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Abstract: The purpose of this paper is to show the results of a study focused on the occurrence of damage het-
erogeneous materials, especially on the issue of modelling crack formation and propagation. In the beginning
the attention is paid to the direct application of the finite element method to different types of materials in order
to find critical parameters determining behaviour of materials at damage process. The applications of damage
mechanics and possible approaches to model the origin of a crack propagation through modifications in FEM sys-
tems are presented and some practical applications are tested. Main effort is devoted to cement fibre composites
and the search for new methods for their more accurate modelling, especially close to the field stress concentra-
tor, respectively ahead of the crack tip. Modified XFEM method has been used as a suitable tool for numerical
modelling.
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1 Introduction

The question of ensuring the safety of structural com-
ponents and predicting their service life is increas-
ingly associated with the development of new devices
and components. In the case of constructions, it may
be directly dependent on the occurrence of defects
that may arise during the production stage or through
their lifetime. One of the concepts used in construc-
tion and safety assessment is a set of theories and
methods known in fracture mechanics. This scien-
tific field, combining continuum mechanics with ma-
terial engineering, describes the behaviour of defects
in structures. It is a complex defect-stress-material
relationship. To understand the relationships end ex-
tend lifetime, it is necessary to modernize construc-
tion practices and also use new numerical methods.

The aim of fracture mechanics is to describe or
predict the behaviour of bodies containing defects.
In many cases, cracks can lead to total failure of the
structure due to fracture. There are two basic ap-
proaches for deriving the conditions in the moment
of initiation of unstable crack propagation. The first
one uses the weakest link theory, the second model
considers the accumulation of damage during load-
ing. Failure of structural materials is understood as a
continuous process in which the stages of plastic de-
formation, nucleation and initiation of cracks is inter-
mingled. The final stage in the development of failure
of bodies, which is the subject of investigation of frac-
ture mechanics, is the propagation of cracks (unstable
or stable). The goal of the presented works was how

to find out the mutual relations between physical reg-
ularities and the physical laws themselves the essence
of the breaking process on the one hand and the theory
of continuum mechanics on the other.

The promotion of non-traditional materials, con-
structions and technologies in the modern construc-
tion industry also requires new approaches to the in-
vestigation of their physical properties, where proven
ones cannot be relied upon. Simulation of the be-
haviour of material samples, structural elements and
buildings as complex structures becomes necessary.
After these motivational comments in Section 1 some
notes to fracture mechanics and to model problems
are presented in Section 2. The overview of classi-
cal approaches and crack growth modelling in Section
3, will be followed by some details of damage me-
chanics and cohesion approach in Section 4, with spe-
cial attention to the modified finite element method
in Section 5. The principal investigation as to build-
ing materials by Section 6 is supplied by references
to potential applications in Section 7 and concluding
remarks with future research priorities in Section 8.

2 Some notes about fracture

mechanics

Fracture mechanics deals with the problem of bodies
with cracks. The term fracture refers to the division
of a body into two or more parts. For the purpose of
fracture mechanics, we define a crack as a violation
of the cohesion of bodies along a surface bounded by
a curve that is either closed or it ends on the surface

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2023.18.23 Vladislav Kozák, Jiří Vala

E-ISSN: 2224-3429 243 Volume 18, 2023



of the body.

Figure 1: Contour integral definition.

With a simplified view of the mentioned problem,
it is crucial to define the stability criteria, which estab-
lish the conditions under which an existing or emerg-
ing crack will propagate and thus enable the calcula-
tion of the corresponding critical stress or the critical
length of the crack.

The concept of stability criterion can be extended
to the case of general stress concentrators. In such a
case, we are looking for conditions under which crack
will start to propagate from the considered concen-
trator. In general, any fracture-mechanical quantity
can be used for the formulation of stability criteria,
and the criteria can be formulated on the basis of en-
ergy, [1], [2], using the deformation energy density,
crack driving force,G, J integral, or based on stresses
and strains at the crack tip (concept of stress intensity
factor, crack opening). For linear fracture mechan-
ics, the more commonly used stability criterion is the
KIC criterion (the GIC criterion can be used equiv-
alently). For non-linear fracture shear it is then the
JIC criterion, [3], or the crack opening displacement
(CTOD) condition, with a number of criteria for com-
bined stress, [4], [5], [6].

The described procedure works quite reliably if
we limit ourselves to the first singular term when de-
scribing the stress around the crack front, so we are
talking about one-parameter fracture mechanics. It
is precisely in the case of multiaxial stresses, when
we switch to multi-parameter fracture mechanics and
work with concepts as are T -stress and Q-parameter,
[7]. The general form of the equation in case of static
loading for the overall decomposition in the classical
(differential) approach, is based on the decomposition
of the overall deformation, represented by the strain
tensor ε, as a square matrix of order 3, into four addi-
tional components, namely the elastic, plastic, creep
and thermal, [8], denoted as εe, εp, εc and εθ here.
All these quantities will considered as variable in the
time t, with values prescribed at t = 0 are prescribed
(which can be marked as Cauchy initial conditions).

Namely in the isotropic and homogeneous case,
taking i, j ∈ {1, 2, 3}, we can consider

εeij = ((1 + ν)/E)σij − (ν/E)σ∗δij ;

here we need the Kronecker symbol δij = 1−sgn |i−
j|, σ∗ = (σ11 + σ22 + σ33)/3 refers to the princi-
pal stress and E, ν is the couple of material parame-
ters: the Young modulus and the Poisson ratio. The
contribution of εp can be expressed using the curve
of real stress versus real deformation during plastic
loading (nonlinear in general), as an additional mate-
rial characteristic; The increment of plastic deforma-
tion during creep, is evaluated using the finite element
method, using the initial deformation approach, typ-
ically. The contribution of εθ comes (if no more de-
tailed thermodynamic analysis is available) from tem-
perature difference, applying the thermal expansion
factor. Consequently, very important is evaluation of
εc from

ε̇cij = ((3ε̇cef )/(2σef ))σ
′
ij

where the lower index ef means certain scalar ef-
fective value, σ′ being the deviatoric part of σ, i. e.
σ′
ij = σij − σ∗δij , with i, j ∈ {1, 2, 3} again.
Contour integrals play an important role in linear

and nonlinear fracture mechanics, see Fig. 1. Well
known is the J-integral, [3], [8]. An analogous in-
tegral for bodies subjected to creep deformation is
called C-integral, [9], [10], [11], [12]. To understand
the implementation of individual types of curve inte-
grals, the manual for the WARP3D software system
is recommended, [13].

3 Crack growth modelling using

classical FEM approaches

In the course of the 1960s, theories were gradually
created that were able to describe the behaviour of
bodies with cracks by considering plastic zones of
larger scale, and thus get closer to more realistic con-
ditions arising during loading of bodies with a crack.
Currently, there are several procedures that can be
used to solve the problem of simulating crack propa-
gation using FEM. Among the first and oldest are the
modelling of stable crack growth using the node re-
lease method, where starting criterion is necessary to
define. Modelling of crack propagation by the node
release method is possible only in the case of a 2D
problem, see Fig. 2, where effective plastic deforma-
tion (εef ) is displayed.

The first criterion is based on knowledge of the
crack length relationship as a function of time, which
is assigned to the time period required to solve the
modelled problem. The second type of criterion uses
the stress definition for crack propagation. The third
type of criterion uses the critical value of crack open-
ing, which is the deformation characteristic, as a
boundary condition for crack propagation. The prin-
ciple is to separate the deformable surface of the body
from the analytically defined non-deformable surface.
During the release of the nodes, the stresses between
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Figure 2: Node release approach for 2D.

Figure 3: Remeshing technique.

the two contact elements are gradually reduced to
zero. Other important methods are based on constant
remeshing, [14], see Fig. 3.

The second option is the method of “disappearing”
elements, within its framework are also included the
latest approaches using cohesive elements. In fact,
they are actually a generalized contact. Both methods
mentioned above will be discussed in more detail in
the following session.

4 Damage mechanics and cohesion

approach

The prediction of crack propagation through interface
elements based on fracture mechanics has been se-
lected for crack growth modelling. Damage is be-
ing implemented in constitutive models and accumu-
lation of damage is processed, [15]. As an example of
the use of damage mechanics for ductile failure, the
Gurson-Tvergaard-Needleman model can be pointed
out, [16], [17]. Based on the evaluation of the ex-
periments performed, it is recommended introducing
two (or three) optional parameters q1, q2, q3, usually
q1 = 1.5, q2 = 1, q3 = q21 . Analysis of the behaviour
of these parameters was performed, [18]. Here, σY S

is the yield stress of the matrix material, σm is the
principal (hydrostatic) stress and f is the volume frac-
tion of voids. The difference between the original
model and the modified one is shown in Fig. 4, the
schematic situation in front of the crack front in Fig. 5.
The energy balance of such so-called completemodel,
[19], implemented as a user procedure inAbaqus soft-
ware, [20], reads equation for plastic potential de-

scribing plastic flow in porous materials

3∑
i,j=1

2SijSij

3σ2
Y S

+ 2q1f cosh
3q22σm
2σY S

− q3f
2 = 1 . (1)

For practical calculations, f (volume fraction of cavi-
ties) in (1) is usually replaced by certain effective vol-
ume fraction f∗, introduced as

f∗ = fc − ((f∗
u − fc)/(fF − fc))(f − fc) ;

here fc is the critical volume at which voids (cavities)
coalesce, fF is the volume of voids at ultimate dam-
age and f∗

u = 1/q1. This effective value f
∗ applies to

condition when fc is less than f .

Figure 4: Definition of the Gurson-Tvergaard (GT)
and Gurson-Tvergaard-Needleman (GTN) damage
model.

Figure 5: Schematic illustration of damage models in
front of the crack.

Another type of elements for modelling crack
propagation are cohesive elements. These elements
are originally evolved from contact elements and they
are based on the idea of material separation with the
creation of new surfaces, [21]. Practically, it is a cer-
tain phenomenological description that characterizes
the behaviour of the material using the so-called trac-
tion separation law, thanks to which we can then pre-
dict local violations; schematic shape of cohesive el-
ement for the simplified 2-dimensional geometry is
presented by Fig. 6.
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Figure 6: Schematic shape of cohesive element for
2D in the local coordinates.

Figure 7: Traction separation law for fibre composites
optimized for the numerical stability of the iterative
algorithm.

There are several options for implementing the
cohesion law (traction separation law) into a com-
mercial FEM system. The presented work is based
on long-term experience with the commercial system
Abaqus, which makes it relatively easy to write cus-
tom user procedures for some special types of dam-
age, new types of elements, or user control of some
system options. Just the possibility of writing a user
procedure UEL (User’s Element) became the basis for
the creation and implementation of the procedure for
traction separation law, [22], [23], [24]. The origi-
nal version is shown in Fig. 7, this traction separation
lawwas further modified. The following Fig. 8 shows
comparison of these two methods for a specific ma-
terial. As crucial in this real case, it is necessary to
point out the exact modelling of the dependence of
actual stress versus actual deformation.

A numerical implementation of both the material
model for ductile GTN material including the con-
struction of a special element into the Abaqus soft-
ware system for the cohesive model shown in Fig. 7
was documented, [25]. The relevant equations and
the derived procedure for the realization of special el-
ements are presented here. At the same time, a nu-

Figure 8: Determination of the J - R curve, showing
the applied integral J versus crack extension, for both
methods, material forged steel.

merical analysis is performed and some aspects of
practical calculations are pointed out. An example
for application of the cohesive approach for ceramics
with long fibres is described, [26], for the viscoelastic
model, [27].

5 Crack growth via XFEM modelling

There is no doubt that the FEM is widely used mainly
in the area of solving differential equations, however,
as already indicated in the article, the FEM mesh
may not always be ideal for modelling crack propa-
gation. And this is one of the most significant inter-
est in solid mechanics problems. First models were
based on the weak (strain) discontinuity that could
pass through finite element mesh using variational
principle, [28]. Other authors and investigators con-
sidered strong (displacement) discontinuity by mod-
ifying the principle of virtual work statement (which
is also the case for models with the traction separation
law), [29], [30], [31], including stability and conver-
gence of such problems, [32], and improvement of the
precision of numerical procedure, [33], [34], [35].

In the strong discontinuity approach, the dis-
placement consist of regular and enhanced compo-
nents, where the enhanced components yield via jump
across discontinuity surface, [30]. There is a modi-
fication of the basic equation, well-known from the
standard finite element method (FEM), for the rela-
tionship between displacements ue(x) on particular
points x of the e-th element (3-dimensional vectors
of functions in general) and displacements at selected
element nodes ui, utilizing some standard shape func-
tions Ni(x), i. e.
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ue(x) =
∑
i∈EA

Ni(x)u
i ; (2)

hereEA denotes the set of nodes corresponding to the
standard e-th element.

For the extended finite element method (XFEM),
some more terms must be added to slightly modi-
fied displacements inside element end displacements
at element nodes of (2). The second term realizes
the technique of penetration into the element and the
movement of the crack, the third criterion the fail-
ure (decohesion) and the possible direction of move-
ment according to the preferred criteria. So the pre-
vious equation for the case of crack growth for 2-
dimensional modelling (not limited to one element)
is modified into the form

uh(x) =
∑
i∈EA

Ni(x)u
i (3)

+
∑
j∈CB

Nj(x)Hj(x) +
∑
k∈CC

Nk(x)

4∑
m=1

Φm
k (x)cmk

including certain specialized shape functions Ni(x),
Nj(x) and Nk(x) for intrinsic version of XFEM,
same shape function for extrinsic version, where CA,
CB , CC are the sets of points corresponding to Fig. 9
andH(x) is the Heaviside function. The first term in
(3) corresponds to the standard method of finite ele-
ments, the second realizes the formation of a crack
and the third appropriate criterion of its formation,
while Φm

k (x) characterizes the local situation in front
of the crack, m takes on values from 1 to 4, which
corresponds to the basic possible directions of crack
propagation in 2D.

Figure 9: Illustration of enrichment function; do-
mains A,B,C,D,E under the influence of crack
growth.

Fig. 9 also characterizes the crack movement.
AreaA is affected by a crack, areasD andE are at risk
of a crack creation and the situation here is already
affected by the crack. In area B the crack moves and
the second term of the (3) applies, in area C there is a
crack tip and the third term of the equation (3) applies.

For practical calculations, the time discretization
method and the extended finite element method can

Figure 10: Crack propagation scheme for XFEM, HE
stands for Heaviside Enrichment, CTE for Crack Tip
Enrichment.

be used (chart can be seen in Fig. 10,) working with
adaptive enrichment of the set of basis functions near
singularities. This method (including a number of its
modifications with their own names and designations)
it already has quite a rich history with the remarkable
progress in recent years, [36], [37], [39], [40], [41],
[42], [43].

The FEM software AbaqusTM utilizes just (3)
where the third term represents a simple criterion
based on the minimum deformation energy, [5], [44],
[45]. The mentioned equation, however, represents
only one class of XFEM-based methods, the so-called
extrinsic formulation. In this case, the number of de-
grees of freedom (DOF) increases, but the standard
shape function from (2) does not change.

For the second group of XFEM methods, we use
the label intrinsic method. In this case, there is no
change in the number of degrees of freedom, but in the
shape functions, which is numerically much more de-
manding and procedures based on the method of least
squares are used. It should be noted that the third term
of (3), implementing the criterion of initialization and
crack growth, does not change. The second term of
the equation will therefore change significantly and
may look like

uh(x) =
∑
j∈CN

Ñj(x)ã ;

hereCN is complete set of nodes, whereas ã refers to a
set of cautiously designed parameters, whose relation
to ui has to be evaluated from certain non-trivial aux-
iliary problem, e. g. using the least squares technique,
[37], [38]. This entry into the history of XFEM and
its division into extrinsic and intrinsic methods, [46],
is only informative and serves to understand the dam-
age modelling of fibre composites, in particular in the
following considerations; cf. concurrent approaches,
[47], [48], [49], too.

6 Damage modelling of structral

fibre composites

Fibre cement composites belong to the class of per-
spective concretes with higher mechanical resistance
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against the formation of cracks. This allows for a finer
and more economical construction; therefore, a new
perspective on the creation of building structures or
replacement is necessary steel constructions. These
structures subjected to loads can result in stresses in
the body exceeding the strength of the material, and
thus lead to gradual failure. Such failures are often
initiated by surface or near-surface cracks, which re-
duces the strength of the material.

A separate serious problem is the setting of ma-
terial parameters at the macroscopic level, supported
by appropriate experiments, if there is at least some
information about the structure of the material, e.g.
about random or intentionally preferred fibre direc-
tions; problems of this kind with an emphasis on
non-destructive or minimally invasive ones test meth-
ods (especially x-ray, tomographic and electromag-
netic, working with stationary magnetic or harmonic
electromagnetic field) is covered, [50], as well as
temperature-dependent problems, [51], [52]. A more
general procedure for randomly oriented fibres was
developed, [53], [54]; an example of a real distribu-
tion in reinforced concrete, [55], is in Fig. 11.

Figure 11: Radiographic image of fibre distribution
in wire composite.

The formation of microcracks, [50], can be taken
into account by introducing a failure factor based on
the approach modifying the stress field and working
with the non-local Eringen model, [56], a schematic
diagram describing the stress calculation ahead the
crack tip is shown in Fig. 12. About the interfaces be-
tween thematrix and the fibres, but also inside thema-
trix, possibly also the fibres, depending on the gradu-
ally activated macrocracks, it is usually assumed that
they can be described by a cohesion model according
to [57], [58], or, [59].

The XFEM application is able to suppress the dis-
advantages in the simulation of cohesive crack prop-
agation; however, it must handle the absence of a
sharp singularity at the crack tip with a more com-
plex derivation of the required stresses from displace-

Figure 12: Calculating the stress in front of the crack
tip: a non-local approach.

ments. A complete computational model should gen-
erally include the initiation and propagation of cracks,
their bridging by fibres, loss of cohesion between fi-
bres and matrix, their mutual sliding by friction and
destruction of fibres; special functions are required,
e.g., for stress singularities in case opening and clos-
ing of cracks. The scheme of crack propagation
through the original FEM elements is represented in
Fig. 10. A unified scale-spanning approach cover-
ing elastic and plastic behaviour along with fracture
a with other defects leads to the concept of structured
deformation, [60].

By considering models based on micromechan-
ics, the macro-constitutive equations of unidirectional
or randomly distributed fibres of reinforced materi-
als, taking into account the possibility of forming and
spreading cracks in the matrix, as well as to the sep-
aration and breakage of fibres. The computational
model is finally used in numerical simulations in or-
der to outline its reliability in evaluating both the
fibre-matrix interaction phenomenon, so the ability to
predict fracture failure of fibre composites. Mechan-
ical behaviour of fibre-reinforced brittle matrix com-
posites, with an emphasis on cementitious compos-
ites, will be investigated based on both discontinuous
approach and modified approaches based on FEM.

XFEM is mesh-independent as to internal bound-
ary such as material interfaces and cracks. These in-
ternal boundaries usually cause weak or strong field
discontinuities variables that will be taken into ac-
count in XFEM by incorporating enrichment func-
tions into the standard FEM approximation.

7 Application of the XFEM approach

For simplicity, let us start with the small-strain static
formulation of the problem of deformation of lin-
ear elastic body, as the first step for the implemen-
tation of XFEM-based computational approach to the
analysis of both micro- and macrocracking in quasi-
brittle composites, with obvious applications to ce-
mentitious composites with various types of rein-
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forcement. Such weak formulation is usually based
on the conservations principles from classical ther-
momechanics, namely of mass, momentum and en-
ergy, supplied by appropriate constitutive equations,
whose material parameters come from experimental
identification procedures. In our case the conserva-
tion of linear momentum on a deformable body Ω in
the 3-dimensional Euclidean space, supplied by some
Cartesian coordinate system x = (x1, x2, x3), reads

((ε(w), σ)) = (w, f) + 〈w, g〉 (4)
for all virtual displacements w = (w1, w2, w3), re-
lated to an initial configuration, whereas (for any
fixed x) σ is a symmetricmatrix with 3×3 elements, f
denotes prescribed body forces onΩ, g represents pre-
scribed surface forces on certain part Γ of the bound-
ary ∂Ω of Ω, whereasΘ = ∂Ω \Γ corresponds to the
supported part of ∂Ω; ε(w) then means a strain ten-
sor, introduced as εij(w) = (∂wi/∂xj+∂wj/∂xi)/2
with i, j ∈ {1, 2, 3}. All virtual displacements can be
restricted to those with zero values on Θ; the same is
expected from (still unknown) real displacements u.
In (4) the simplified notation of integrals

((ε(w), σ)) =

3∑
i,j=1

∫
Ω
εij(w)σij dx ,

(w, f) =

3∑
i,j=1

∫
Ω
wifi dx ,

〈w, g〉 =
3∑

i,j=1

∫
Γ
wigi ds(x)

is used; moreover from the Hooke law we need to
evaluate σ = Cε(u) using an order 4 symmetric ten-
sor with 21 different material characterisics in gen-
eral, which can be reduced to 2 characteristics E, µ
again (cf. Section 2). Thus, we obtain a weak for-
mulation of an elliptic mixed (Dirichlet and Neu-
mann) boundary value problem for a partial differ-
ential equation of elliptic type, whose solvability can
rely on the classical Lax-Milgram theorem in spe-
cial Sobolev spaces. Its numerical analysis can be
preformed using the standard FEM techniques effec-
tively: for the unknown values of u in discrete points
x we come to the sparse system of linear algebraic
equations.

However, such interpretation of (4) covers the pure
elastic static case only, without implementation of de-
velopment of any fracture. As certain remedy, [61],
[62], we can rewrite (4) into its quasi-static form,
introducing, due to the Kelvin parallel viscoelastic
model, σ = C(ε(u) + βε(v)), understanding v as
the displacement rate, i. e. the time derivative of u,
utilizing the homogeneous Cauchy initial condition
(all zero values of u in the initial zero time), α be-
ing a structural damping factor, as an additional ma-
terial characteristic. Consequently, (4) can be un-
derstood as a weak formulation of a parabolic mixed

boundary value problem, with an unknown displace-
ment u(t) developed in time t ≥ 0, whose solvability
can rely on the method of discretization in time and
on the properties of special Rothe sequences (namely
piecewise simple abstract functions and linear La-
grange splines composed of such functions) in special
Bochner-Sobolev spaces. Their practical construction
is easy: taking us for any t = sh approximately, h be-
ing certain time step, s ∈ {1, 2, . . .}, and vs similarly,
too, we are able to rewrite (4) as

((ε(w), αCε(vs))) (5)

+ ((ε(w), Cε(us))) = (w, f) + 〈w, g〉
for hvs = us−us−1, starting from the zero-valued u0

everywhere onΩ. Therefore we have to analyse, step-
by-step, linear elliptic problems; the standard FEM
techniques are available again, with the similar results
as above.

Unfortunately, this is the end of simple linear com-
putations. Both i) the formation of microscopic frac-
tured zones and ii) the initiation, opening and closing
of macroscopic cracks needs certain modifications of
(5), disturbing its linearity substantially. The case
i) can be handled by careful introducing of certain
non-local regularizing damage factor D with values
between 0 and 1, working with some stress invari-
ants and with the Eringen model typically, respecting
namely the specific material behaviour under tension
and compression. This results in some stiffness loss,
expressed by the replacement of C by (1 −D(t))C.
The case ii), at least for the a priori known poten-
tial positions of cracks, forces an additional right-
hand-side term of (5): similarly to 〈w, g〉 we need
〈w, γ(Du) on Λ instead of Γ, with Λ representing all
internal interfaces, where Du are differences in dis-
placements onΛ and γ(.)must be seen as a non-trivial
new material characteristics, including the cohesive
properties of Λ. Denoting still by the upper index s

our approximations for t = sh, for any such time we
can implement the iterative procedure to

((ε(w), (1−Ds
×)αCε(vs))) (6)

+ ((ε(w), (1−Ds
×)Cε(us))) = (w, f) + 〈w, g〉

+〈w, γ(Dus×)〉Λ
where (if no better information is available) us−1 can
be taken as an initial guess of us×, then replaced by
us, obtained from (6), for the next iterative step, etc.

Whereas the main difficulty of i) is the compli-
cated design and evaluation of D(.), for the standard
FEM applications ii) suffers for the unpleasant duty of
repeated remeshing, to cover potential creation of still
new parts of Λ, which can be very expensive. This
highlights the priority of XFEM (and similar meth-
ods), thanks to the advanced choice of nodal func-
tions. Nevertheless, the basic form of (6) stays un-
changed.
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Let us also mention the need of further improve-
ments for numerous engineering applications, ex-
ceeding the scope of this article, namely: a) the im-
plementation of finite strains, b) the replacement of
empiric linearized constitutive relations as Hooke,
Kelvin, etc., ones, by proper relations coming from
thermodynamic considerations, c) the passage from a
quasi-static to a dynamic formulation, adding the in-
ertia forces, mass damping and a more general dissi-
pative mechanism in general. Although a), b), c) are
not avoided by recent software packages, the related
mathematical existence and convergence theory con-
tains still open questions because no system of propo-
sitions, theorems, etc., comparable with that for linear
and quasilinear problems, is available; consequently
one must rely on experimental validation of compu-
tational results only.

Figure 13: The application of Mazars exponential
model.

Asample with a cement matrix and steel fibres was
selected for computational modelling. Numerical re-
sults show the surface propagation of cracks in the
damaged body depending on the location fibre and
material properties. The reinforcing effect of the fi-
bres plays a significant role in the direction of crack
propagation. A sample with a cement matrix and steel
fibres was selected for computational modelling. The
attention is paid in particular to Eringen’s model for

Figure 14: The application of non-local approaches.

generating the multiplicative damage factor, related
quasi-static analysis, the existence of weak solution
of the corresponding boundary value and initial value
problem with a parabolic partial system differential
equations.

The proposed procedure thus combines the pos-
sibilities of several approaches for modelling crack
propagation in fibre composites. The XFEM method
is primary, the stress in front of the crack front is recal-
culated according to the non-local approach, in the en-
tire body according to the exponential or power law of
violation, [63], [64], [65], [66], which implies some
degree of averaging (especially as to stress) ahead of
the crack front. The following Fig. 13 and Fig. 14
present some results, due to the well-tried so-called
Mazars model, [67], [68], [69], [70].

Mazars damage model is based on a strain formu-
lation and generally is used for the physically nonlin-
ear analysis of concrete structures. The main objec-
tive is modification of damage model, in which both
tension and compression damage evolution laws are
regularized using a classical fracture energy method-
ology. Its hypothesis is founded on the base of an
elastic damage isotropic behaviour. This model as-
sumes the following premises: i) damage evolves/oc-
curs only due to positive strains in the principal di-
rections, which indirectly promotes “smeared crack
grow”; ii) only one scalar damage variable is defined,
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this is due to the damage model being isotropic; iii)
represents the material as totally damaged, and it is
limited in the interval; iv) no permanent strains are
admitted, and the unloading path is linear, therefore,
no hysteresis loops.

8 Conclusions

The practical application of this work is to show some
techniques suitable for the crack growth modelling in
case of heterogeneous materials, in order to find crit-
ical parameters determining the behaviour of materi-
als and damage. The basic step that conditions the
realistic modelling of the behaviour of the material is
finding or using a suitable criterion that determines
the formation of a new crack and then the subsequent
growth of resulting crack. It stands to reason that in
searching for a suitable criterion (often based on frac-
ture mechanics), the first approximation a model with
an a priori crack or stress concentrator is used.

Special attention is concentrated on modelling
building fibre composites, especially on the use of a
modified FEM and on the presentation of some tech-
niques that can improve XFEM. However, the prob-
lem of local stress determination for these composites
is more general for the entire group of fibre compos-
ites regardless to understanding of the size effect. The
field of application of XFEM is still in the forefront of
interest of the mentioned group of authors, especially
the solution of crack propagation in fibre composites.

The combination of the Mazars model, which is
very popular and is implemented in numerous sys-
tems for FEM, with the refinement and determination
of the stress distribution in front of the crack tip is
a promising solution for structural composites mod-
elling. Generally speaking, the numerical stability
of crack propagation modelling in the case of some
stress averaging in front of the crack tip is much bet-
ter than in the case of sharp concentrators, especially
their effect on XFEM.
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