Skip to main content

Decomposition in Boreal Peatlands

  • Chapter
Boreal Peatland Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 188))

7.3 Conclusions

The slow rates of decomposition of plant tissues and peat are critical to the accumulation of large amounts of organic matter in boreal peatlands. This slowness is a combination of the poor nutrient content and high refractory content of most peatland plants and the underlying peat, the generally cool and frequently anoxic conditions in which the plant tissues and peat decompose, and small microbial populations, when normalized to soil organic C content. Although several studies have identified and quantified the influence of these controls of decomposition rates for individual peatlands, we still lack a coherence, compared with forest or grassland systems, in the application of this knowledge to the broad range of peatlands that occur with boreal environments under both natural and disturbed (such as drained, harvested, or flooded) conditions or under climate-change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aendekerk TGL (1997) Decomposition of peat substances in relation to physical properties and growth of chamaecyparis. Acta horticulturae 450:191–198

    Google Scholar 

  • Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181

    Article  Google Scholar 

  • Arshad MA, Franzluebbers AJ, Azooz RH (2004) Surface-soil structural properties under grass and cereal production on a Mollic Cyroboralf in Canada. Soil Tillage Res 77:15–23

    Article  Google Scholar 

  • Baker TT, Lockaby BG, Conner WH, Meier CE, Stanturf JA, Burke MK (2001) Leaf litter decomposition and nutrient dynamics in four southern forested floodplain communities. Soil Sci Soc Am J 65:1334–1347

    Article  CAS  Google Scholar 

  • Banerjee RD, Sen SP (1979) Antibiotic activity of bryophytes. Bryologist 82:141–153

    Article  Google Scholar 

  • Basiliko N, Yavitt JB (2001) Influence of Ni,Co,Fe, and Na additions on methane production in Sphagnum-dominated northern American peatlands. Biogeochemistry 52:133–153

    Article  CAS  Google Scholar 

  • Belyea LR (1996) Separating the effects of litter quality and macroenvironment on decomposition rates in a patterned peatland. Oikos 77:529–539

    Google Scholar 

  • Blodau C, Moore TR (2003) Micro-scale CO2 and CH4 dynamics in a peat soil during a water fluctuation and sulfate pulse. Soil Biol Biochem 35:535–547

    Article  CAS  Google Scholar 

  • Blodau C, Roehm CL, Moore TR (2002) Iron, sulfur, and dissolved carbon dynamics in a northern peatland. Achiv Hydrobiol 154:561–583

    CAS  Google Scholar 

  • Blodau C, Basiliko N, Moore TR (2004) Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67:331–351

    Article  CAS  Google Scholar 

  • Bräuer SL, Yavitt JB, Zinder SH (2004) Methanogenesis in McLean Bog, an acidic peat bog in upstate New York: stimulation by H2/CO2in presence of rifampicin, or by low concentrations of acetate. Geomicrobiol J 21:433–443

    Article  CAS  Google Scholar 

  • Campbell C, Vitt DH, Halsey LA, Campbell ID, Thormann MN, Bayley SE (2000) Net primary production and standing biomass in northern continental wetlands. Canadian Forestry Service information report NOR-X-369. Canadian Forestry Service, Edmonton

    Google Scholar 

  • Cleary J, Roulet NT, Moore TR (2005). Greenhouse gas emissions from Canadian peat extraction, 1990–2000: a life-cycle analysis. Ambio 34:456–461

    PubMed  Google Scholar 

  • Clymo RS (1965) Experiments on breakdown of Sphagnum in two bogs. J Ecol 53:737–757

    Google Scholar 

  • Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388

    Google Scholar 

  • Day FP (1983) Effects of flooding on leaf litter decomposition in microcosms. Oecologia 56:180–184

    Article  Google Scholar 

  • Dunfield P, Knowles R, Dumont RT, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326

    Article  CAS  Google Scholar 

  • Duddleston KN, Kinney MA, Kiene RP, Hines ME (2002) Anaerobic microbial biogeochemistry in a northern bog: acetate as a dominant metabolic end product. Global Biogeochem Cycles 16.DOI 10.1029/2001GB001402

    Google Scholar 

  • Fenner N, Ostle N, Freeman C, Sleep D, Reynolds B (2004) Peatland carbon efflux partitioning reveals that Sphagnum photosynthate contributes to the DOC pool. Plant Soil 259:345–354

    Article  CAS  Google Scholar 

  • Freeman C, Liska G, Ostle NJ, Lock MA, Hughes S, Reynolds B, Hudson J (1997) Enzymes and biogeochemical cycling in wetlands during a simulated drought. Biogeochemistry 39:177–187

    Article  CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymatic ‘latch’ on global carbon store. Nature 409:149

    Article  PubMed  CAS  Google Scholar 

  • Frolking S, Bubier JL, Moore TR, Ball T, Bellisario LM, Bhardwaj A, Carroll P, Crill PM, Lafleur PM, McCaughey JH, Roulet NT, Suyker AE, Verma SB, Waddington JM, Whiting GJ (1998) The relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Global Biogeochem Cycles 12:115–126

    Article  CAS  Google Scholar 

  • Glatzel SN, Basiliko N, Moore TR (2004) Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands 24:261–267

    Article  Google Scholar 

  • Gorham E (1991) Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • Hogg HE (1993) Decay potential of hummock and hollow Sphagnum peats at different depths in a Swedish raised mire. Oikos 66:269–278

    Google Scholar 

  • Hornibrook ERC, Longstaff FJ, Frye WS (1997) Spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen isotope evidence. Geochim Cosmochim Acta 61:745–753

    Article  CAS  Google Scholar 

  • Jasinski SM (2001) Peat. Mineral Commodity Summaries, January, 2001. US Department of the Interior: US Geological Survey, Washington, DC

    Google Scholar 

  • Johnson LC, Damman AWH (1991) Species controlled Sphagnum decay on a south Swedish raised bog. Oikos 61:234–242

    Google Scholar 

  • Johnson LC, Damman AWH (1993) Decay and its regulation in Sphagnum peatlands. Adv Bryol 5:249–296

    Google Scholar 

  • Latter PM, Howson G, Howard DM, Scott WA (1998) Long-term study of litter decomposition on a Pennine peat bog: which regression? Oecologia 113:94–103

    Article  Google Scholar 

  • Leckie SE, Prescott CE, Grayston SJ, Neufeld JD, Mohn WW (2004) Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability. Microbial Ecol 48:29–40

    Article  CAS  Google Scholar 

  • Li Y, Vitt DH (1997) Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands. Écoscience 4:106–116

    Google Scholar 

  • Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547

    Article  CAS  Google Scholar 

  • Lockaby BG, Wheat RS, Clawson RG (1996) Influence of hydroperiod on litter conversion to soil organic matter in a floodplain forest. Soil Sci Soc Am J 60:1989–1993

    Article  CAS  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatlands soil. J Soil Sci 44:651–664

    Article  CAS  Google Scholar 

  • Moore TR, Dalva M (1997) Methane and carbon dioxide exchange potentials of peat in aerobic and anaerobic laboratory incubations. Soil Biol Biochem 29:1157–1164

    Article  CAS  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90:25–36

    Article  Google Scholar 

  • Moore TR, Trofymow JA, Taylor B, Prescott C, Camiré C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S (1999) Litter decomposition rates in Canadian forests. Global Change Biol 5:75–82

    Article  Google Scholar 

  • Moore TR, Trofymow JA, Siltanen M, Prescott C, CIDET Working Group (2005) Patterns of decomposition and carbon, nitrogen and phosphorus dynamics of litter in upland forest and peatland sites, central Canada. Can J For Res 35:133–142

    Article  CAS  Google Scholar 

  • Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD, CIDET Working Group (2006) Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems (in press)

    Google Scholar 

  • Murayama S, Asakawa Y, Ohno Y (1990) Chemical properties of subsurface peats and their decomposition kinetics under field conditions. Soil Sci Plant Nutr 36:129–140

    CAS  Google Scholar 

  • Nedwell D, Watson A (1995) CH4 production, oxidation and emissions in a UK ombrotrophic peat bog: influence of SO 2−4 from acid rain. Soil Biol Biochem 27:893–903

    Article  CAS  Google Scholar 

  • Painter TJ (1991) Lindow Man, Tollund Man and other peat-bog bodies: the preservative and antimicrobial action of Sphanan, a reactive glycurnoglycan with tanning and sequestering properties. Carbohydr Polym 15:123–142

    Article  CAS  Google Scholar 

  • Robert EC, Rochefort L, Garneau M (1999) Natural revegetation of two block-cut mined peatlands in eastern Canada. Can J Bot 77:447–459

    Article  Google Scholar 

  • Scanlon D, Moore TR (2000) Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165:153–160

    Article  CAS  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    Article  CAS  Google Scholar 

  • Thomas KL, Benstead J, Davies KL, Lloyd D (1996) Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biol Biochem 28:17–23

    Article  Google Scholar 

  • Thormann MN, Bayley SE, Currah RS (2000) Comparison of decomposition of belowground and aboveground plant litters in peatlands of boreal Alberta. Can J Bot 79:9–22

    Article  Google Scholar 

  • Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, Camiré C, Duschene L, Kozak L, Kranabetter M, Visser S (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804

    Article  Google Scholar 

  • Turetskey MR (2004) Decomposition and organic matter quality in continental peatland: the ghost of permafrost past. Ecosystems 7:740–750

    Article  CAS  Google Scholar 

  • Turunen J, Pitkänen A, Tahvanainen T, Tolonen K (2001) Carbon accumulation in West Siberian mires, Russia. Global Biogeochem Cycles 15:285–296

    Article  CAS  Google Scholar 

  • Updegraff K, Pastor J, Bridgham SD, Johnston CA (1996) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–163

    Google Scholar 

  • Verhoeven JTA, Liefveld WM (1997) The ecological significance of organochemical compounds in Sphagnum. Acta Bot Neerl 46:117–130

    CAS  Google Scholar 

  • Verhoeven JTA, Toth E (1995) Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates. Soil Biol Biochem 27:271–275

    Article  CAS  Google Scholar 

  • Vile MA, Bridgham SD, Wieder RK, Novak M (2003a) Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands. Global Biogeochem Cycles 17:1058.DOI 10.1029/2002GB001966

    Google Scholar 

  • Vile MA, Bridgham SD, Wieder RK (2003b) Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland. Ecol Appl 13:720–734

    Google Scholar 

  • Waksman SA, Stevens KR (1928) Contribution to the chemical composition of peat I. Chemical nature of organic complexes in peat and methods of analysis. Soil Sci 26:113–137

    Article  CAS  Google Scholar 

  • Waksman SA, Stevens KR (1929) Contribution to the chemical contribution of peat. II. The role of microorganisms in peat formation. Soil Sci 28:315–340

    CAS  Google Scholar 

  • Wieder RK (2001) Past, present and future carbon balance — an empirical model based on 210Pb-dated cores. Ecol Appl 11:321–336

    Google Scholar 

  • Wieder RK, Lang GE (1988) Cycling of inorganic and organic sulfur in peat from Big Run Bog, West Virginia. Biogeochemistry 5:221–242

    Article  CAS  Google Scholar 

  • Wieder RK, Yavitt JB, Lang GE (1990) Methane production and sulfate reduction in 2 Appalachian peatlands. Biogeochemistry 10:81–104

    Article  Google Scholar 

  • Williams B, Silcock D, Young M (1999) Seasonal dynamics of N in two Sphagnum moss species and the underlying peat treated with 15NH4 15NO3. Biogeochemistry 45:285–302

    Google Scholar 

  • Williams CJ, Shingara EA, Yavitt JB (2000) Phenol oxidase activity in peatlands in New York state: response to summer drought and peat type. Wetlands 20:416–421

    Article  Google Scholar 

  • Wind T, Conrad R (1997) Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37:253–278

    Article  CAS  Google Scholar 

  • Wylie GD (1987) Decomposition and nutrient dynamics of litter of Quercus palustris and Nelumbo lutea in a wetland complex of Southeast Missouri, U.S.A. Arch Hydrobiol 111:95–106

    Google Scholar 

  • Wynn-Williams DD (1982) Simulation of seasonal changes in microbial activity of maritime Antarctic peat. Soil Biol Biochem 14:1–12

    Article  CAS  Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK (1997) Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiol J 14:299–316

    Article  CAS  Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry, and genetics. Chapman and Hall, New York, pp 128–206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moore, T., Basiliko, N. (2006). Decomposition in Boreal Peatlands. In: Wieder, R.K., Vitt, D.H. (eds) Boreal Peatland Ecosystems. Ecological Studies, vol 188. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-31913-9_7

Download citation

Publish with us

Policies and ethics