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Are edible insects more or less ‘healthy’ than commonly
consumed meats? A comparison using two nutrient profiling
models developed to combat over- and undernutrition
CLR Payne1,2, P Scarborough2, M Rayner2 and K Nonaka1

BACKGROUND/OBJECTIVES: Insects have been the subject of recent attention as a potentially environmentally sustainable and
nutritious alternative to traditional protein sources. The purpose of this paper is to test the hypothesis that insects are nutritionally
preferable to meat, using two evaluative tools that are designed to combat over- and under-nutrition.
SUBJECTS/METHODS: We selected 183 datalines of publicly available data on the nutrient composition of raw cuts and offal of
three commonly consumed meats (beef, pork and chicken), and six commercially available insect species, for energy and 12
relevant nutrients. We applied two nutrient profiling tools to this data: The Ofcom model, which is used in the United Kingdom, and
the Nutrient Value Score (NVS), which has been used in East Africa. We compared the median nutrient profile scores of different
insect species and meat types using non-parametric tests and applied Bonferroni adjustments to assess for statistical significance in
differences.
RESULTS: Insect nutritional composition showed high diversity between species. According to the Ofcom model, no insects were
significantly ‘healthier’ than meat products. The NVS assigned crickets, palm weevil larvae and mealworm a significantly healthier
score than beef (Po0.001) and chicken (Po0.001). No insects were statistically less healthy than meat.
CONCLUSIONS: Insect nutritional composition is highly diverse in comparison with commonly consumed meats. The food category
‘insects’ contains some foods that could potentially exacerbate diet-related public health problems related to over-nutrition, but
may be effective in combating under-nutrition.
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INTRODUCTION
As the world population rises, the global food system faces an
impending crisis,1 and a major component of this crisis is the
forecast that the livestock sector is growing at a rate that is
deemed unsustainable.2 Therefore, we must look to alternative
sources of protein that can be produced on a viable and
sustainable commercial scale, and in recent years edible insects
have been proposed as one potential ‘new’ protein source. The
main reason for this is that many insects can be farmed at
relatively low economic and environmental costs; farming insects
use up to 50–90% less land per kg protein, 40–80% less feed per
kg edible weight and produces 1000–2700 g less GHGEs (Green-
house gas emissions) per kg mass gain than conventional
livestock.3 However, particularly in Europe, insects are a new food
and information about the safety and nutritional value of edible
insects is scarce, particularly since they are such a diverse
category.4 Yet insects are already available to purchase in certain
shops across Europe. Due to restrictive legislation that allows only
whole, visible insects to be sold, current marketing practices may
alienate consumers who would otherwise purchase insect food.5

However, in order to combat this problem, an international
consortium known as IPIFF (International Platform for Insects as
Food and Feed) is currently working to change EU laws in favour
of greater freedom in marketing insects as food. This indicates
that insect foods are reaching EU (European Union) markets, but

also highlights the importance of systematic research into the
nutritional content and safety of commercially available insects for
human consumption.
Insects are not a new food, although they have not been farmed

on a commercial scale for use as human food until fairly recently.
Instead, the majority of edible insects are harvested from the wild,
particularly in remote rural regions and in tropical countries with
high biodiversity, where insects have been an important wild
source of protein and micronutrients for millennia.6 However,
insects are also a farmed or semi-farmed resource across the
world. European honeybees are thought to have been domes-
ticated for 7000 years,7 and the domestic silkworm, Bombyx mori,
has been farmed for at least 5000 years.8 Silkworm pupae,
a by-product of the silk-making process, are used as human food
in many areas of Asia.9 A relative of the silkworm, the mopane
caterpillar (Imbrasia belina), is sold widely in markets and
supermarkets across southern Africa, and the mopane trade is
estimated to be worth millions of US dollars.10 In recent years,
there have been systematic attempts to farm mopane worms in
intentionally planted mopane forests, to meet increasing demand
and to give rural women control over this important source of
income, and these have met with varying success.11 This is part
of a larger pattern: in many other areas of the world, NGOs
(Non-government organisations), government-funded research
teams, private companies and individual entrepreneurs are
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attempting to semi-farm insects that were traditionally wild
harvested. For example, insect-farming initiatives in Thailand now
produce palm weevils and crickets on a commercial scale,12 and
similar farming methods are currently being developed for the
African palm weevil13 and Mexican grasshopper, both of which are
highly valued foods in the regions in which they are harvested
from the wild.14 This shows an increasing interest in a fairly recent
phenomenon: insect farming for human food on a commercial
scale originated in Southeast Asia in the late 1990s.6

There are many advantages to farming insects. Crickets15 and
weaver ants16 have a high feed conversion efficiency compared
with traditional livestock. The greenhouse gas and ammonia
emissions of five edible insects are lower or comparable to
emissions from pig farming and far lower than published figures
for cattle farming,17 and a complete life cycle analysis of
mealworm production has shown that mealworms require less
land, comparable energy input and emit fewer greenhouse gases,
than milk, chicken, pork or beef.18 According to current research,
therefore, insects are a cheaper and more environmentally
sustainable to conventional livestock.
The health consequences of insect consumption are less clear.

The nutritional composition of many edible insects has been
tested, and many have favourable nutrient profiles, particularly in
the context of a locally-sourced traditional diet. For example, we
know that that the palm weevil larvae consumed in some parts of
Africa are high in lysine and leucine, both of which are found in
insufficient quantities in tubers, the traditional staple food in the
same regions.19 However, there is little experimental evidence to
suggest that insects are nutritionally preferable to other plant- or
animal-based protein sources. Insects have been considered as a
potential source of nutrients for human complementary feeding,20

but the results of human trials on health indicators are yet to be
published.
To address this lack of data linking health impacts with

increased insect consumption, in the present study we chose to
use evaluative tools developed ‘to classify foods based on their
nutritional composition’.21 These are known as nutrient profiling
models, and can be used to derive a ‘healthiness’ score for foods
based solely on their nutritional composition. A wide range of
approaches have been used towards the development of such
models, and opinion is divided over which approach is most
scientifically robust.22 The scores produced by nutrient profile
models have been validated against food-based dietary
guidelines,23,24 the opinions of nutrition experts,25 theoretically
constructed healthy diets,26 healthy diets achieved in populations26

and (most importantly) prospective health outcomes.25

In this study, we wish to understand the relative nutritional
value of commercially available insects and commonly consumed
meats in two scenarios tackling two different causes of diet-
related ill health, under-nutrition and over-nutrition. For our model
developed to target over-nutrition, we chose the Ofcom model,
which is currently in use in the United Kingdom to regulate
broadcast advertising of foods to children,27 and is the basis of
regulation in Australia and New Zealand to both regulate health
and nutrition claims and support the ‘healthy stars’ voluntary
front-of-pack labelling scheme.28,29 We used the ‘Nutrient Value
Score’ (NVS) as a model that targets under-nutrition. The NVS is a
tool developed by the United Nations World Food Programme to
inform the composition of food baskets and commodity vouchers,
classifies individual foods on a continuous scale based on their
nutrient composition, with an emphasis on micronutrient content.30

Table 1. Median and inter-quartile range for nutrients associated with over-nutrition, including those used in the Ofcom model, in 100 g of
commonly consumed meats, meat by-products (offal) and insects

Daily valuea N Energy (Kcal)
2000

Nutrient content per 100 g edible portion

Protein (g) Fat (g) Saturated fat (g) Sodium (mg)
50 65 20 2400

Beef 42 169 20.6 9.3 3.8 60
139–218 19.2–21.6 5.1–15 2.48–6.1 52.5–66.5

Chicken 25 152 19.9 7.2 1.81 80
127–198 18–22 4–13.9 0.8–4 69–89.5

Pork 10 186 20.1 12.4 3.5 62
123–218 18.6–21.5 4–16.2 1.4–5.45 55.5–67.5

Offal (beef) 8 108 16.9 3.45 1 71
92–126 15.6–18.6 2.18–5.38 28–114

Offal (chicken) 10 133 16.8 6.8 12.1 66
110–250 10.5–18.1 3.75–19 6.4–12.9 50.5–79.5

Offal (pork) 13 108 16.9 4.15 1.2 132
97.3–125 15.3–18.2 3.13–8.3 1.05–2.39 119–140

Cricket (adult) 8 153 20.1 5.06 2.28 152
147–159 13.2–20.3 3.51–6.05 143–178

Honeybee (brood) 5 499 15.2 3.64 2.75 19.4
12.3–18.1 3.27–4.52

Silkworm (pupae) 3 128 14.8 8.26 3.45 14
126–131 13.5–20.8 7.63–11.9 2.94–3.95

Mopane caterpillar (final instar) 3 409 35.2 15.2 5.74
35.2–44.6 14.5–15.2

Palm weevil (larvae) 15 479 9.96 25.3 9.84 11
452–582 8.38–20.7 24.7–38 8.31–32.3 1.2–109

Mealworm (larvae) 26 247 19.4 12.3 2.93 53.7
215–268 18.1–22.1 11.2–15.4 2.59–4.17 46.9–54.2

aDaily values from the US Food Labelling Guide.43 All are daily reference values (DRVs) with the exception of sodium, which is a recommended daily intake
(RDI) value.
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MATERIALS AND METHODS
Meat and insect nutrient composition data
For a broad geographical spread of meat nutrient composition data, we
selected one database per continent from the FAO INFOODS website, with
the exception of South America where no English language databases
were available:

1. Asia: The Concise ASEAN Food Composition Tables.
2. Africa: Food Composition tables for Africa.
3. Europe: UK COFIDS tables.

4. North America: USDA Food tables for standard reference (abridged list).
5. Oceania: The Pacific Islands Food Composition Tables.

For chicken, pork and beef products in each database, we included
every dataline with the keywords: '[Meat name]’; 'raw'. We excluded
processed meats (for example, cured, dried, smoked, minced and
enhanced) and any meats that were described as ‘weighed with bone’.
Offal and meat by-products are traditional foods that, similarly to insects,
are rejected in contemporary ‘Western’ diets.31,32 Therefore, in order to
evaluate these under-utilized meat products separately, any foods that
fulfilled the above criteria but were not a specific cut of meat or a whole

Table 2. Median and inter-quartile range for the eight micro-nutrients used to calculate the Nutrient Value Score (NVS), in 100 g of commonly
consumed meats, meat by-products (offal) and insects

Daily valuea N Micronutrient content per 100 g edible portion

Calcium (mg) Iron (mg) Iodine (mg) Vitamin C (mg) Thiamin (mg) Vitamin A (mg) Riboflavin (mg) Niacin (mg)
1000 18 0.095 60 1.5 1.5 1.7 20

Beef 42 5 1.95 10 0 0.08 0 0.23 4.7
5–8.25 1.54–2.31 9–11 0.07–0.07 0–2 0.17–0.25 4.05–5.25

Chicken 25 8 0.88 6 1.1 0.075 0 0.16 6.5
6.75–12 0.7–1 5–7.5 0–2 0.0675–0.12 0–16.5 0.125–0.22 4.87–7.65

Pork 10 7 0.8 5 0 0.77 0 0.235 5.6
6–10 0.7–0.8 0–0.25 0.635–0.928 0.18–0.28 4.85–6.86

Offal (beef) 8 15 7.3 16 1 0.175 249 0.355 4.6
11.3–23.5 3.8–10.5 0–5.5 0.11–0.28 128 0.185–1.13 3.48–6.65

Offal (chicken) 10 10 2.45 16 6 0.09 39.5 0.375 3.85
7.75–13.3 1.25–6.07 1–14 0.05–0.125 0.123–0.578 2.25–6.45

Offal (pork) 13 10.5 4.8 7 6 0.27 5.5 0.47 4.18
7.75–11.8 2.55–6.35 0–10.5 0.12–0.32 0–27.5 0.368–1.44 2.53–8.65

Cricket 8 104 5.46 0.021 3 0.04 6.53 3.41 3.84
49.8 - 287 2.47–8.01 6.44–24.4

Honeybee 5 30 18.5 10.25 25.7 3.24
22.7–37.3 15.2–21.9 19.1–27.4

Silkworm 3 42 1.8 0.12 1.05 0.9
Mopane caterpillar 3 700
Palm weevil larvae 15 39.6 2.58 0.00425 11.3 2.21

0.028–48 0.528–8.4
Mealworm 26 42.9 1.87 0.017 1.2 0.24 9.59 0.81 4.07

30 1.6–2.45 5.7–20.5

aDaily values from the US Food Labelling Guide.43 All are daily reference values (DRV) with the exception of vitamins and minerals, which are recommended
daily intake (RDI) values.

Figure 1. Bar graph showing the median values and inter-quartile range of Ofcom (adjusted) scores for insects (light grey), meat (medium
grey) and offal (dark grey). Higher scores indicate healthier foods.
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carcass (for example, organs, skin and blood) were grouped as ‘offal’.
Where a range of values was provided, only the single best estimate
(mean/median) was used. Where a value was listed as ‘Tr’ (trace), we
replaced this with ‘0’.
We also extracted datalines for six commercially available edible insect

species that are currently produced using intensive or non-intensive
farming: Cricket (Acheta domesticus), honeybee (Apis mellifera), domes-
ticated silkworm (Bombyx mori), mopane caterpillar (Imbrasia belina),
African palm weevil larvae (Rhynchophorus phoenicis) and yellow meal-
worm (Tenebrio molitor). These data were taken from all English language
FAO INFOODS databases and from a systematic review of published
literature, and the datalines describe the nutrient composition of fresh
insects in their raw, unprocessed state. Full details of methods and
selection criteria are currently in review.33

For all the foods described above, we extracted data for energy and the
12 macro- and micronutrients relevant to calculating Ofcom Scores and
NVSs. The final database contained 128 datalines for meat (42 for beef, 25
for chicken, 31 for pork and 30 for offal) and 55 for insects. Many datalines
had missing values for certain nutrients. In such cases, we replaced missing
values with the median value for that category.

Nutrient profile models
First, we chose the Ofcom model, which scores foods on the basis of their
nutritional content per 100 g of the following nutrients to limit: energy,
total sugars, sodium and saturated fat; and balances this against
constituent elements considered conducive to health – fruit, nuts and
vegetables, fibre and protein. Full details on how the Ofcom model is
applied are available here.27

We used Stata syntax (freely available on request) to generate Ofcom
Scores for each food in the database, and adjusted the scores to fall on a
scale from 1 to 100 where 1 is the least healthy and 100 is the most
healthy.
Second, we chose the NVS, which was developed to inform food

assistance programmes for populations who are at high risk of under-
nutrition and micronutrient deficiencies. The NVSs are based on quantities
of energy, protein, fat and eight micronutrients measured per 100 g (or
relevant, food basket-specific quantity) of food to evaluate the relative
nutritional quality of foods. We calculated the scores for each food in the
database using an Excel file (freely available on request).
We ran pair-wise non-parametric Mann–Whitney U comparisons for the

scores (both Ofcom and NVS) of each category of food, using Stata
software. We applied the Bonferroni adjustment to determine the
appropriate P-value indicating the significance of our results. Since we
ran 132 pair-wise comparisons for 12 categories of food, the original
P-value of 0.05 was reduced to 0.000378, and only the comparisons with
P-values lower than this were considered as significant.

RESULTS
Table 1 shows the median and interquartile range of values in
each food category for the nutrients used to calculate the Ofcom
model. Saturated fat and sodium are the major parameters in this
model that are relevant to animal products. Of the meat products,
chicken offal is notably high in saturated fat (12.1 g per 100 g) but
others have a relatively low median value (range = 1–3.8 g per
100 g) considering that the recommended daily allowance is 20 g.4

Insects, however, have a far greater range of median values, from
2.28 to 9.84 g of saturated fat per 100 g. Median values for the
sodium content of insects (range = 0–152 mg per 100 g) also show
a greater range than for meat (range = 60–132 mg per 100 g).
Values for protein content show the same pattern, with insects
containing median values of between 9.96 g and 35.2 g of protein
per 100 g, compared with 16.8–20.6 g for meat.
Table 2 shows the median and interquartile range of values in

each food category for the additional nutrients used to calculate
the NVSs. Complete information is missing for all but two of the six
insect species. The median iron content of crickets and honeybees
is 180 and 850% greater (respectively) than for beef, which has the
highest iron content of the three meats. However, iron content of
beef offal is higher than crickets. All of the insects had higher
calcium and riboflavin levels than any of the meats or meat offals. Ta
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Figure 1 shows the median and inter-quartile range of Ofcom
scores for each food, and Table 3 shows the P-values for pair-wise
comparisons of these scores using the Mann–Whitney U test and
the Bonferroni correction. There is no indication that any insect
used in this analysis is a significantly ‘healthier’ alternative to meat
using this model; instead, beef offal is classified as ‘healthier’ than
three insects: crickets, palm weevil larvae and mealworms
(P= 0.0001; P= 0.0001; Po0.0001); and all meat and offal products
are ‘healthier’ than palm weevil larvae. However, there is also
significant variation between insect species: both crickets
(Po0.0001) and mealworms (Po0.0001) are ‘healthier’ than palm
weevil larvae.
Figure 2 shows the median and inter-quartile range of NVSs for

each food, and Table 3 also shows the P-values for pair-wise
comparisons between these scores. Using this model, there is no
significant variation between insect species. Crickets (Po0.0001),
palm weevil larvae (Po0.0001) and mealworm (Po0.0001) have a
significantly higher score than beef and chicken, but the only
other pair-wise comparisons with any significant difference are
those showing that pork products are more nutritious than beef
(Po0.0001) and chicken (Po0.0001). However, of the insect
species, only crickets and mealworm had nutritional information
for every nutrient used to calculate this model; all the others had
missing values.

DISCUSSION
The results presented here are the first systematic comparison of
the nutritional composition of insects and meat, and their relative
healthiness according to contemporary nutrient profiling models.
Our first key finding from these analyses is that insects vary

widely between species in terms of nutrient content and
consequently their potential for combating crucial public health
problems. Due to this variation, we suggest that the term ‘insects’
is not a useful food category in discussions of health and nutrition.
Second, we find that many insect foods have a higher content of
energy, sodium and saturated fat than conventional livestock. On
the one hand, this suggests that these species are not suitable for
promotion as alternatives to meat if the main priority is to combat
diseases linked to over-nutrition, particularly since reducing
dietary intake of sodium and replacing saturated fat with
unsaturated fat is thought to reduce risk of heart disease.34,35

Although the associations between saturated fat consumption

and diet-related disease are controversial there remains strong
evidence supporting the relationship between substituting
saturated fats with unsaturated fats and reduced blood
cholesterol.34 Similarly there is evidence for associations between
blood cholesterol levels and coronary heart disease,34 and directly
between fatty acid consumption on coronary heart disease.36

Third, we find that insects tend to have very high micronutrient
content, particularly in the case of micronutrients that are known
to be deficient in many areas where food insecurity is high.
Therefore, these species may be good candidate foods to promote
in areas of food insecurity and malnutrition.
Overall, the data presented here shows no evidence that any

commercially available insect evaluated in the current study is
significantly preferable to meat for the purpose of combating diet-
related disease caused by over-nutrition. Offal and meat by-
products, on the other hand, are potentially healthier alternatives
to commonly consumed cuts of meat, yet offal and meat by-
products are not popular foods in Europe. In the United Kingdom,
for example, offal has declined in popularity in recent decades37

and in Italy it is still seen as the ‘food of the poor’.38 Therefore,
although the promotion of insects does seem to be justifiable on
environmental grounds, when considering health in situations of
over-nutrition some meat by-products may be a more appropriate
alternative to commonly consumed livestock products. Further-
more, the current study also shows that only a single insect – palm
weevil larvae – is significantly inferior to meat using a model
designed to combat over-nutrition.
However, analyses of nutrient composition using the NVSs tell a

different story. According to the parameters set by this model, at
least three insects do have a significantly higher nutritional value
than the commonly consumed meats beef and chicken, and not a
single comparison shows insects to be nutritionally inferior to
meat. Insects as a commodity have many non-health-related
positive benefits compared with livestock in terms of both
financial and environmental cost, particularly in developing
countries where under-nutrition is a key problem. The finding
that insects and meat do not show significant divergence in
nutritional composition suggests that there is no health-related
trade-off in promoting insect foods over meat.
Elsewhere, data on the dry weight nutrient composition of a

broad range of insect species are available,4 and other research
has compared the nutritional composition of meat and
other protein sources. Quorn products, which are made using

Figure 2. Bar graph showing the median values and inter-quartile range of Nutrient Value Scores (a higher score indicates a more nutritious
food) for insects (light grey), meat (medium grey) and offal (dark grey). Higher scores indicate healthier foods.
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myco-protein and marketed as alternatives to meat, have
macronutrient composition profiles that are comparable to the
meat products upon which they are based.39 Non-traditional, wild
meat species have lower levels of nutrients to limit such as
cholesterol, sodium, saturated fat and polyunsaturated fatty acids
compared with farmed livestock, and also have a higher iron
content.40 Insects offer yet another alternative to traditional
meats, and as shown in this study, some do have favourable
nutrient profiles compared with meat.
However, nutrient composition is only a proxy for effects on

human health, and this is a significant limitation of the present
study. There have been few trials with human subjects showing
the effects of insect consumption, and to date, the results of such
trials are inconclusive. Two insect-based products fed to infants,
containing caterpillars41 and termites,42 had a positive effect on
blood haemoglobin levels and bodily iron stores compared with
control groups. However, in both cases there was no observable
effect on growth rates or prevalence of stunting. Therefore, the
link between nutritionally favourable insect foods and health
outcomes requires further research. The results of the present
study can be used to inform the choice of candidate species for
future human trials.
A further limitation of our study is the lack of fresh weight data

on the micronutrient content of several commercially available
insects. As a result, we have substituted missing data with
category medians, inflating the units of analyses for our statistical
tests, and biasing our results away from the null hypothesis.
Therefore, comparisons between meat and insects with missing
values using the NVS nutrient profile model, which places
emphasis on micronutrient content, are not conclusive at this
stage, and should therefore be treated with caution.
Overall, in this paper we present systematically collected

nutritional information on a range of commercially available and
commonly consumed insects, meats and meat by-products. We
use relevant nutrient profiling models to combine this information
into a single measure of ‘healthiness’, enabling a direct
comparison of insect and meat products. Our key findings are
that the nutritional profiles of insects show great variation; meat
products may be nutritionally preferable to certain insects in the
context of overnutrition; and several insects are potentially
superior to meat in situations of undernutrition.
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