ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

NMR Spectroscopy Reveals that RNase A is Chiefly Denatured in 40% Acetic Acid: Implications for Oligomer Formation by 3D Domain Swapping

View Author Information
Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, E-28006 Madrid, Spain, and Laboratori d’Enginyeria de Proteïnes, Department de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, E-17071 Girona, Spain
†Instituto de Química Física “Rocasolano”.
‡Universitat de Girona.
Cite this: J. Am. Chem. Soc. 2010, 132, 5, 1621–1630
Publication Date (Web):January 19, 2010
https://doi.org/10.1021/ja9081638
Copyright © 2010 American Chemical Society

    Article Views

    1136

    Altmetric

    -

    Citations

    61
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Protein self-recognition is essential in many biochemical processes and its study is of fundamental interest to understand the molecular mechanism of amyloid formation. Ribonuclease A (RNase A) is a monomeric protein that may form several oligomers by 3D domain swapping of its N-terminal α-helix, C-terminal β-strand, or both. RNase A oligomerization is induced by 40% acetic acid, which has been assumed to mildly unfold the protein by detaching the terminal segments and consequently facilitating intersubunit swapping, once the acetic acid is removed by lyophilization and the protein is redissolved in a benign buffer. Using UV difference, near UV circular dichroism, folding kinetics, and multidimensional heteronuclear NMR spectroscopy, the conformation of RNase A in 40% acetic acid and in 8 M urea has been characterized. These studies demonstrate that RNase A is chiefly unfolded in 40% acetic acid; it partially retains the native helices, whereas the β-sheet is fully denatured and all X-Pro peptide bonds are predominantly in the trans conformation. Refolding occurs via an intermediate, IN, with non-native X-Pro peptide bonds. IN is known to be populated during RNase A refolding following denaturation in concentrated solutions of urea or guanidinium chloride, and we find that urea- or GdmCl-denatured RNase A can oligomerize during refolding. By revealing the importance of a chiefly denaturated state and a refolding intermediate with non-native X-Pro peptide bonds, these findings revise the model for RNase A oligomerization via 3D domain swapping and have general implications for amyloid formation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Graphs showing (i) UV difference spectra of RNase A in 40% acetic acid, (ii) regions of NOESY spectra of RNase A in 40% HAc and 8 M urea, (iii) Cβ- and Cγ-edited 1H−15N HSQC spectra, (iv) the conformational chemical shifts of RNase A peptides, (v) representative chromatograms of RNase A oligomers forming after urea and GdmCl denaturation, and (vi) structures of the RNase A N-dimer and RNase 1 PM8 dimer and a table summarizing RNase A oligomer yield following denaturation in 40% HAc, 10 M urea, or 6 M GdmCl. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 61 publications.

    1. Jing Jing Wang, Yixiang Wang, Qiyang Wang, Jingqi Yang, Song-Qing Hu, Lingyun Chen. Mechanically Strong and Highly Tough Prolamin Protein Hydrogels Designed from Double-Cross-Linked Assembled Networks. ACS Applied Polymer Materials 2019, 1 (6) , 1272-1279. https://doi.org/10.1021/acsapm.9b00066
    2. Megha Subhash Deshpande, Partha Pratim Parui, Hironari Kamikubo, Masaru Yamanaka, Satoshi Nagao, Hirofumi Komori, Mikio Kataoka, Yoshiki Higuchi, and Shun Hirota . Formation of Domain-Swapped Oligomer of Cytochrome c from Its Molten Globule State Oligomer. Biochemistry 2014, 53 (28) , 4696-4703. https://doi.org/10.1021/bi500497s
    3. Qiang Shao . Methanol Concentration Dependent Protein Denaturing Ability of Guanidinium/Methanol Mixed Solution. The Journal of Physical Chemistry B 2014, 118 (23) , 6175-6185. https://doi.org/10.1021/jp500280v
    4. Partha Pratim Parui, Megha Subhash Deshpande, Satoshi Nagao, Hironari Kamikubo, Hirofumi Komori, Yoshiki Higuchi, Mikio Kataoka, and Shun Hirota . Formation of Oligomeric Cytochrome c during Folding by Intermolecular Hydrophobic Interaction between N- and C-Terminal α-Helices. Biochemistry 2013, 52 (48) , 8732-8744. https://doi.org/10.1021/bi400986g
    5. Qiang Shao, Yubo Fan, Lijiang Yang, and Yi Qin Gao . Counterion Effects on the Denaturing Activity of Guanidinium Cation to Protein. Journal of Chemical Theory and Computation 2012, 8 (11) , 4364-4373. https://doi.org/10.1021/ct3002267
    6. Yugo Hayashi, Satoshi Nagao, Hisao Osuka, Hirofumi Komori, Yoshiki Higuchi, and Shun Hirota . Domain Swapping of the Heme and N-Terminal α-Helix in Hydrogenobacter thermophilus Cytochrome c552 Dimer. Biochemistry 2012, 51 (43) , 8608-8616. https://doi.org/10.1021/bi3011303
    7. Helmut Greim. 2-Mercaptoethanol. 2024, 111-115. https://doi.org/10.1016/B978-0-12-824315-2.00277-3
    8. M. L. Romero-Romero, H. Garcia-Seisdedos. Agglomeration: when folded proteins clump together. Biophysical Reviews 2023, 15 (6) , 1987-2003. https://doi.org/10.1007/s12551-023-01172-4
    9. Irene Noro, Ilaria Bettin, Sabrina Fasoli, Marcello Smania, Luca Lunardi, Michele Giannini, Leonardo Andreoni, Riccardo Montioli, Giovanni Gotte. Human RNase 1 can extensively oligomerize through 3D domain swapping thanks to the crucial contribution of its C-terminus. International Journal of Biological Macromolecules 2023, 249 , 126110. https://doi.org/10.1016/j.ijbiomac.2023.126110
    10. C. Suarez, W.R. Premasiri, H. Ingraham, A.N. Brodeur, L.D. Ziegler. Ultra-sensitive, rapid detection of dried bloodstains by surface enhanced Raman scattering on Ag substrates. Talanta 2023, 259 , 124535. https://doi.org/10.1016/j.talanta.2023.124535
    11. Laura Dhellemmes, Laurent Leclercq, Alisa Höchsmann, Christian Neusüß, Jean-Philippe Biron, Sébastien Roca, Hervé Cottet. Critical parameters for highly efficient and reproducible polyelectrolyte multilayer coatings for protein separation by capillary electrophoresis. Journal of Chromatography A 2023, 1695 , 463912. https://doi.org/10.1016/j.chroma.2023.463912
    12. Christopher Suarez, W. Ranjith Premasiri, Harrison Ingraham, Amy N. Brodeur, Lawrence Ziegler. Ultra-Sensitive, Rapid Detection of Dried Bloodstains by Surface Enhanced Raman Scattering on Ag Substrates. SSRN Electronic Journal 2023, 5 https://doi.org/10.2139/ssrn.4349446
    13. D. Ramírez de Mingo, D. Pantoja-Uceda, R. Hervás, M. Carrión-Vázquez, D. V. Laurents. Conformational dynamics in the disordered region of human CPEB3 linked to memory consolidation. BMC Biology 2022, 20 (1) https://doi.org/10.1186/s12915-022-01310-6
    14. Miguel Á. Treviño, Rubén López-Sánchez, María Redondo Moya, David Pantoja-Uceda, Miguel Mompeán, Douglas V. Laurents. Insight into polyproline II helical bundle stability in an antifreeze protein denatured state. Biophysical Journal 2022, 121 (23) , 4560-4568. https://doi.org/10.1016/j.bpj.2022.10.034
    15. Jordan C. Koone, Chad M. Dashnaw, Mayte Gonzalez, Bryan F. Shaw. A method for quantifying how the activity of an enzyme is affected by the net charge of its nearest crowded neighbor. Protein Science 2022, 31 (9) https://doi.org/10.1002/pro.4384
    16. Shun Hirota, Tsuyoshi Mashima, Naoya Kobayashi. Use of 3D domain swapping in constructing supramolecular metalloproteins. Chemical Communications 2021, 57 (91) , 12074-12086. https://doi.org/10.1039/D1CC04608J
    17. Satoshi Nagao, Ayaka Idomoto, Naoki Shibata, Yoshiki Higuchi, Shun Hirota. Rational design of metal-binding sites in domain-swapped myoglobin dimers. Journal of Inorganic Biochemistry 2021, 217 , 111374. https://doi.org/10.1016/j.jinorgbio.2021.111374
    18. Riccardo Montioli, Rachele Campagnari, Sabrina Fasoli, Andrea Fagagnini, Andra Caloiu, Marcello Smania, Marta Menegazzi, Giovanni Gotte. RNase A Domain-Swapped Dimers Produced Through Different Methods: Structure–Catalytic Properties and Antitumor Activity. Life 2021, 11 (2) , 168. https://doi.org/10.3390/life11020168
    19. Shun Hirota, Satoshi Nagao. New Aspects of Cytochrome c : 3D Domain Swapping, Membrane Interaction, Peroxidase Activity, and Met80 Sulfoxide Modification. Bulletin of the Chemical Society of Japan 2021, 94 (1) , 170-182. https://doi.org/10.1246/bcsj.20200272
    20. Satoshi Nagao, Ayaka Suda, Hisashi Kobayashi, Naoki Shibata, Yoshiki Higuchi, Shun Hirota. Thermodynamic Control of Domain Swapping by Modulating the Helical Propensity in the Hinge Region of Myoglobin. Chemistry – An Asian Journal 2020, 15 (11) , 1743-1749. https://doi.org/10.1002/asia.202000307
    21. Robby Noor Cahyono, Masaru Yamanaka, Satoshi Nagao, Naoki Shibata, Yoshiki Higuchi, Shun Hirota. 3D domain swapping of azurin from Alcaligenes xylosoxidans. Metallomics 2020, 12 (3) , 337-345. https://doi.org/10.1039/C9MT00255C
    22. Robby Noor Cahyono, Masaru Yamanaka, Satoshi Nagao, Naoki Shibata, Yoshiki Higuchi, Shun Hirota. 3D domain swapping of azurin from Alcaligenes xylosoxidans. Metallomics 2020, 12 (3) , 337-345. https://doi.org/10.1039/c9mt00255c
    23. Pritam Roy, Atashi Panda, Sumon Hati, Swagata Dasgupta. pH‐Dependent Nitrotyrosine Formation in Ribonuclease A is Enhanced in the Presence of Polyethylene Glycol (PEG). Chemistry – An Asian Journal 2019, 14 (24) , 4780-4792. https://doi.org/10.1002/asia.201901225
    24. Giovanni Gotte, Marta Menegazzi. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Frontiers in Immunology 2019, 10 https://doi.org/10.3389/fimmu.2019.02626
    25. Javier Oroz, Douglas V. Laurents. RNA binding proteins: Diversity from microsurgeons to cowboys. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2019, 1862 (11-12) , 194398. https://doi.org/10.1016/j.bbagrm.2019.06.009
    26. Hyun Ho Park. Domain swapping of death domain superfamily: Alternative strategy for dimerization. International Journal of Biological Macromolecules 2019, 138 , 565-572. https://doi.org/10.1016/j.ijbiomac.2019.07.139
    27. Luciana Esposito, Federica Donnarumma, Alessia Ruggiero, Serena Leone, Luigi Vitagliano, Delia Picone. Structure, stability and aggregation propensity of a Ribonuclease A-Onconase chimera. International Journal of Biological Macromolecules 2019, 133 , 1125-1133. https://doi.org/10.1016/j.ijbiomac.2019.04.164
    28. Shun Hirota. Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping. Journal of Inorganic Biochemistry 2019, 194 , 170-179. https://doi.org/10.1016/j.jinorgbio.2019.03.002
    29. Vaisakh Mohan, Bhaswati Sengupta, Nilimesh Das, Indrani Banerjee, Pratik Sen. Domain-Specific Stabilization of Structural and Dynamic Responses of Human Serum Albumin by Sucrose. Protein & Peptide Letters 2019, 26 (4) , 287-300. https://doi.org/10.2174/0929866526666190122115702
    30. Leire Mijangos, Haizea Ziarrusta, Itsaso Zabaleta, Aresatz Usobiaga, Maitane Olivares, Olatz Zuloaga, Nestor Etxebarria, Ailette Prieto. Multiresidue analytical method for the determination of 41 multiclass organic pollutants in mussel and fish tissues and biofluids by liquid chromatography coupled to tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2019, 411 (2) , 493-506. https://doi.org/10.1007/s00216-018-1474-z
    31. Zhaoying Li, Jack Tuffin, Iek M. Lei, Francesco S. Ruggeri, Natasha S. Lewis, Elisabeth L. Gill, Thierry Savin, Luai Huleihel, Stephen F. Badylak, Tuomas Knowles, Simon C. Satchell, Gavin I. Welsh, Moin A. Saleem, Yan Yan Shery Huang. Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes. Acta Biomaterialia 2018, 78 , 111-122. https://doi.org/10.1016/j.actbio.2018.08.010
    32. Xiaoxun Han, Yiming Xie, Qin Wu, Shuaibin Wu. A novel protein digestion method with the assistance of alternating current denaturation for high efficient protein digestion and mass spectrometry analysis. Talanta 2018, 184 , 382-387. https://doi.org/10.1016/j.talanta.2018.03.017
    33. Andrea Fagagnini, Andrea Pica, Sabrina Fasoli, Riccardo Montioli, Massimo Donadelli, Marco Cordani, Elena Butturini, Laura Acquasaliente, Delia Picone, Giovanni Gotte. Onconase dimerization through 3D domain swapping: structural investigations and increase in the apoptotic effect in cancer cells. Biochemical Journal 2017, 474 (22) , 3767-3781. https://doi.org/10.1042/BCJ20170541
    34. Neha Nandwani, Parag Surana, Jayant B. Udgaonkar, Ranabir Das, Shachi Gosavi. Amino‐acid composition after loop deletion drives domain swapping. Protein Science 2017, 26 (10) , 1994-2002. https://doi.org/10.1002/pro.3237
    35. Yugo Hayashi, Masaru Yamanaka, Satoshi Nagao, Hirofumi Komori, Yoshiki Higuchi, Shun Hirota. Domain swapping oligomerization of thermostable c-type cytochrome in E. coli cells. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep19334
    36. Haizea Ziarrusta, Leire Mijangos, Ailette Prieto, Nestor Etxebarria, Olatz Zuloaga, Maitane Olivares. Determination of tricyclic antidepressants in biota tissue and environmental waters by liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2016, 408 (4) , 1205-1216. https://doi.org/10.1007/s00216-015-9224-y
    37. Shijie Liu. A review on protein oligomerization process. International Journal of Precision Engineering and Manufacturing 2015, 16 (13) , 2731-2760. https://doi.org/10.1007/s12541-015-0349-x
    38. Satoshi Nagao, Mariko Ueda, Hisao Osuka, Hirofumi Komori, Hironari Kamikubo, Mikio Kataoka, Yoshiki Higuchi, Shun Hirota, . Domain-Swapped Dimer of Pseudomonas aeruginosa Cytochrome c551: Structural Insights into Domain Swapping of Cytochrome c Family Proteins. PLOS ONE 2015, 10 (4) , e0123653. https://doi.org/10.1371/journal.pone.0123653
    39. Shun HIROTA. Molten Globule State and Assembly Formation of Cytochrome c. Seibutsu Butsuri 2015, 55 (2) , 087-088. https://doi.org/10.2142/biophys.55.087
    40. Qiang Shao, Jinan Wang, Weiliang Zhu. On the influence of the mixture of denaturants on protein structure stability: A molecular dynamics study. Chemical Physics 2014, 441 , 38-46. https://doi.org/10.1016/j.chemphys.2014.07.006
    41. M. Israelowitz, B. Weyand, C. Leiterer, V. Munoz, C. Martinez-Tomas, M. Herraiz-Llacer, I. Slowik, C. Beleites, W. Fritzsche, C. Krafft, T. Henkel, M. Reuter, S. W. H. Rizvi, C. Gille, K. Reimers, P. M. Vogt, H. P. von Schroeder. Biomimetic-Inspired Infrared Sensors from Zn 3 P 2 Microwires: Study of Their Photoconductivity and Infrared Spectrum Properties. New Journal of Science 2014, 2014 , 1-9. https://doi.org/10.1155/2014/524042
    42. Qiang Shao. The addition of 2,2,2‐trifluoroethanol prevents the aggregation of guanidinium around protein and impairs its denaturation ability: A molecular dynamics simulation study. Proteins: Structure, Function, and Bioinformatics 2014, 82 (6) , 944-953. https://doi.org/10.1002/prot.24468
    43. Roberta Spadaccini, Carmine Ercole, Giuseppe Graziano, Rainer Wechselberger, Rolf Boelens, Delia Picone. Mechanism of 3 D domain swapping in bovine seminal ribonuclease. The FEBS Journal 2014, 281 (3) , 842-850. https://doi.org/10.1111/febs.12651
    44. A. Foroumadi, M. Saeedi. Mercaptoethanol, 2-. 2014, 201-202. https://doi.org/10.1016/B978-0-12-386454-3.00408-5
    45. Giovanni Gotte, Douglas V. Laurents, Antonello Merlino, Delia Picone, Roberta Spadaccini. Structural and functional relationships of natural and artificial dimeric bovine ribonucleases: New scaffolds for potential antitumor drugs. FEBS Letters 2013, 587 (22) , 3601-3608. https://doi.org/10.1016/j.febslet.2013.09.038
    46. Vikas Bhat, Dmitry Kurouski, Max B. Olenick, Caleb B. McDonald, David C. Mikles, Brian J. Deegan, Kenneth L. Seldeen, Igor K. Lednev, Amjad Farooq. Acidic pH promotes oligomerization and membrane insertion of the BclXL apoptotic repressor. Archives of Biochemistry and Biophysics 2012, 528 (1) , 32-44. https://doi.org/10.1016/j.abb.2012.08.009
    47. Shun Hirota, Mariko Ueda, Yugo Hayashi, Satoshi Nagao, Hironari Kamikubo, Mikio Kataoka. Maintenance of the secondary structure of horse cytochrome c during the conversion process of monomers to oligomers by addition of ethanol. The Journal of Biochemistry 2012, 152 (6) , 521-529. https://doi.org/10.1093/jb/mvs098
    48. Qiang Shao, Yi Qin Gao. Water plays an important role in osmolyte-induced hairpin structure change: A molecular dynamics simulation study. The Journal of Chemical Physics 2012, 137 (14) https://doi.org/10.1063/1.4757419
    49. Xue Kang, Nan Zhong, Peng Zou, Shengnan Zhang, Changwen Jin, Bin Xia. Foldon unfolding mediates the interconversion between M pro -C monomer and 3D domain-swapped dimer. Proceedings of the National Academy of Sciences 2012, 109 (37) , 14900-14905. https://doi.org/10.1073/pnas.1205241109
    50. Yixiang Wang, Lingyun Chen. Electrospinning of Prolamin Proteins in Acetic Acid: The Effects of Protein Conformation and Aggregation in Solution. Macromolecular Materials and Engineering 2012, 297 (9) , 902-913. https://doi.org/10.1002/mame.201100410
    51. Antonello Merlino, Delia Picone, Carmine Ercole, Anna Balsamo, Filomena Sica. Chain termini cross-talk in the swapping process of bovine pancreatic ribonuclease. Biochimie 2012, 94 (5) , 1108-1118. https://doi.org/10.1016/j.biochi.2012.01.010
    52. Razieh Amiri, Abdol-Khalegh Bordbar, Douglas V. Laurents, Ahmad Reza Khosropour, Iraj Mohammadpoor-Baltork. Thermal stability and enzymatic activity of RNase A in the presence of cationic gemini surfactants. International Journal of Biological Macromolecules 2012, 50 (4) , 1151-1157. https://doi.org/10.1016/j.ijbiomac.2012.01.027
    53. Roberta Spadaccini, Carmine Ercole, Maria A. Gentile, Domenico Sanfelice, Rolf Boelens, Rainer Wechselberger, Gyula Batta, Andrea Bernini, Neri Niccolai, Delia Picone, . NMR Studies on Structure and Dynamics of the Monomeric Derivative of BS-RNase: New Insights for 3D Domain Swapping. PLoS ONE 2012, 7 (1) , e29076. https://doi.org/10.1371/journal.pone.0029076
    54. Francesca Vottariello, Enrico Giacomelli, Roberta Frasson, Nicola Pozzi, Vincenzo De Filippis, Giovanni Gotte. RNase A oligomerization through 3D domain swapping is favoured by a residue located far from the swapping domains. Biochimie 2011, 93 (10) , 1846-1857. https://doi.org/10.1016/j.biochi.2011.07.005
    55. Katherine H. Miller, Susan Marqusee. Propensity for C‐terminal domain swapping correlates with increased regional flexibility in the C‐terminus of RNase A. Protein Science 2011, 20 (10) , 1735-1744. https://doi.org/10.1002/pro.708
    56. Pere Tubert, Douglas V. Laurents, Marc Ribó, Marta Bruix, Maria Vilanova, Antoni Benito. Interactions Crucial for Three-Dimensional Domain Swapping in the HP-RNase Variant PM8. Biophysical Journal 2011, 101 (2) , 459-467. https://doi.org/10.1016/j.bpj.2011.06.013
    57. Carmine Ercole, Jorge Pedro López-Alonso, Josep Font, Marc Ribó, Maria Vilanova, Delia Picone, Douglas V. Laurents. Crowding agents and osmolytes provide insight into the formation and dissociation of RNase A oligomers. Archives of Biochemistry and Biophysics 2011, 506 (2) , 123-129. https://doi.org/10.1016/j.abb.2010.11.014
    58. Giuseppe D’Alessio. The Superfamily of Vertebrate-Secreted Ribonucleases. 2011, 1-34. https://doi.org/10.1007/978-3-642-21078-5_1
    59. Katherine H. Miller, Jessica R. Karr, Susan Marqusee. Addendum to “A Hinge Region Cis-proline in Ribonuclease A Acts as a Conformational Gatekeeper for C-Terminal Domain Swapping” [J. Mol. Biol. 400/3 (2010) 567–578]. Journal of Molecular Biology 2010, 403 (5) , 825. https://doi.org/10.1016/j.jmb.2010.09.010
    60. Eyal Arbely, Trevor J. Rutherford, Hannes Neuweiler, Timothy D. Sharpe, Neil Ferguson, Alan R. Fersht. Carboxyl pKa Values and Acid Denaturation of BBL. Journal of Molecular Biology 2010, 403 (2) , 313-327. https://doi.org/10.1016/j.jmb.2010.08.052
    61. Marc Torrent, Francesco Odorizzi, M. Victòria Nogués, Ester Boix. Eosinophil Cationic Protein Aggregation: Identification of an N-Terminus Amyloid Prone Region. Biomacromolecules 2010, 11 (8) , 1983-1990. https://doi.org/10.1021/bm100334u

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect