Skip to main content

Advertisement

Log in

Cadaver decomposition in terrestrial ecosystems

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarons SR, O’Connor CR, Gourley CJP (2004) Dung decomposition in temperate dairy pastures. I. Changes in soil chemical properties. Aust J Soil Res 42:107–114

    CAS  Google Scholar 

  • Ajwa HA, Tabatabai MA (1994) Decomposition of different organic materials in soils. Biol Fertil Soils 18:175–182

    Google Scholar 

  • Allee WC, Emerson AE, Park O, Park T, Schmidt KP (1949) Principles of animal ecology. W. B. Saunders Co., Philadelphia, PA, USA

    Google Scholar 

  • Allison M (1979) Paleopathology in Peru. Nat Hist 88:74–83

    PubMed  CAS  Google Scholar 

  • Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–65

    PubMed  CAS  Google Scholar 

  • Anderson JM, Coe MJ (1974) Decomposition of elephant dung in a arid, tropical environment. Oecologia 14:111–125

    Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    CAS  Google Scholar 

  • Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwest British Columbia. J Forensic Sci 41:617–625

    Google Scholar 

  • Aturaliya S, Lukasewycz A (1999) Experimental forensic and bioanthropological aspects of soft tissue taphonomy: 1. Factors influencing postmortem tissue desiccation rate. J Forensic Sci 44:893–896

    PubMed  CAS  Google Scholar 

  • Baco AR, Smith CR (2003) High species richness in deep-sea chemoautotrophic whale skeleton communities. Mar Ecol Prog Ser 260:109–114

    Google Scholar 

  • Beijerinck M (1913) De infusies en de ontdekking der backterien. Muller, Amsterdam

    Google Scholar 

  • Bernal MP, Kirchmann H (1992) Carbon and nitrogn mineralization and ammonia volatilization from fresh, aerobically and anaerobically treated pig manure during incubation with soil. Biol Fertil Soils 13:135–141

    CAS  Google Scholar 

  • Bethell PH, Carver MOH (1987) Detection and enhancement of decayed inhumations at Sutton Hoo. In: Boddington A, Garland AN, Janaway RC (eds) Death, decay and reconstruction: approaches to archaeology and forensic science. Manchester University Press, Manchester, UK, pp10–21

    Google Scholar 

  • Bennett BA, Smith CR, Glaser B, Maybaum HL (1994) Faunal community structure of a chemoautotrophic assemblage on whale bones in the deep northeast Pacific Ocean. Mar Ecol Prog Ser 108:205–223

    Google Scholar 

  • Bjornlund L, Christensen S (2005) How does litter quality and site heterogeneity interact on decomposer food webs of a semi-natural forest? Soil Biol Biochem 37:203–213

    CAS  Google Scholar 

  • Blaustein L, Schwartz SS (2001) Why study ecology in temporary pools? Isr J Zool 47:303–312

    Google Scholar 

  • Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Aust J Zool 5:1–12

    Google Scholar 

  • Brouwer J, Powell JM (1998) Increasing nutrient use efficiency in West-African agriculture: the impact of micro-topography on nutrient leaching from cattle and sheep manure. Agric Ecosyst Environ 71:229–239

    Google Scholar 

  • Calderón FJ, McCarty GW, Reeves III JB (2005) Analysis of manure and soil nitrogen mineralization during incubation. Biol Fertil Soils 41:328–336

    Google Scholar 

  • Campobasso CP, Di Vella G, Introna F (2001) Factors affecting decomposition and Diptera colonization. Forensic Sci Int 120:18–27

    PubMed  CAS  Google Scholar 

  • Carter DO (2005). Forensic taphonomy: processes associated with cadaver decomposition in soil. Ph.D. thesis, James Cook University

  • Carter DO, Tibbett M (2003) Taphonomic mycota: fungi with forensic potential. J Forensic Sci 48:168–171

    PubMed  Google Scholar 

  • Carter DO, Tibbett M (2006) The decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated at different temperatures. Soil Biol Biochem 38:1139–1145

    CAS  Google Scholar 

  • Child AM (1995) Towards an understanding of the microbial decomposition of archaeological bone in the burial environment. J Archaeol Sci 22:165–174

    Google Scholar 

  • Christensen BT (1985) Wheat and barley straw decomposition under field conditions: effect of soil type and plant cover on weight loss, nitrogen and potassium content. Soil Biol Biochem 17:691–697

    Google Scholar 

  • Clark MA, Worrell MB, E. PJ (1997) Postmortem changes in soft tissue. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, FL, USA, pp151–164

    Google Scholar 

  • Coe J (1973) Postmortem chemistry: practical considerations and a review of literaure. J Forensic Sci 19:13–32

    Google Scholar 

  • Coe M (1978) The decomposition of elephant carcases in the Tsavo (East) National Park, Kenya. J Arid Environ 1:71–86

    Google Scholar 

  • Coleman DC, Crossley Jr. DA, Hendrix PF (2004) Fundamentals of soil ecology. 2nd edn. Elsevier Acadamic Press, Burlington, MA, USA

    Google Scholar 

  • Crist TAJ, Washburn A, Park H, Hood I, Hickey MA (1997) Cranial bone displacement as a taphonomic process in potential child abuse cases. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, FL, USA, pp319–336

    Google Scholar 

  • Dakora FD, Phillips DA (2005) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Google Scholar 

  • Danell K, Berteaux D, Braathen KA (2002) Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Arctic 55:389–392

    Google Scholar 

  • De Meester L, Declerck S, Stoks R, Louette G, van de Meutter F, De Bie T, Michels E, Brendonck L (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat Conserv 15:715–725

    Google Scholar 

  • DeGaetano DH, Kempton JB, Rowe WF (1992) Fungal tunneling of hair from a buried body. J Forensic Sci 37:1048–1054

    PubMed  CAS  Google Scholar 

  • Dent BB, Forbes SL, Stuart BH (2004) Review of human decomposition processes in soil. Environ Geol 45:576–585

    CAS  Google Scholar 

  • DeSutter TM, Ham JM (2005) Lagoon-biogas emissions and carbon balance estimates of a swine production facility. J Environ Qual 34:198–206

    PubMed  CAS  Google Scholar 

  • DeVault TL, Rhodes OE, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234

    Google Scholar 

  • DeVault TL, Brisbin Jr. IL, Rhodes OE (2004) Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can J Zool 82:502–509

    Google Scholar 

  • Dilly O, Munch J-C (1998) Ratios between estimates of microbial biomass content and microbial activity in soils. Biol Fertil Soils 27:374–379

    CAS  Google Scholar 

  • Drijber RA, Doran JW, Parkhurst AM, Lyon DJ (2000) Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol Biochem 32:1419–1430

    CAS  Google Scholar 

  • Dzierzykray-Rogalsky T (1986) Natural mummification in Egypt. In: David AR (ed) Science in Egyptology. Manchester University Press, Manchester, UK, pp101–112

    Google Scholar 

  • Efremov EA (1940) Taphonomy: a new branch of paleontology. Pan-Amer Geol 74:81–93

    Google Scholar 

  • Eidt RC (1977) Detection and examination of Anthrosols by phosphate analysis. Science 4311:1327–1333

    Google Scholar 

  • Eisenberg JF, Thorington Jr. RW (1973) A preliminary analysis of a neotropical mammal fauna. Biotropica 5:150–161

    Google Scholar 

  • Esse PC, Buerkert A, Hiernaux P, Assa A (2001) Decomposition of and nutrient release from ruminant manure on acid sandy soils in the Sahelian zone of Niger, West Africa. Agric Ecosyst Environ 83:55–63

    Google Scholar 

  • Evans WED (1963a) Adipocere formation in a relatively dry environment. Med Sci Law 3:145–153

    Google Scholar 

  • Evans WED (1963b) The chemistry of death. Charles C. Thomas, Springfield, IL, USA

    Google Scholar 

  • Ewel JJ (1976) Litter fall and leaf decomposition in a tropical forest succession in eastern Guatemala. J Ecol 64:293–308

    CAS  Google Scholar 

  • Fang C, Smith P, Smith JU (2005) A simple equation for simulating C decomposition in a multi-component pool of soil organic matter. Eur J Soil Sci 56:815–820

    CAS  Google Scholar 

  • Fiedler S, Graw M (2003) Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwissenschaften 90:291–300

    PubMed  CAS  Google Scholar 

  • Fiedler S, Schneckenberg K, Graw M (2004) Characterization of soils containing adipocere. Arch Environ Contam Toxicol 47:561–568

    PubMed  CAS  Google Scholar 

  • Finn JA (2001) Ephemeral resource patches as model systems for diversity-function experiments. Oikos 92:363–366

    Google Scholar 

  • Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377

    Google Scholar 

  • Forbes SL, Stuart BH, Dadour IR, Dent BB (2004) A preliminary investigation of the stages of adipocere formation. J Forensic Sci 49:566–574

    PubMed  CAS  Google Scholar 

  • Forbes SL, Dent BB, Stuart BH (2005a) The effect of soil type on adipocere formation. Forensic Sci Int 154:35–43

    PubMed  Google Scholar 

  • Forbes SL, Stuart BH, Dent BB (2005b) The effect of burial environment of adipocere formation. Forensic Sci Int 154:24–34

    PubMed  Google Scholar 

  • Forbes SL, Stuart BH, Dent BB (2005c) The effect of the burial method on adipocere formation. Forensic Sci Int 154:44–52

    PubMed  Google Scholar 

  • Forbes SL, Stuart BH, Dent BB, Fenwick-Mulcahy S (2005d) Characterization of adipocere formation in animal species. J Forensic Sci 50:633–640

    PubMed  Google Scholar 

  • France DL, Griffin TJ, Swanburg JG, Lindemann JW, Davenport GC, Trammell V, Travis CT, Kondratieff B, Nelson A, Castellano K, Hopkins D (1992) A mutidisciplinary approach to the detection of clandestine graves. J Forensic Sci 37:1445–1458

    Google Scholar 

  • France DL, Griffin TJ, Swanburg JG, Lindemann JW, Davenport GC, Trammell V, Travis CT, Kondratieff B, Nelson A, Castellano K, Hopkins D, Adair T (1997) NecroSearch revisited: further multidisciplinary approaches to the detection of clandestine graves. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, FL, USA, pp497–509

    Google Scholar 

  • Froentjes W (1965) Kurzer Bericht über die unvollständige Leichenzersetzung auf Friedhöfen und die Adipocirebildung. Dtsch Z Gesamte Gerichtl Med 56:205–207

    Google Scholar 

  • Fuller ME (1934) The insect inhabitants of carrion: a study in animal ecology. Council for Scientific and Industrial Research Bulletin no. 82:1–62

    Google Scholar 

  • Gagnon B (2004) Contribution of on-farm and industrial composts to soil pH and enrichment in available nutrients and metals. Can J Soil Sci 84:439–445

    CAS  Google Scholar 

  • Galloway A, Birkby WH, Jones AM, Henry TE, Parks BO (1989) Decay rates of human remains in an arid environment. J Forensic Sci 34:607–616

    PubMed  CAS  Google Scholar 

  • Gehring CA, Wolf JE, Theimer TC (2002) Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in a rain forest soil. Ecol Lett 5:540–548

    Google Scholar 

  • Gill-King H (1997) Chemical and ultrastructural aspects of decomposition. In: Haglund WD, Sorg MH (eds) Forensic Taphonomy: The Postmortem Fate of Human Remains. CRC Press, Boca Raton, FL, USA, pp93–108

    Google Scholar 

  • Gray DR (1993) The use of muskox kill sites as temporary rendezvous sites by arctic wolves with pups in early winter. Arctic 46:324–330

    Google Scholar 

  • Green CJ, Blackmer AM, Horton R (1995) Nitrogen effects on conservation of carbon during corn residue decomposition in soil. Soil Sci Soc Am J 59:453–459

    Article  CAS  Google Scholar 

  • Haglund WD, Sorg MH (1997) Introduction to forensic taphonomy. In: Haglund WD, Sorg MH (eds) Forensic Taphonomy: The Postmortem Fate of Human Remains. CRC Press, Boca Raton, FL, USA, pp1–9

    Google Scholar 

  • Hall DG (1948) The blow flies of North America. Entomological Society of America, Lanham, MD, USA

    Google Scholar 

  • Haynes G (1980) Prey, bones and predators: potential ecological information from analysis of bone sites. Ossa 7:75–97

    Google Scholar 

  • Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12:235–240

    Article  PubMed  CAS  Google Scholar 

  • Higley LG, Haskell NH (2001) Insect development and forensic entomology: the utility of arthropods in legal investigations. In: Byrd JJ, Castner JL (eds) Forensic Entomology. CRC Press, Boca Raton, FL, USA, pp287–302

    Google Scholar 

  • Holdaway FG (1930) Field populations and natural control of Lucilia sericata. Nature 126:648–649

    Google Scholar 

  • Hopkins DW, Ferguson KE (1994) Substrate induced respiration in soil amended with different amino acid isomers. Appl Soil Ecol 1:75–81

    Google Scholar 

  • Hopkins DW, Wiltshire PEJ, Turner BD (2000) Microbial characteristics of soils from graves: an investigation at the interface of soil microbiology and forensic science. Appl Soil Ecol 14:283–288

    Google Scholar 

  • Hopkins DW, Webster EA, Chudek JA, Halpin C (2001) Decomposition in soil of tobacco plants with genetic modifications to lignin biosynthesis. Soil Biol Biochem 33:1455–1462

    CAS  Google Scholar 

  • Horswell J, Cordiner SJ, Maas EW, Martin TM, Sutherland BW, Speir TW, Nogales B, Osborn A (2002) Forensic comparison of soils by bacterial community DNA profiling. J Forensic Sci 47:350–353

    PubMed  CAS  Google Scholar 

  • Houston DC (1985) Evolutionary ecology of Afrotropical and Neotropical vultures in forests. In: Foster M (ed) Neotropical Ornithology. American Ornithologists’ Union Monograph No. 36, Washington DC, USA, pp856–864

    Google Scholar 

  • Hunter J (1994) Forensic archaeology in Britain. Antiquity 68:758–769

    Google Scholar 

  • Illingworth JF (1926) Insects attracted to carrion in southern California. Proc Hawaii Entomol Soc 6:397–401

    Google Scholar 

  • Janzen DH (1977) Why fruits rot, seeds mold, and meat spoils. Am Natural 111:691–713

    CAS  Google Scholar 

  • Janzen HH (2006) The soil carbon delimma: shall we hoard it or use it? Soil Biol Biochem 38:419–424

    CAS  Google Scholar 

  • Jenkinson DS (1977) The soil biomass. NZ Soil News 25:213–218

    Google Scholar 

  • Johnson MD (1975) Seasonal and microseral variations in the insect populations on carrion. Am Midl Nat 93:79–90

    Google Scholar 

  • Johnson D, Booth RE, Whiteley AS, Bailey MJ, Read DJ, Grime JP, Leake JR (2003) Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur J Soil Sci 54:671–678

    Google Scholar 

  • Kaur K, Kapoor KK, Gupta AP (2005) Impact of organic manures with and without mineral fertilizers on soil chemical and biological properties under tropical conditions. Journal of Plant Nutrition and Soil Science 168:117–122

    CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    PubMed  CAS  Google Scholar 

  • Kocárek P (2003) Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, Czech Republic. Eur J Soil Biol 39:31–45

    Google Scholar 

  • Linnaeus C (1767) Systema naturae. 12th edn. Laurentius Salvius, Stockholm, Sweden

    Google Scholar 

  • Lötterle J, Schmierl G, Schellmann B (1982) Einfluss der Bodenart auf die Leichendepomposition bei langen Liegezeiten. Beitr Gerichtl Med 40:197–201

    PubMed  Google Scholar 

  • Lumley TC, Gignac LD, Currah RS (2001) Microfungus communities of white spruce and trembling aspen logs at different stages of decay in disturbed and undisturbed sites in the boreal mixedwood region of Alberta. Can J Bot 79:76–92

    Google Scholar 

  • Lundin RF (1978) “Baby mammoth Dima”: a new discovery. J Paleontol 52:941–942

    Google Scholar 

  • Lundt VH (1964) Ökologische Untersuchungen über die tierische Besiedlung von Aas im Boden. Pedobiologia 4:158–180

    Google Scholar 

  • Malpassi RN, Kaspar TC, Parkin TB, Cambardella CA, Nubel NA (2000) Oat and rye root decomposition effects on nitrogen mineralization. Soil Sci Soc Am J 64:208–215

    Article  CAS  Google Scholar 

  • Mann RW, Bass MA, Meadows L (1990) Time since death and decomposition of the human body: variables and observations in case and experimental field studies. J Forensic Sci 35:103–111

    PubMed  CAS  Google Scholar 

  • Mant AK (1950). A study in exhumation data. M.D. thesis, London University

  • McCann KS (2000) The diversity–stability debate. Nature 405:228–233

    PubMed  CAS  Google Scholar 

  • Megyesi MS, Nawrocki SP, Haskell NH (2005) Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci 50:618–626

    PubMed  Google Scholar 

  • Meierhofer I, Schwarz HH, Müller JK (1999) Seasonal variation in parental care, offspring development, and reproductive success in burying beetle, Nicrophorus vespillo. Ecol Entomol 24:73–79

    Google Scholar 

  • Melis C, Teurlings I, Linnell JDC, Andersen R, Bordoni A (2004) Influence of a deer carcass on Coleopteran diversity in a Scandinavian boreal forest: a preliminary study. Eur J Wildl Res 50:146–149

    Google Scholar 

  • Michelsen A, Andersson M, Jensen M, Kjøller A, Gashew M (2004) Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems. Soil Biol Biochem 36:1707–1717

    CAS  Google Scholar 

  • Micozzi MS (1986) Experimental study of postmortem change under field conditions: effects of freezing, thawing and mechanical injury. J Forensic Sci 31:953–961

    PubMed  CAS  Google Scholar 

  • Micozzi MS (1991) Postmortem change in human and animal remains: a systematic approach. Charles C. Thomas, Springfield, IL, USA

    Google Scholar 

  • Moldrup P, Olesen T, Rolston DE, Yamaguchi T (1997) Modeling diffusion and reaction in soils: VII. Predicting gas and ion diffusivity in undisturbed and sieved soils. Soil Sci 162:632–640

    CAS  Google Scholar 

  • Moorhead DL, Reynolds JF (1989) The contribution of abiotic processes to buried litter decomposition in the northern Chihuahuan desert. Oecologia 79:133–135

    Google Scholar 

  • Moran KK, Six J, Horwath WR, van Kessel C (2005) Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation. Soil Sci Soc Am J 69:1730–1736

    CAS  Google Scholar 

  • Morovic-Budak A (1965) Experiences in the process of putrefaction in corpses buried in earth. Med Sci Law 5:40–43

    PubMed  CAS  Google Scholar 

  • Motter MG (1898) A contribution to the study of the fauna of the grave. a study of one hundred and fifty disinterments, with some additional experimental observations. J New York Entomol Soc 6:201–231

    Google Scholar 

  • Nicholson PB, Bocock KL, Heal OW (1966) Studies on the decomposition of the faecal pellets of a millipede (Glomeris marginata (Villers)). J Ecol 54:755–766

    CAS  Google Scholar 

  • Nuorteva P (1977) Sarcosaprophagous insects as forensic indicators. In: Tedeschi CG, Eckert WG, Tedeschi LG (eds) Forensic medicine: a study in trauma and environmental hazards. W. B. Saunders Co., Philadelphia, PA, USA

    Google Scholar 

  • Odum EP (1959) Fundamentals of ecology. W. B. Saunders Co., Philadelphia, PA, USA

    Google Scholar 

  • Pankhurst CE, Yu S, Hawke BG, Harch BD (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol Fertil Soils 33:204–217

    CAS  Google Scholar 

  • Parkin TB (1987) Soil microsites as a source of denitrification variability. Soil Sci Soc Am J 51:1194–1199

    Article  CAS  Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602

    Google Scholar 

  • Payne JA, King EW (1968) Coleoptera associated with pig carrion. Entomol Monthly Mag 105:224–232

    Google Scholar 

  • Payne JA, King EW, Beinhart G (1968) Arthropod succession and decomposition of buried pigs. Nature 219:1180–1181

    PubMed  CAS  Google Scholar 

  • Pfeiffer S, Milne S, Stevenson RM (1998) The natural decomposition of adipocere. J Forensic Sci 43:368–370

    PubMed  CAS  Google Scholar 

  • Poinar GO (1983) The natural history of nematodes. Prentice Hall, Inc., Englewood Cliffs, NJ

    Google Scholar 

  • Prieto JL, Magaña C, Ubelaker DH (2004) Interpretation of postmortem change in cadavers in Spain. J Forensic Sci 49:918–923

    PubMed  Google Scholar 

  • Putman RJ (1976). Energetics of decomposition of animal carrion. Ph.D. thesis, Oxford University

  • Putman RJ (1977) Dynamics of the blowfly, Calliphora erythrocephala, within carrion. J Anim Ecol 46:853–866

    Google Scholar 

  • Putman RJ (1978a) Flow of energy and organic matter from a carcase during decomposition. Decomposition of small mammal carrion in temperate systems 2. Oikos 31:58–68

    CAS  Google Scholar 

  • Putman RJ (1978b) Patterns of carbon dioxide evolution from decaying carrion. Decomposition of small mammal carrion in temperate systems 1. Oikos 31:47–57

    CAS  Google Scholar 

  • Putman RJ (1983) Carrion and dung: the decomposition of animal wastes. The Institute of Biology’s Studies in Biology no. 165. Edward Arnold Ltd, London

  • Reed HB (1958) A study of dog carcass communities in Tennessee, with special reference to the insects. Am Midl Nat 59:213–245

    Google Scholar 

  • Rhodes AN, Urbance JW, Youga H, Corlew-Newman H, Reddy CA, Klug MJ, Tiedje JM, Fisher DC (1998) Identification of bacterial isolates obtained from intestinal contents associated with 12,000-year-old mastodon remains. Appl Environ Microbiol 64:651–658

    PubMed  CAS  Google Scholar 

  • Richards EN, Goff ML (1997) Arthropod succession on exposed carrion in three contrasting tropical habitats on Hawaii Island, Hawaii. J Med Entomol 34:328–339

    PubMed  CAS  Google Scholar 

  • Richter S (1993) Phoretic association between the dauerjuveniles of Rhabditis stammeri (Rhabditidae) and life history stages of the burying beetle Nicrophorus vespilloides (Coleoptera: Silphidae). Nematologica 39:346–355

    Article  Google Scholar 

  • Rodriguez WC (1997) Decomposition of buried and submerged bodies. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, FL, USA, pp459–468

    Google Scholar 

  • Rodriguez WC, Bass WM (1983) Insect activity and its relationship to decay rates of human cadavers in east Tennessee. J Forensic Sci 28:423–432

    Google Scholar 

  • Rodriguez WC, Bass WM (1985) Decomposition of buried bodies and methods that may aid in their location. J Forensic Sci 30:836–852

    PubMed  Google Scholar 

  • Ruffer MA (1921) Studies in the paleopathology of Egypt. University of Chicago Press, Chicago, USA

    Google Scholar 

  • Sagara N (1976) Presence of buried mammalian carcass indicated by fungal fruiting bodies. Nature 262:816

    Google Scholar 

  • Sagara N (1992) Experimental disturbances and epigeous fungi. In: Carroll GC, Wicklow DT (eds) The fungal community: its organisation and role in the ecosystem. Marcel Dekker, Inc., New York, NY, USA, pp427–454

    Google Scholar 

  • Sagara N (1995) Association of ectomycorrhizal fungi with decomposed animal wastes in forest habitats: a cleaning symbiosis? Can J Bot 73(Suppl. 1):S1423–S1433

    Google Scholar 

  • Santarsiero A, Minelli L, Cutilli D, Cappielo G (2000) Hygienic aspects related to burial. Microchem J 67:135–139

    CAS  Google Scholar 

  • Scalenghe R, Edwards AC, Marsan FA, Barberis E (2002) The effect of reducing conditions on the solubility of phosphorus in a diverse range of European agricultural soils. Eur J Soil Sci 53:439–447

    CAS  Google Scholar 

  • Schoenly K, Reid W (1987) Dynamics of heterotrophic succession in carrion arthropod assemblages: discrete seres or a continuum of change. Oecologia 73:192–202

    Google Scholar 

  • Scott DA, Proctor J, Thompson J (1992) Ecological studies on a lowland evergreen rain forest on Maracá Island, Roraima, Brazil. II. Litter and nutrient cycling. J Ecol 80:705–717

    Google Scholar 

  • Sinsabaugh RL, Carreiro MM, Alvarez S (2002) Enzyme and microbial dynamics of litter decomposition. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp249–265

    Google Scholar 

  • Skujins JJ, McLaren AD (1967) Enzyme reaction rates at limited water activities. Science 158:1569–1570

    PubMed  CAS  Google Scholar 

  • Smith OL (1982) Soil microbiology: a model of decomposition and nutrient cycling. CRC Press, Boca Raton, FL

    Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol 41:311–354

    Google Scholar 

  • Smith RJ, Merrick MJ (2001) Resource availability and population dynamics of Nicrophorus investigator, an obligate carrion breeder. Ecol Entomol 26:173–180

    Google Scholar 

  • Smith M, T., E., Tibbett M (2004). Nitrogen dynamics under Lolium perenne after a single application of three different sewage sludge types from the same treatment stream. Ph.D. thesis, Bournemouth University, UK

  • Smith CR, Maybaum HL, Baco AR, Pope RH, Carpenter D, Yager PL, Macko SA, Deming JW (1998) Sediment community structure around a whale skeleton in the deep Northeast Pacific: macrofaunal, microbial and bioturbation effects. Deep-Sea Res Part 2 Top Stud Oceanogr 45:335–364

    CAS  Google Scholar 

  • Spennemann DHR, Franke B (1995) Decomposition of buried human bodies and associated death scene materials on coral atolls in the tropical Pacific. J Forensic Sci 40:356–367

    PubMed  CAS  Google Scholar 

  • Spray CM, Widdowson EM (1950) The effect of growth and development on the composition of mammals. Brit J Nutr 4:332–353

    PubMed  CAS  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, Inc., New York, NY, USA

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific, Oxford

    Google Scholar 

  • Thomas S, Andrews A, Hay P, Bourgoise S (1999) The antimicrobial activity of maggot secretions: results of a preliminary study. J Tissue Viab 9:127–132

    CAS  Google Scholar 

  • Tibbett M, Carter DO (2003) Mushrooms and taphonomy: the fungi that mark woodland graves. Mycologist 17:20–24

    Google Scholar 

  • Tibbett M, Sanders FE (2002) Ectomycorrhizal symbiosis enhances plant nutrition through improved access to discrete organic matter nutrient patches of high resource quality. Ann Bot 89:783–789

    PubMed  CAS  Google Scholar 

  • Tibbett M, Carter DO, Haslam T, Major R, Haslam R (2004) A laboratory incubation method for determining the rate of microbiological degradation of skeletal muscle tissue in soil. J Forensic Sci 49:560–565

    PubMed  Google Scholar 

  • Todd TC, Powers TO, Mullin PG (2006) Sentinel nematodes of land-use change and restoration. J Nematol 38(1):20–27

    PubMed  CAS  Google Scholar 

  • Tortora GJ, Grabowski SR (2000) Principles of anatomy and physiology. 9th edn. Wiley, Inc., New York

    Google Scholar 

  • Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239

    Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    PubMed  CAS  Google Scholar 

  • Turner BD, Wiltshire PEJ (1999) Experimental validation of forensic evidence: a study of the decomposition of buried pigs in a heavy clay soil. Forensic Sci Int 101:113–122

    PubMed  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    CAS  Google Scholar 

  • VanLaerhoven SL, Anderson GS (1999) Insect succession on buried carrion in two biogeoclimatic zones of British Columbia. J Forensic Sci 44:32–43

    PubMed  CAS  Google Scholar 

  • Vass AA, Bass WM, Wolt JD, Foss JE, Ammons JT (1992) Time since death determinations of human cadavers using soil solution. J Forensic Sci 37:1236–1253

    PubMed  CAS  Google Scholar 

  • Vass AA, Barshick S-A, Sega G, Caton J, Skeen JT, Love JC, Synstelien JA (2002) Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J Forensic Sci 47:542–553

    PubMed  CAS  Google Scholar 

  • Vesterdal L (1999) Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Can J For Res 29:95–105

    Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  • Wardle DA, Nicholson KS, Rahman A (1994) Influence of herbicide applications on the decomposition, microbial biomass, and microbial activity of pasture shoot and root litter. NZ J Agric Res 37:29–39

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    PubMed  CAS  Google Scholar 

  • Webster EA, Chudek JA, Hopkins DW (2000) Carbon transformations during decomposition of different components of plant leaves in soil. Soil Biol Biochem 32:301–314

    CAS  Google Scholar 

  • Weitzel MA (2005) A report of decomposition rates of a special burial type in Edmonton, Alberta from an experimental field study. J Forensic Sci 50:641–647

    PubMed  Google Scholar 

  • Widdowson EM (1950) Chemical composition of newly born mammals. Nature 166:626–628

    PubMed  CAS  Google Scholar 

  • Willey P, Snyder LM (1989) Canid modification of human remains: implications for time-since-death estimations. J Forensic Sci 34:894–901

    PubMed  CAS  Google Scholar 

  • Willott SJ, Miller AJ, Incoll LD, Compton SG (2000) The contribution of rabbits (Oryctolagus cuniculus L.) to soil fertility in semi-arid Spain. Biol Fertil Soils 31:379–384

    Google Scholar 

  • Witkamp M (1966) Decomposition of leaf litter in relation to environment, microflora, and microbial respiration. Ecology 47:194–201

    Google Scholar 

  • Wu J, Joergensen RJ, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass by fumigation extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    CAS  Google Scholar 

  • Yamanaka T (1995a) Changes in organic matter composition of forest soil treated with a large amount of urea to promote ammonia fungi and the abilities of these fungi to decompose organic matter. Mycoscience 36:17–23

    Google Scholar 

  • Yamanaka T (1995b) Nitrification in a Japanese red pine forest soil treated with a large amount of urea. Journal of the Japanese Forestry Society 77:232–238

    Google Scholar 

  • Young TP (1994) Natural die-offs of large mammals: implications for conservation. Conserv Biol 8:410–418

    Google Scholar 

  • Zaady E, Groffman PM, Sahachak M (1996) Litter as a regulator of N and C dynamics in macrophytic patches in Negev desert soils. Soil Biol Biochem 28:39–46

    CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Forbes, L. Higley, T. Huntington, P. Mullin and G. Towne for the informative discussion during the preparation of the manuscript. This paper is a contribution of the University of Nebraska Agricultural Research Division, Journal Series Number 15209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O. Carter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, D.O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94, 12–24 (2007). https://doi.org/10.1007/s00114-006-0159-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0159-1

Keywords

Navigation