling. J. Mater. Chem. B 2014, 2 (46) , 8043-8052. https://doi.org/10.1039/C4TB00961D

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect