Skip to main content
Log in

Carcases and mites

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Mites are involved in the decomposition of animal carcases and human corpses at every stage. From initial decay at the fresh stage until dry decomposition at the skeletal stage, a huge diversity of Acari, including members of the Mesostigmata, Prostigmata, Astigmata, Endeostigmata, Oribatida and Ixodida, are an integral part of the constantly changing food webs on, in and beneath the carrion. During the desiccation stage in wave 6 of Mégnin’s system, mites can become the dominant fauna on the decomposing body. Under conditions unfavourable for the colonisation of insects, such as concealment, low temperature or mummification, mites might become the most important or even the only arthropods on a dead body. Some mite species will be represented by a few specimens, whereas others might build up in numbers to several million individuals. Astigmata are most prominent in numbers and Mesostigmata in diversity. More than 100 mite species and over 60 mite families were collected from animal carcases, and around 75 species and over 20 families from human corpses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abell DH, Wasti SS, Hartmann GC (1982) Saprophagous arthropod fauna associated with turtle carrion. Appl Entomol Zool 17:301–307

    Google Scholar 

  • Anderson GS, Vanlaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41:617–625

    Google Scholar 

  • Anderson GS, Hobischak N, Samborski C et al (2002) Insect succession on carrion in the Edmonton, Alberta, region of Canada Technical Report TR-04-2002. Canadian Police Research Centre, Ottawa (Ontario), Canada

  • Arnaldos MI, Romera E, Presa JJ et al (2004) Studies on seasonal arthropod succession on carrion in the southeastern Iberian Peninsula. Int J Legal Med 118:197–205

    Article  PubMed  CAS  Google Scholar 

  • Arnaldos Sanabria MI (2000) Estudio de la fauna sarcosapprófaga de la Región de Murcia. Su aplicación a la mediciona legal [Studies on the sarcosaphrophagous fauna in the Region of Murcia; its application in legal medicine]. Departamento de Biología Animal. Universidad de Murcia, Murcia

    Google Scholar 

  • Athias-Binche F (1994) La Phorésie chez les Acariens—Aspects Adaptatifs et Evolutifs [Phoresy in acarina—adaptive and evolutionary aspects]. Editions du Castillet, Perpignan

    Google Scholar 

  • Ashford RW, Crewe W (2003) The parasites of Homo sapiens. An annotated checklist of the protozoa, helminths and arthropods for which we are home. Taylor & Francis, London

    Google Scholar 

  • Avila FW, Goff ML (1998) Arthropod succession patterns onto burnt carrion in two contrasting habitats in the Hawaiian islands. J Forensic Sci 43:581–586

    PubMed  CAS  Google Scholar 

  • Baker AS (1990) Two new species of Lardoglyphus Oudemans (Acari: Lardoglyphidae) found in the gut contents of human mummies. J Stored Prod Res 26:139–147

    Article  Google Scholar 

  • Baker AS (2009) Acari in archaeology. Exp Appl Acarol 49. doi:10.1007/s10493-009-9271-1

  • Beesley WN (1998) Scabies and other mite infestations. In: Palmer SR, Lord Soulsby EJL, Simpson DIH (eds) Zoonoses. Oxford University Press, Oxford, pp 859–872

    Google Scholar 

  • Behan-Pelletier V, Bissett B (1994) Oribatida of Canadian peatlands. Mem Entomol Soc Can 169:73–88

    Google Scholar 

  • Bergeret M (1855) Infanticide. Momification naturelle du cadavre. Découverte du cadavre d’un enfant nouveau-né dans une cheminée où il s’était momifié. Détermination de l’époque de la naissance par la présence de nymphes et de larves d’insectes dans le cadavre et par l’étude de leurs métamorphoses [Infanticide. Natural mummification of the corpse. A corpse of a new-born child discovered in a chimney where it had been mummified. Determination of the time of the birth by the presence of nymphs and larvae of insects in the corpse and by the study of their metamorphoses]. Ann Hyg Publ Méd Lég 4(série):442–452

    Google Scholar 

  • Bianchini G (1929) Contributo pratico e sperimentale allo studio della fauna cadaverica [An applied and experimental contribution to the study of the cadervous fauna]. Atti Accad Fisiocrit Siena 4(serie 10):97–106

    Google Scholar 

  • Blackith RE, Blackith RM (1990) Insect infestations of small corpses. J Nat Hist 24:699–709

    Article  Google Scholar 

  • Blackman S (1997) Experimental evidence that the mite Poecilochirus davydovae (Mesostigmata: Parasitidae) eats the eggs of its beetle host. J Zool 242:63–67

    Article  Google Scholar 

  • Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Aust J Zool 5:1–12

    Article  Google Scholar 

  • Bourel B, Tournel G, Hédouin V et al (2004) Entomofauna of buried bodies in northern France. Int J Legal Med 118:215–220

    Article  PubMed  Google Scholar 

  • Braack LEO (1986) Arthropods associated with carcasses in the northern Kruger national park. S Afr J Wildl Res 16:91–98

    Google Scholar 

  • Braack LEO (1987) Community dynamics of carrion-attendant arthropods in tropical African woodland. Oecologia 72:402–409

    Article  Google Scholar 

  • Bregetova NG, Koroleva EV (1960) The macrochelid mites (Gamasoidea, Macrochelidae) in the USSR. Parazitol Sb 19:32–154

    Google Scholar 

  • Brouardel P (1879) De la détermination de l’époque de la naissance et de la mort d’un nouveau-née, faite à l’aide de la présence des acares et des chenilles d’aglosses dans cadavre momifié [Determination of the time of birth and of death of a new-born child, made using the presence of mites and Aglossa caterpillars on the mummified corpse]. Ann Hyg Publ Méd Lég 2(série 3):153–158

    Google Scholar 

  • Brown JM, Wilson DS (1994) Poecilochirus carabi: behavioral and life-history adaptations to different hosts and the consequences of geographical shifts in host communities. In: Houck MA (ed) Mites. Ecological and evolutionary analyses of life history patterns. Chapman and Hall, New York, pp 1–22

    Google Scholar 

  • Castillo Miralbes M (2002) Estudio de la entomofauna asociada a cadáveres en el Alto Aragón (España) [Study of the entomofauna associated with corpses in the region of Alto Aragón (Spain)]. Sociedad Entomológica Aragonesa, Zaragoza

    Google Scholar 

  • Chapman RF, Sankey JHP (1955) The larger invertebrate fauna of three rabbit carcasses. J Anim Ecol 24:395–402

    Article  Google Scholar 

  • Coe M (1978) The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. J Arid Environ 1:71–86

    Google Scholar 

  • Collins M (1970) Studies on the decomposition of carrion and its relationship with its surrounding ecosystem. PhD Thesis, Department of Zoology, University of Reading, Reading, England

  • Colloff MJ (2009) Dust mites. Springer, Dordrecht

    Google Scholar 

  • Cornaby BW (1974) Carrion reduction by animals in contrasting tropical habitats. Biotropica 6:51–63

    Article  Google Scholar 

  • Dadour IR, Harvey ML (2008) The role of invertebrates in terrestrial decomposition: forensic applications. In: Tibbett M, Carter DC (eds) Soil analysis in forensic taphonomy. CRC Press, Boca Raton, pp 109–122

    Google Scholar 

  • Dahl F (1896) Vergleichende Untersuchungen über die Lebensweise wirbelloser Aasfresser [Comperative studies on the ecology of invertebrate carrion feeders]. Sitzungsb Königl Preuss Akad Wiss Berlin 1:17–30

    Google Scholar 

  • Davis JB, Goff ML (2000) Decomposition patterns in terrestrial and interdidal habitats on Oahu Island and Coconut Island, Hawaii. J Forensic Sci 45:836–842

    PubMed  CAS  Google Scholar 

  • de Candanedo Guerra RdMSN, Gazeta GS, Amorim M et al (2003) Ecological analysis of Acari recovered from coprolites from archaeological site of Northeast Brazil. Mem Inst Oswaldo Cruz 98(Suppl. 1):181–190

    Google Scholar 

  • De Jong GD, Chadwick JW (1999) Decomposition and arthropod succession on exposed rabbit carrion during summer at high altitudes in Colorado, USA. J Med Entomol 36:833–845

    PubMed  Google Scholar 

  • De Jong GD, Hoback WW (2006) Effect of investigator disturbance in experimental forensic entomology: succession and community composition. Med Vet Entomol 20:248–258

    Article  PubMed  Google Scholar 

  • Desch CE (2009) Human hair follicle mites and forensic acarology. Exp Appl Acarol 49. doi:10.1007/s10493-009-9272-0

  • Early M, Goff ML (1986) Arthropod succession patterns in exposed carrion on the island of O’ahu, Hawaiian islands, USA. J Med Entomol 23:520–531

    PubMed  CAS  Google Scholar 

  • Easton AM, Smith KGV (1970) The entomology of the cadaver. Med Sci Law 10:208–215

    PubMed  CAS  Google Scholar 

  • Feugang Youmessi FD, Djiéto-Lordon C, Gaudry E et al (2008) Contribution to the research of the entomological indicators of corpse dating: case of Rattus rattus (Linnaeus, var WISTAR) in Yaounde (Cameroon) EAFE Meeting 2008, Kolymbari, Greece

  • Forbes G (1942) The brown house moth as an agent in the destruction of mummified human remains. Police J Lond 15:141–148

    Google Scholar 

  • Fourman KL (1936) Kleintierwelt, Kleinklima, und Mikroklima in Beziehung zur Kennzeichnung des Forstlichen Standorts und der Bestandsabfallzersetzung auf bodenbiologischer Grundlage [Microfauna, local climate, and microclimate in relationship with the characterisation of forest location and decomposition of forest waste on a soil-biological basis]. Mitt Forstwirt Forstwiss 7:596–615

    Google Scholar 

  • Frost CL, Amendt J, Braig HR, Perotti MA (2009) Indoor arthropods of forensic importance. In: Amendt J, Goff ML, Campobasso CP et al (eds) Current concepts in forensic entomology. Springer, Dordrecht

    Google Scholar 

  • Fugassa MH, Sardella NH, Denegri GM (2007) Paleoparasitological analysis of a raptor pellet from Southern Patagonia. J Parasitol 93:421–422

    Article  PubMed  CAS  Google Scholar 

  • Fuller ME (1934) The insect inhabitants of carrion: a study in animal ecology. Council of Science and Industry Research in Australia, Canberra

    Google Scholar 

  • Gaudry E (2002) Eight squadrons for one target: the fauna of cadaver described by P. Mégnin Proceedings of the First European Forensic Entomology Seminar, Rosny sous Bois, France, pp 23–28

  • Gill GJ (2005) Decomposition and arthropod succession on above ground pig carrion in rural Manitoba Technical Report TR-06-2005. Canadian Police Research Centre, Ottawa (Ontario)

  • Gmeiner F (1908) Demodex folliculorum des Menschen und der Tiere [Demodex folliculorum of humans and animals]. Arch Dermatol Syph 92:25–96

    Article  Google Scholar 

  • Goff ML, Odom CB (1987) Forensic entomology in the Hawaiian Islands: three case studies. Am J Forensic Med Pathol 8:45–50

    PubMed  CAS  Google Scholar 

  • Goff ML (1989) Gamasid mites as potential indicators of postmortem interval. In: Channabasavanna GP, Viraktamath CA (eds) Progress in Acarology, vol 1. Oxford & IBH Publishing, New Delhi, pp 443–450

    Google Scholar 

  • Goff ML (1991) Use of acari in establishing a postmortem interval in a homicide case on the island of Oahu, Hawaii. In: Dusbábek E, Bukva V (eds) Modern Acarology, vol 1. SPB Academic Publishing, The Hague, pp 439–442

    Google Scholar 

  • Goff ML (1993) Estimation of postmortem interval using arthropod development and successional patterns. Forensic Sci Rev 5:81–94

    Google Scholar 

  • Goff ML, García García MD, Arnaldos Sanabria MI (2004) Entomología cadavérica: Fundamentos y aplicación. Referencia a la entomología española [Forensic entomology: basics and applications. A reference to Spanish entomology]. In: Gisbert Calabuig JA, Villanueva Cañadas E et al (eds) Tratado de Medicina Legal y Toxicología [Treatise on legal medicine and toxicology]. Masson, Barcelona, pp 253–273

    Google Scholar 

  • Goff ML (2009) Early post-mortem changes and stages of decomposition in exposed cadavers. Exp Appl Acarol 49. doi:10.1007/s10493-009-9284-9

  • Graells M (1886) Entomologia judicial [Forensic entomology]. Rev Progr Cienc Exact Fís Nat Madrid 21:458–471

    Google Scholar 

  • Grassberger M, Frank C (2004) Initial study of arthropod succession on pig carrion in a central European urban habitat. J Med Entomol 41:511–523

    PubMed  CAS  Google Scholar 

  • Gwiazdowicz DJ, Klemt J (2004) Mesostigmatic mites (Acari, Gamasida) in selected microhabitats of the Biebrza National Park (NE Poland). Biol Lett 41:11–19

    Google Scholar 

  • Halliday RB (2000) The Australian species of Macrocheles (Acarina : Mesostigmata). Invertebr Taxon 14:273–326

    Article  Google Scholar 

  • Haskell NH, Hall RD, Cervenka VJ (1997) On the body: insect’s life stage presence and their postmortem artefacts. In: Hagland WD, Sorg MH et al (eds) Forensic taphonomy–the post mortem fate of human remains. CRC Press, Boca Raton, pp 415–467

    Google Scholar 

  • Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12:235–240

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo-Argüello MR, Díez Baños N, Fregeneda Grandes J et al (2003) Parasitological analysis of Leonese royalty from Collegiate-Basilica of St. Isidoro, Léon (Spain): Helminths, protozoa, and mites. J Parasitol 89:738–743

    Article  PubMed  Google Scholar 

  • Hobischak NR, Anderson GS (2002) Time of submergence using aquatic invertebrate succession and decompositional changes. J Forensic Sci 47:143–151

    Google Scholar 

  • Horenstein MB, Arnaldos MI, Rosso B et al (2005) Estudio preliminar de la comunidad sarcosaprófaga en Córdoba (Argentina): aplicación a la entomología forense [Preliminary study of the sarcosaprophytic community in Cordoba (Argentina): applied to forensic entomology]. An Biol 27:191–201

    Google Scholar 

  • Hunziker H (1919) Über die Befunde bei Leichenausgrabungen auf den Kirchhöfen Basels. Unter besonderer Berücksichtung der Fauna und Flora der Gräber [About the findings during excavations of corpses on the cemeteries of Basel, especially of the fauna and flora of graves]. Frankf Z Pathol 22:147–207

    Google Scholar 

  • Hyatt KH, Emberson RM (1988) A review of the Macrochelidae (Acari: Mestostigmata) of the British Isles. Bull Br Mus (Natl Hist) Zool 54:63–125

    Google Scholar 

  • Iloba BN, Fawole SO (2006) Comparative study of arthropod fauna on exposed arrions across the vertebrate classes. Int J Biomed Health Sci 2:51–65

    Google Scholar 

  • Johnson MD (1975) Seasonal and microseral variation in the insect populations on carrion. Am Midl Nat 93:79–90

    Article  Google Scholar 

  • Johnston W, Villeneuve G (1897) On the medico-legal application of entomology. Montr Med J 26:81–89

    Google Scholar 

  • Kelly JA (2006) The influence of clothing, wrapping and physical trauma on carcass decomposition and arthropod succession in central South Africa. PhD Thesis, Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa

  • Kliks MM (1988) Paleoparasitological analyses of fecal material from Amerindian (or New World) mummies: evaluation of saprophytic arthropod remains. Paleopathol Newsl 64:7–11

    PubMed  Google Scholar 

  • Kneidel KA (1984) Competition and disturbance in communities of carrion-breeding Diptera. J Anim Ecol 53:849–865

    Article  Google Scholar 

  • Krantz GW, Whitaker JO Jr (1988) Mites of the genus Macrocheles (Acari: Macrochelidae) associated with small mammals in North America. Acarologia 29:225–259

    Google Scholar 

  • Krantz GW, Platnick NI (1995) On Brucharachne, the spider that wasn’t (Arachnida, Acari, Dermanyssoidea). Am Mus Novit 3151:1–8

    Google Scholar 

  • Kühnelt W (1950) Bodenbiologie [Soil biology]. Herold, Vienna

    Google Scholar 

  • Lecha-Marzo A (1917) Tratado de autopsias y embalsamamientos [Treatise on autopsy and embalming]. Los Progresos de la Clínica, Madrid, pp 79–90

    Google Scholar 

  • Leclercq M (1978) Entomologie et Médecine Légale: Datation de la Mort [Entomology and forensic medicine: dating the time of death]. Masson, Paris

    Google Scholar 

  • Leclercq M (2002) L’entomologie légale en Belgique depuis 1947 [Forensic entomology in Belgium since 1947] Proceedings of the First European Forensic Entomology Seminar, Rosny sous Bois, France, pp 8–12

  • Leclercq M, Verstraeten C (1988a) Entomologie et médicine légale. Datation de la mort: insectes et autres arthropodes trouvés sur les cadavres humains [Entomology and forensic medicine, determination of the time of death: insects and other arthropods on human cadavers]. Bull Ann Soc R Belge Entomol 124:311–317

    Google Scholar 

  • Leclercq M, Verstraeten C (1988b) Entomologie et médecine légale. Datation de la mort. Acariens trouvés sur des cadavres humains [Entomology and forensic medicine. Determination of the time of death. Acari found on human cadavers]. Bull Ann Soc R Belge Entomol 124:195–200

    Google Scholar 

  • Leclercq M, Verstraeten C (1992) Eboueurs entomologiques bénévoles dans les écosystèmes terrestres: observation inédite [Voluntary entomological street sweepers in the terrestrial ecosystems: a new observation]. Notes Faun Gembloux 25:17–22

    Google Scholar 

  • Leclercq M, Verstraeten C (1993) Entomologie et médecine légale. L’entomofaune des cadavres humains: sa succession par son interprétation, ses résultats, ses perspectives [Entomology and forensic medicine. The entomofauna of human corpses: its succession and interpretation, its results, its prospects]. J Med Leg Droit Med 36:205–222

    Google Scholar 

  • Leclerq M (1969) Entomological parasitology: the relations between entomology and the medical sciences. Pergamon, Oxford

    Google Scholar 

  • Leles de Souza D, de Maria Seabra Nogueira de Candanedo Guerra R, Mendonça de Souza S et al (2006) Acari found in a mummy bundle from the Chillon River Valley, Peru. Paleopathol Newsl 136:11–16

  • Lichtenstein J, Moitessier A, Jaumes A (1885) Un nouveau cas d’application de l’entomologie à la médecine légale [A new case of the application of entomology in legal medicine]. Ann Hyg Publ Méd Lég 13(série 3):121–127

    Google Scholar 

  • Lord WD, Burger JF (1984a) Arthropods associated with harbor seal (Phoca vitulina) carcasses stranded on islands along the New England Coast. Int J Entomol 26:282–285

    Google Scholar 

  • Lord WD, Burger JF (1984b) Arthropods associated with herring gull (Larus argentatus) and great black-backed gull (Larus marinus) carrion on islands in the Gulf of Maine. Environ Entomol 13:1261–1268

    Google Scholar 

  • Lord WD (1990) Case histories of the use of insects in investigations. In: Catts EP, Haskell NH (eds) Entomology & death: a procedural guide. Joyce’s Print Shop, Clemson, pp 9–37

    Google Scholar 

  • Mašán P (1993) Mites (Acarina) associated with species of Trox (Coleoptera: Scarabaeidae). Eur J Entomol 90:359–364

    Google Scholar 

  • Magni P, Ghizzoni O, Linarello P et al (2008) The man in the farm house—effective support of entomotoxicological examinations to identify causes of death EAFE Meeting 2008, Kolymbari, Greece

  • Mégnin P (1887) La faune des tombeaux [The fauna of graves]. C R Hebd Acad Sci 105:948–951

    Google Scholar 

  • Mégnin P (1894) La Faune des Cadavres. Application de l’Entomologie à la Médecine Légale [The fauna of corpses. Application of entomology to forensic medicine]. G. Masson and Gauthier-Villars et Fils, Paris

    Google Scholar 

  • Mégnin P (1895) La faune des cadavres [The fauna of carcasses]. Ann Hyg Publ Méd Lég série 3(33):64–67

    Google Scholar 

  • Mégnin P (1898) Les parasites de la mort. Une cause peu connue de la momification des cadavres [Parasites of death. A little known cause of the mummification of the corpses]. Arch Parasitol 1:39–43

    Google Scholar 

  • Mendonça de Souza SMF, Reinhard KJ, Lessa A (2008) Cranial deformation as the cause of death for a child from the Chillon River Valley, Peru. Chungará 40:41–53

    Google Scholar 

  • Merritt RW, Snider R, de Jong JL et al (2007) Collembola of the grave: a cold case history involving arthropods 28 years after death. J Forensic Sci 52:1359–1361

    PubMed  Google Scholar 

  • Michelsen V (1983) Thyreophora anthropophaga, an extinct bone skipper rediscovered in Kashmir, India (Diptera, Piophilidae, Thyreophorina). Entomol Scand 14:411–414

    Google Scholar 

  • Motter MG (1898) A contribution to the study of the fauna of the grave. A study of on hundred and fifty disinterments, with some additional observations. J N Y Entomol Soc 6:201–233+

    Google Scholar 

  • Nabagło L (1973) Participation of invertebrates in decomposition of rodent carcasses in forest ecosystems. Ekol Polska 21:251–270

    Google Scholar 

  • OConnor BM (2009) Astigmatid mites (Acari: Sarcoptiformes) of forensic interest. Exp Appl Acarol 49. doi:10.1007/s10493-009-9270-2

  • Parker JC, Holliman RB (1971) Observations on parasites of gray squirrels during the 1968 emigration in North Carolina. J Mammal 52:437–441

    Article  PubMed  CAS  Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602

    Article  Google Scholar 

  • Payne JA, Crossley DAJ (1966) Animal species associated with pig carrion Oak Ridge. National Laboratory Technical Memorandum, Oak Ridge

    Google Scholar 

  • Payne JA, King EW, Beinhart G (1968) Arthropod succession and decomposition of buried pigs. Nature 219:1180–1181

    Article  PubMed  CAS  Google Scholar 

  • Payne JA, King EW (1972) Insect succession and decomposition of pig carcasses in water. J Georgia Entomol Soc 34:153–162

    Google Scholar 

  • Pérez SP, Duque P, Wolff M (2005) Successional behavior and occurrence matrix of carrion-associated arthropods in the urban area of Medellín, Colombia. J Forensic Sci 50:448–454

    Article  PubMed  Google Scholar 

  • Perotti MA (2009) Mégnin re-analysed: the case of the newborn baby girl, Paris, 1878. Exp Appl Acarol 49. doi:10.1007/s10493-009-9279-6

  • Perotti MA, Braig HR (2009a) Acarology in criminolegal investigations: the human acarofauna during life and death. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. Taylor & Francis, Boca Raton, pp 637–649

    Google Scholar 

  • Perotti MA, Braig HR (2009b) Phoretic mites associated with animal and human decomposition. Exp Appl Acarol 49. doi:10.1007/s10493-009-9280-0

  • Perotti MA, Braig HR, Goff ML (2009a) Phoretic mites and carcasses. In: Amendt J, Goff ML, Campobasso CP et al (eds) Current concepts in forensic entomology. Springer, Dordrecht

    Google Scholar 

  • Perotti MA, Goff ML, Baker AS et al (2009b) Forensic acarology, an introduction. Exp Appl Acarol 49 (in press)

  • Pont AC, Matile L (1980) Découverte de quelques insectes de J.-P. Mégnin; identité d’Ophyra cadaverina Mégnin (1894) (Diptera, Muscidae) [Discovery of several insects of J.-P. Mégnin; identity of Ophyra cadaverina Mégnin (1894) (Diptera, Muscidae)]. Bull Soc entomol France 85:41–43

    Google Scholar 

  • Porta CF (1929) Contributo allo studio dei fenomeni cadaverici: L’azione della microfauna cadaverica terrestre nella decomposizione del cadavere [Contribution to the study of cadaveral phenomina: the behaviour of the terrestrial microfauna of cadavers during the decomposition of cadavers]. Arch Antropol Crim Psich Med Leg Sci Aff 59:1–55

    Google Scholar 

  • Prichard JG, Kossoris PD, Leibovitch RA et al (1986) Implications of trombiculid mite bites: reports of a case and submission of evidence in a murder trial. J Forensic Sci 31:301–306

    PubMed  CAS  Google Scholar 

  • Proctor HC (2009) Can freshwater mites act as forensic tools? Exp Appl Acarol 49. doi:10.1007/s10493-009-9273-z

  • Putman RJ (1978) The role of carrion-frequenting arthropods in the decay process. Ecol Entomol 3:133–139

    Article  Google Scholar 

  • Radovsky FJ (1970) Mites associated with coprolites and mummified human remains in Nevada. Contr Univ Calif Archaeol Res Facility 10:186–190

    Google Scholar 

  • Ramsay GW, Paterson SE (1977) Mites (Acari) from Rattus species on Raoul Island. N Z J Zool 4:389–392

    Google Scholar 

  • Reed HB Jr (1958) A study of dog carcass communities in Tennessee, with special reference to the insects. Am Midl Nat 59:213–245

    Article  Google Scholar 

  • Richards EN, Goff ML (1997) Arthropod succession on exposed carrion in three contrasting tropical habitats on Hawaii Island, Hawaii. J Med Entomol 34:328–339

    PubMed  CAS  Google Scholar 

  • Ríos T (1902a) Los insectos y la putrefacción de los cadáveres [Insects and the decomposition of corpses] (I-II). Clín Mod Rev Med Cirug 1:74–80

    Google Scholar 

  • Ríos T (1902b) Los insectos y la putrefacción de los cadáveres [Insects and the decomposition of corpses] (III-VI). Clín Mod Rev Med Cirug 1:171–180

    Google Scholar 

  • Rives DV, Barnes HJ (1988) Pseudoparasitism of broiler chicks by mites of the family Uropodidae, genus Fuscuropoda. Avian Dis 32:567–569

    Article  PubMed  CAS  Google Scholar 

  • Russell DJ, Schulz MM, OConnor BM (2004) Mass occurence of astigmatid mites on human remains. Abh Ber Naturkundemus Görlitz 76:51–56

    Google Scholar 

  • Samšiňák K (1960) Über einige myrmekophile Milben aus der Familie Acaridae [On some myrmecophylic mites in the family Acaridae]. Čas Česk Spol Entomol 57:185–192

    Google Scholar 

  • Schnell e Schühli G, de Carvalho CJB, Wiegmann BM (2004) Regarding the taxonomic status of Ophyra Robineau-Desvoidy (Diptera: Muscidae): a molecular approach. Zootaxa 712:1–12

    Google Scholar 

  • Schnell e Schühli G, de Carvalho CJB, Wiegmann BM (2007) Molecular phylogenetics of the Muscidae (Diptera: Calyptratae): new ideas in a congruence context. Invertebr Syst 21:263–278

    Article  Google Scholar 

  • Schoenly KG, Shahid SA, Haskell NH et al (2005) Does carcass enrichment alter community structure of predaceous and parasitic arthropods? A second test of the arthropod saturation hypothesis at the anthropology resaerch facility in Knoxville, Tennessee. J Forensic Sci 50:134–142

    Article  PubMed  Google Scholar 

  • Schönborn W (1963) Vergleichende zoozönotische Untersuchungen an Exkrementen, Kadavern, Hutpilzen und Vogelnestern [Comparative zoocenotic investigations on excrements, carcasses, mushrooms and bird nests]. Biologisches Zentralbl 82:165–184

    Google Scholar 

  • Schroeder H, Klotzbach H, Oesterhelweg L et al (2002) Larder beetles (Coleoptera, Dermestidae) as an accelerating factor for decomposition of a human corpse. Forensic Sci Int 127:231–236

    Article  PubMed  CAS  Google Scholar 

  • Shalaby OA, deCarvalho LML, Goff ML (2000) Comparison of patterns of decomposition in a hanging carcass and a carcass in contact with soil in a xerophytic habitat on the island of Oahu, Hawaii. J Forensic Sci 45:1267–1273

    PubMed  CAS  Google Scholar 

  • Smith KGV (1973) Forensic entomology. In: Smith KGV (ed) Insects and other arthropods of medical importance. British Museum (Natural History). London, UK, pp 483–486

    Google Scholar 

  • Smith KGV (1975) The faunal succession of insects and other invertebrates on a dead fox. Entomol Gaz 26:277–287

    Google Scholar 

  • Smith KGV (1986) A manual of forensic entomology. British Museum (Natural History), London

    Google Scholar 

  • Solarz K (2009) Indoor and dust mites. Exp Appl Acarol 49. doi:10.1007/s10493-009-9292-9

  • Strauch C (1912) Die Fauna der Leichen [Fauna of corpses]. Vierteljahrsschr gerichtl Med öffentl Sanitätsw 43:44–49

    Google Scholar 

  • Strauch C (1928) Beiträge zur natürlichen Mumifikation menschlicher Leichen [Contribution to the natural mummification of human corpses]. Dtsch Z gesamte gerichtl Med 12:259–269

    Article  Google Scholar 

  • Tantawi TI, El-Kady EM, Greenberg B et al (1996) Arhropod succession on exposed rabbit carrion in Aexandria, Egypt. J Med Entomol 33:566–580

    PubMed  CAS  Google Scholar 

  • Turchetto M, Vanin S (2004) Forensic evaluations on a crime case with monospecific necrophagous fly population infected by two parasitoid species. Aggrawal’s Internet J Forensic Med Toxicol 5:12–18

    Google Scholar 

  • Turner B (2009) Forensic entomology: a template for forensic Acarology? Exp Appl Acarol 49. doi:10.1007/s10493-009-9274-y

  • Vance GM, VanDyk JK, Rowley WA (1995) A device for sampling aquatic insects associated with carrion in water. J Forensic Sci 40:479–482

    Google Scholar 

  • Voigt J (1965) Specific post-mortem changes produced by larder beetles. J Forensic Med 12:76–80

    PubMed  CAS  Google Scholar 

  • von Niezabitowski ER (1902) Experimentelle beiträge zur Lehre von der Leichenfauna [Experimental contributions to the science of the fauna of corpses]. Vierteljahrsschr gerichtl Med öffentl Sanitätsw 3:44–50

    Google Scholar 

  • Walker TJ Jr (1957) Ecological studies of the arthropods associated with certain decaying materials in four habitats. Ecology 38:262–276

    Article  Google Scholar 

  • Wasti SS (1972) A study of the carrion of the common fowl, Gallus domesticus, in relation to arthropod succession. J Georgia Entomol Soc 7:221–229

    Google Scholar 

  • Watson EJ, Carlton CE (2003) Spring succession of necrophilous insects on wildlife carcasses in Louisiana. J Med Entomol 40:338–347

    Article  PubMed  CAS  Google Scholar 

  • Watson EJG (2004) Faunal succession of necrophagous insects associated with high-profile wildlife carcasses in Louisiana. PhD Thesis, Department of Entomology, Louisiana State University, Baton Rouge, LA, USA

  • Wilson DS (1983) The effect of population structure on the evolution of mutualism: a field test involving burying beetles and their phoretic mites. Am Nat 121:851870

    Article  Google Scholar 

  • Wilson E (1844) Researches into the structure and development of a newly discovered parasitic animalcule of the human skin–the Entozoon folliculorum. Philos Trans R Soc Lond 134:305–319

    Article  Google Scholar 

  • Wolff M, Builes A, Zapata G et al (2004) Detection of Parathion (O, O-diethyl O-(4-nitrophenyl) phosphorothioate) by HPLC in insects of forensic importance in Medellín, Colombia. Anil Aggrawal’s Internet J Forensic Med Toxicol 5:6–11

    Google Scholar 

  • Wyss C, Cherix D (2006) Traité d’entomologie forensique. Les insectes sur la scène de crime [Treatise on forensic entomology. The insects at the crime scene]. Presse polytechniques et universitaires romandes, Lausanne

    Google Scholar 

  • Yoder WA (1972) Acarina (Arthropoda: Arachnida) associated with selected Michigan Silphidae (Coleoptera). Michigan State University, East Lansing

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the funding of research on forensic acarology by the Leverhulme Trust. Additional information was kindly provided by M. Lee Goff, Paola Magni, Marta I. Saloña-Bordas and Francis D. Feugang Youmessi. The authors like to thank Mariló Moraza and Barry M. OConnor for advice and reviewing an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk R. Braig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braig, H.R., Perotti, M.A. Carcases and mites. Exp Appl Acarol 49, 45–84 (2009). https://doi.org/10.1007/s10493-009-9287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-009-9287-6

Keywords

Navigation