ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Integrated Antimicrobial and Nonfouling Hydrogels to Inhibit the Growth of Planktonic Bacterial Cells and Keep the Surface Clean

View Author Information
Department of Chemical Engineering, University of Washington, Seattle, Washington 98195
*Corresponding author. E-mail: [email protected]
Cite this: Langmuir 2010, 26, 13, 10425–10428
Publication Date (Web):June 2, 2010
https://doi.org/10.1021/la101542m
Copyright © 2010 American Chemical Society

    Article Views

    3171

    Altmetric

    -

    Citations

    108
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A new strategy integrating antimicrobial and nonfouling/biocompatible properties is presented. A mild antimicrobial agent (salicylate) was incorporated into a carboxybetaine ester hydrogel, poly(N,N-dimethyl-N-(ethylcarbonylmethyl)-N-[2-(methacryloyloxy)-ethyl]ammonium salicylate) (pCBMA-1 C2 SA) hydrogel, as its anionic counterion. This new hydrogel provides a sustained release of antimicrobial agents to inhibit the growth of planktonic bacteria and create a nonfouling surface to prevent protein adsorption or bacterial accumulation upon the hydrolysis of carboxybetaine esters into zwitterionic groups. The pCBMA-1 C2 SA hydrogel inhibited the growth of both gram-negative Escherichia coli K12 and gram-positive Staphylococcus epidermidis by 99.9%. This hydrogel holds great potential in applications such as wound dressing and surface coatings for medical devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthesis of N,N-dimethyl-N-(ethylcarbonylmethyl)-N-[2- (methacryloyloxy)ethyl]ammonium salicylate (CBMA-1 C2 SA). In vitro salycilate release and HPLC analysis experiments. 1H NMR of CBMA-1 C2 SA at 300 MHz, D2O. In vitro SA release from pCBMA-2 hydrogels and pCBMA-1 C2 SA hydrogels as a function of time at 37 °C in water. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 108 publications.

    1. Arka Biswas, Arvind K. Singh Chandel, Anuradha, Nikita Vadadoriya, Vijay Mamtani, Suresh K. Jewrajka. Structurally Heterogeneous Amphiphilic Conetworks of Poly(vinyl imidazole) Derivatives with Potent Antimicrobial Properties and Cytocompatibility. ACS Applied Materials & Interfaces 2023, 15 (39) , 46333-46346. https://doi.org/10.1021/acsami.3c09743
    2. Qingsi Li, Chiyu Wen, Jing Yang, Xianchi Zhou, Yingnan Zhu, Jie Zheng, Gang Cheng, Jie Bai, Tong Xu, Jian Ji, Shaoyi Jiang, Lei Zhang, Peng Zhang. Zwitterionic Biomaterials. Chemical Reviews 2022, 122 (23) , 17073-17154. https://doi.org/10.1021/acs.chemrev.2c00344
    3. Liangliang Yang, Sara Pijuan-Galito, Hoon Suk Rho, Aliaksei S. Vasilevich, Aysegul Dede Eren, Lu Ge, Pamela Habibović, Morgan R. Alexander, Jan de Boer, Aurélie Carlier, Patrick van Rijn, Qihui Zhou. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chemical Reviews 2021, 121 (8) , 4561-4677. https://doi.org/10.1021/acs.chemrev.0c00752
    4. Rainier Barrett, Andrew D. White. Investigating Active Learning and Meta-Learning for Iterative Peptide Design. Journal of Chemical Information and Modeling 2021, 61 (1) , 95-105. https://doi.org/10.1021/acs.jcim.0c00946
    5. Alexandra Schneider-Chaabane, Vera Bleicher, Sibylle Rau, Ali Al-Ahmad, Karen Lienkamp. Stimulus-Responsive Polyzwitterionic Surfaces Made from Itaconic Acid: Self-Triggered Antimicrobial Activity, Protein Repellency, and Cell Compatibility. ACS Applied Materials & Interfaces 2020, 12 (19) , 21242-21253. https://doi.org/10.1021/acsami.9b17781
    6. Auphedeous Y. Dang-i, Tingting Huang, Nabila Mehwish, Xiao-Qiu Dou, Li Yang, Vincent Mukwaya, Chao Xing, Shuangjun Lin, Chuan-Liang Feng. Antimicrobial Activity with Enhanced Mechanical Properties in Phenylalanine-Based Chiral Coassembled Hydrogels: The Influence of Pyridine Hydrazide Derivatives. ACS Applied Bio Materials 2020, 3 (4) , 2295-2304. https://doi.org/10.1021/acsabm.0c00075
    7. Seyyedeh Sahar Hosseini Salekdeh, Hamed Daemi, Maryam Zare-Gachi, Sarah Rajabi, Farhad Bazgir, Nasser Aghdami, Mohammad Sadegh Nourbakhsh, Hossein Baharvand. Assessment of the Efficacy of Tributylammonium Alginate Surface-Modified Polyurethane as an Antibacterial Elastomeric Wound Dressing for both Noninfected and Infected Full-Thickness Wounds. ACS Applied Materials & Interfaces 2020, 12 (3) , 3393-3406. https://doi.org/10.1021/acsami.9b18437
    8. Xiaofeng Chen, Xia Qiu, Minghong Hou, Xiaotian Wu, Yahao Dong, Yansong Ma, Lijun Yang, Yuping Wei. Differences in Zwitterionic Sulfobetaine and Carboxybetaine Dextran-Based Hydrogels. Langmuir 2019, 35 (5) , 1475-1482. https://doi.org/10.1021/acs.langmuir.8b01869
    9. Chungjung Chou, Sioujyuan Syu, Jen-Hsuan Chang, Pierre Aimar, Yung Chang. Bioinspired Pseudozwitterionic Hydrogels with Bioactive Enzyme Immobilization via pH-Responsive Regulation. Langmuir 2019, 35 (5) , 1909-1918. https://doi.org/10.1021/acs.langmuir.8b02483
    10. Vania Tanda Widyaya, Claas Müller, Ali Al-Ahmad, Karen Lienkamp. Three-Dimensional, Bifunctional Microstructured Polymer Hydrogels Made from Polyzwitterions and Antimicrobial Polymers. Langmuir 2019, 35 (5) , 1211-1226. https://doi.org/10.1021/acs.langmuir.8b03410
    11. Mohini Mohan Konai, Brinta Bhattacharjee, Sreyan Ghosh, Jayanta Haldar. Recent Progress in Polymer Research to Tackle Infections and Antimicrobial Resistance. Biomacromolecules 2018, 19 (6) , 1888-1917. https://doi.org/10.1021/acs.biomac.8b00458
    12. Anastasia L. Patterson, Brandon Wenning, Georgios Rizis, David R. Calabrese, John A. Finlay, Sofia C. Franco, Ronald N. Zuckermann, Anthony S. Clare, Edward J. Kramer, Christopher K. Ober, and Rachel A. Segalman . Role of Backbone Chemistry and Monomer Sequence in Amphiphilic Oligopeptide- and Oligopeptoid-Functionalized PDMS- and PEO-Based Block Copolymers for Marine Antifouling and Fouling Release Coatings. Macromolecules 2017, 50 (7) , 2656-2667. https://doi.org/10.1021/acs.macromol.6b02505
    13. Lin Li, Bin Yan, Jingqi Yang, Weijuan Huang, Lingyun Chen, and Hongbo Zeng . Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties. ACS Applied Materials & Interfaces 2017, 9 (11) , 9221-9225. https://doi.org/10.1021/acsami.6b16192
    14. Berkay Ozcelik, Kitty Ka Kit Ho, Veronica Glattauer, Mark Willcox, Naresh Kumar, and Helmut Thissen . Poly(ethylene glycol)-Based Coatings Combining Low-Biofouling and Quorum-Sensing Inhibiting Properties to Reduce Bacterial Colonization. ACS Biomaterials Science & Engineering 2017, 3 (1) , 78-87. https://doi.org/10.1021/acsbiomaterials.6b00579
    15. Chia-Yu Liu and Chun-Jen Huang . Functionalization of Polydopamine via the Aza-Michael Reaction for Antimicrobial Interfaces. Langmuir 2016, 32 (19) , 5019-5028. https://doi.org/10.1021/acs.langmuir.6b00990
    16. Shunjie Yan, Shifang Luan, Hengchong Shi, Xiaodong Xu, Jidong Zhang, Shuaishuai Yuan, Yuming Yang, and Jinghua Yin . Hierarchical Polymer Brushes with Dominant Antibacterial Mechanisms Switching from Bactericidal to Bacteria Repellent. Biomacromolecules 2016, 17 (5) , 1696-1704. https://doi.org/10.1021/acs.biomac.6b00115
    17. Amin GhavamiNejad, Chan Hee Park, and Cheol Sang Kim . In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application. Biomacromolecules 2016, 17 (3) , 1213-1223. https://doi.org/10.1021/acs.biomac.6b00039
    18. Chun-Jen Huang, Yen-Sheng Chen, and Yung Chang . Counterion-Activated Nanoactuator: Reversibly Switchable Killing/Releasing Bacteria on Polycation Brushes. ACS Applied Materials & Interfaces 2015, 7 (4) , 2415-2423. https://doi.org/10.1021/am507105r
    19. Nien-Jung Lin, Hui-Shan Yang, Yung Chang, Kuo-Lun Tung, Wei-Hao Chen, Hui-Wen Cheng, Sheng-Wen Hsiao, Pierre Aimar, Kazuo Yamamoto, and Juin-Yih Lai . Surface Self-Assembled PEGylation of Fluoro-Based PVDF Membranes via Hydrophobic-Driven Copolymer Anchoring for Ultra-Stable Biofouling Resistance. Langmuir 2013, 29 (32) , 10183-10193. https://doi.org/10.1021/la401336y
    20. Rong Hu, Guozhu Li, Yujiao Jiang, Yi Zhang, Ji-Jun Zou, Li Wang, and Xiangwen Zhang . Silver–Zwitterion Organic–Inorganic Nanocomposite with Antimicrobial and Antiadhesive Capabilities. Langmuir 2013, 29 (11) , 3773-3779. https://doi.org/10.1021/la304708b
    21. Chao Zhao, Xiaosi Li, Lingyan Li, Gang Cheng, Xiong Gong, and Jie Zheng . Dual Functionality of Antimicrobial and Antifouling of Poly(N-hydroxyethylacrylamide)/Salicylate Hydrogels. Langmuir 2013, 29 (5) , 1517-1524. https://doi.org/10.1021/la304511s
    22. Theresa Weber, Yasmin Gies, and Andreas Terfort . Bacteria-Repulsive Polyglycerol Surfaces by Grafting Polymerization onto Aminopropylated Surfaces. Langmuir 2012, 28 (45) , 15916-15921. https://doi.org/10.1021/la303541h
    23. Michael D. Dimitriou, Zhaoli Zhou, Hee-Soo Yoo, Kato L. Killops, John A. Finlay, Gemma Cone, Harihara S. Sundaram, Nathaniel A. Lynd, Katherine P. Barteau, Luis M. Campos, Daniel A. Fischer, Maureen E. Callow, James A. Callow, Christopher K. Ober, Craig J. Hawker, and Edward J. Kramer . A General Approach to Controlling the Surface Composition of Poly(ethylene oxide)-Based Block Copolymers for Antifouling Coatings. Langmuir 2011, 27 (22) , 13762-13772. https://doi.org/10.1021/la202509m
    24. Inbal Eshet, Viatcheslav Freger, Roni Kasher, Moshe Herzberg, Jing Lei, and Mathias Ulbricht . Chemical and Physical Factors in Design of Antibiofouling Polymer Coatings. Biomacromolecules 2011, 12 (7) , 2681-2685. https://doi.org/10.1021/bm200476g
    25. Shiguo Chen, Shaojun Chen, Song Jiang, Meiling Xiong, Junxuan Luo, Jiaoning Tang, and Zaochuan Ge . Environmentally Friendly Antibacterial Cotton Textiles Finished with Siloxane Sulfopropylbetaine. ACS Applied Materials & Interfaces 2011, 3 (4) , 1154-1162. https://doi.org/10.1021/am101275d
    26. Chih-Yu Chang, Jia-Ruei Yang, Yi-Shan Liu, Abhisek Panda. Facile surface functionalization of triboelectric layers via electrostatically self-assembled zwitterionic molecules for achieving efficient and stable antibacterial flexible triboelectric nanogenerators. Materials Horizons 2024, 11 (3) , 646-660. https://doi.org/10.1039/D3MH01529G
    27. Mongkol Techakasikornpanich, Kulachart Jangpatarapongsa, Duangporn Polpanich, Abdelhamid Elaissari. Impact of polymeric films and hydrogels: Physical characteristics on bacterial growth. Polymers for Advanced Technologies 2024, 35 (2) https://doi.org/10.1002/pat.6311
    28. Gabriela A. Corrêa, Baltazar de Castro, Susana L.H. Rebelo. Iron salicylate catalyzes oxidative esterification of biomass-derived aldehydes. Biomass Conversion and Biorefinery 2023, 8 https://doi.org/10.1007/s13399-023-05022-x
    29. Xionggang Chen, Jianhong Zhou, Yu Qian, LingZhou Zhao. Antibacterial coatings on orthopedic implants. Materials Today Bio 2023, 19 , 100586. https://doi.org/10.1016/j.mtbio.2023.100586
    30. Mona Kaamoush, Nagwa El-Agawany, Mohamed Y. Omar. Environmental toxicological evaluation (in vitro) of copper, zinc and cybutryne on the growth and amino acids content of the marine alga Dunaliella salina. Egyptian Journal of Aquatic Research 2023, 49 (1) , 23-32. https://doi.org/10.1016/j.ejar.2022.07.004
    31. Deepika Rani, Ranjit Singh, Preeti Kush, Parveen Kumar. Nanomaterial-based smart coatings for antibacterial, antifungal, and antiviral activities. 2023, 271-302. https://doi.org/10.1016/B978-0-323-91762-9.00008-3
    32. Preeti Kumari, Aditya Kumar. Working principles of various smart coatings on microbes/virus growth. 2023, 239-261. https://doi.org/10.1016/B978-0-323-99291-6.00003-7
    33. Sviatoslav Hladysh, Diana Oleshchuk, Jana Dvořáková, Ivana Šeděnková, Marcela Filipová, Zuzana Pobořilová, Jiří Pánek, Vladimír Proks. Comparison of carboxybetaine with sulfobetaine polyaspartamides: Nonfouling properties, hydrophilicity, cytotoxicity and model nanogelation in an inverse miniemulsion. Journal of Applied Polymer Science 2022, 139 (19) https://doi.org/10.1002/app.52099
    34. Lu Wang, Liwei Sun, Xu Zhang, Huiyan Wang, Lingjie Song, Shifang Luan. A self-defense hierarchical antibacterial surface with inherent antifouling and bacteria-activated bactericidal properties for infection resistance. Biomaterials Science 2022, 10 (8) , 1968-1980. https://doi.org/10.1039/D1BM01952J
    35. Miao Zhang, Peng Yu, Jing Xie, Jianshu Li. Recent advances of zwitterionic-based topological polymers for biomedical applications. Journal of Materials Chemistry B 2022, 10 (14) , 2338-2356. https://doi.org/10.1039/D1TB02323C
    36. Sher Ali Khan, Luqman Ali Shah, Mehwish Shah, Ishrat Jamil. Engineering of 3D polymer network hydrogels for biomedical applications: a review. Polymer Bulletin 2022, 79 (4) , 2685-2705. https://doi.org/10.1007/s00289-021-03638-5
    37. Shun Duan, Ruonan Wu, Yan-Hua Xiong, Hui-Min Ren, Chengyue Lei, Yu-Qing Zhao, Xin-Yang Zhang, Fu-Jian Xu. Multifunctional antimicrobial materials: From rational design to biomedical applications. Progress in Materials Science 2022, 125 , 100887. https://doi.org/10.1016/j.pmatsci.2021.100887
    38. Jinyan Tan, Xiao Liang, Jinlong Yang, Shuxue Zhou. Sol–gel-derived hard coatings from tetraethoxysilane and organoalkoxysilanes bearing zwitterionic and isothiazolinone groups and their antifouling behaviors. Journal of Materials Chemistry B 2022, 10 (3) , 406-417. https://doi.org/10.1039/D1TB02069B
    39. A. Uneputty, A. Dávila-Lezama, D. Garibo, A. Oknianska, N. Bogdanchikova, J.F. Hernández-Sánchez, A. Susarrey-Arce. Strategies applied to modify structured and smooth surfaces: A step closer to reduce bacterial adhesion and biofilm formation. Colloid and Interface Science Communications 2022, 46 , 100560. https://doi.org/10.1016/j.colcom.2021.100560
    40. Yumei Wang, Feng Wang, Hui Zhang, Bing Yu, Hailin Cong, Youqing Shen. Antibacterial material surfaces/interfaces for biomedical applications. Applied Materials Today 2021, 25 , 101192. https://doi.org/10.1016/j.apmt.2021.101192
    41. Shougen Li, Jia Zeng, Dongfang Yin, Peiqiang Liao, Siqing Ding, Ping Mao, Ying Liu. Synergic fabrication of titanium dioxide incorporation into heparin-polyvinyl alcohol nanocomposite: enhanced in vitro antibacterial activity and care of in vivo burn injury. Materials Research Express 2021, 8 (8) , 085012. https://doi.org/10.1088/2053-1591/abe1fb
    42. Firzan Nainu, Andi Dian Permana, Nana Juniarti Natsir Djide, Qonita Kurnia Anjani, Rifka Nurul Utami, Nur Rahma Rumata, Jianye Zhang, Talha Bin Emran, Jesus Simal-Gandara. Pharmaceutical Approaches on Antimicrobial Resistance: Prospects and Challenges. Antibiotics 2021, 10 (8) , 981. https://doi.org/10.3390/antibiotics10080981
    43. Hai‐Qing Song, Yaqian Fan, Yang Hu, Gang Cheng, Fu‐Jian Xu. Polysaccharide–Peptide Conjugates: A Versatile Material Platform for Biomedical Applications. Advanced Functional Materials 2021, 31 (6) https://doi.org/10.1002/adfm.202005978
    44. Zhi Yang Soon, Jee-Hyun Jung, Cheolho Yoon, Jung-Hoon Kang, Moonkoo Kim. Characterization of hazards and environmental risks of wastewater effluents from ship hull cleaning by hydroblasting. Journal of Hazardous Materials 2021, 403 , 123708. https://doi.org/10.1016/j.jhazmat.2020.123708
    45. Xiaohong Sun, Songyuan Zhang, Hui Li, Nandika Bandara. Anti‐Adhesive Coatings. 2020, 1-23. https://doi.org/10.1002/9781119655053.ch1
    46. Agnieszka Kyzioł, Wahid Khan, Victor Sebastian, Karol Kyzioł. Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers. Chemical Engineering Journal 2020, 385 , 123888. https://doi.org/10.1016/j.cej.2019.123888
    47. Wenying Liu, Yishi Dong, Shengjie Liu, Ting Wei, Zhaoqiang Wu, Hong Chen. Enhancement of Bactericidal Activity via Cyclic Poly(cationic liquid) Brushes. Macromolecular Rapid Communications 2019, 40 (21) https://doi.org/10.1002/marc.201900379
    48. Yanxian Zhang, Yonglan Liu, Baiping Ren, Dong Zhang, Shaowen Xie, Yung Chang, Jintao Yang, Jiang Wu, Lijian Xu, Jie Zheng. Fundamentals and applications of zwitterionic antifouling polymers. Journal of Physics D: Applied Physics 2019, 52 (40) , 403001. https://doi.org/10.1088/1361-6463/ab2cbc
    49. Elsayed, Widyaya, Shafi, Eickenscheidt, Lienkamp. Bifunctional Bioactive Polymer Surfaces with Micrometer and Submicrometer-sized Structure: The Effects of Structure Spacing and Elastic Modulus on Bioactivity. Molecules 2019, 24 (18) , 3371. https://doi.org/10.3390/molecules24183371
    50. Ting Wei, Qian Yu, Hong Chen. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Advanced Healthcare Materials 2019, 8 (3) https://doi.org/10.1002/adhm.201801381
    51. Jun Xiang, Li Ma, Hui Su, Junjie Xiong, Kaijun Li, Qiongfen Xia, Gongyan Liu. Layer-by-layer assembly of antibacterial composite coating for leather with cross-link enhanced durability against laundry and abrasion. Applied Surface Science 2018, 458 , 978-987. https://doi.org/10.1016/j.apsusc.2018.07.165
    52. De-Qun Wu, Jie Zhu, Hua Han, Jun-Zhi Zhang, Fei-Fei Wu, Xiao-Hong Qin, Jian-Yong Yu. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: In vitro and in vivo study. Acta Biomaterialia 2018, 65 , 305-316. https://doi.org/10.1016/j.actbio.2017.08.048
    53. Rashin Namivandi-Zangeneh, Rebecca J. Kwan, Thuy-Khanh Nguyen, Jonathan Yeow, Frances L. Byrne, Stefan H. Oehlers, Edgar H. H. Wong, Cyrille Boyer. The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers. Polymer Chemistry 2018, 9 (13) , 1735-1744. https://doi.org/10.1039/C7PY01069A
    54. Dong Zhang, Yanhong Fu, Lei Huang, Yanxian Zhang, Baiping Ren, Mingqiang Zhong, Jintao Yang, Jie Zheng. Integration of antifouling and antibacterial properties in salt-responsive hydrogels with surface regeneration capacity. Journal of Materials Chemistry B 2018, 6 (6) , 950-960. https://doi.org/10.1039/C7TB03018E
    55. Rajani Kant Rai, A. Jayakrishnan. Synthesis and polymerization of a new hydantoin monomer with three halogen binding sites for developing highly antibacterial surfaces. New Journal of Chemistry 2018, 42 (14) , 12152-12161. https://doi.org/10.1039/C8NJ02743A
    56. Esther K. Riga, Maria Vöhringer, Vania Tanda Widyaya, Karen Lienkamp. Polymer‐Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Long‐Term Applications. Macromolecular Rapid Communications 2017, 38 (20) https://doi.org/10.1002/marc.201700216
    57. Vinod B. Damodaran, Victoria Leszczak, Melissa M. Reynolds, Ketul C. Popat. Zwitterionic Polymeric Materials. 2017, 1661-1672. https://doi.org/10.1081/E-EBPPC-120050037
    58. Wei Wang, Yang Lu, Hui Zhu, Zhiqiang Cao. Superdurable Coating Fabricated from a Double‐Sided Tape with Long Term “Zero” Bacterial Adhesion. Advanced Materials 2017, 29 (34) https://doi.org/10.1002/adma.201606506
    59. Ao Chen, Hui Peng, Idriss Blakey, Andrew K. Whittaker. Biocidal Polymers: A Mechanistic Overview. Polymer Reviews 2017, 57 (2) , 276-310. https://doi.org/10.1080/15583724.2016.1223131
    60. Carmen González-Henríquez, Mauricio Sarabia-Vallejos, Juan Rodriguez-Hernandez. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. Materials 2017, 10 (3) , 232. https://doi.org/10.3390/ma10030232
    61. Shunjie Yan, Lingjie Song, Shifang Luan, Zhirong Xin, Shanshan Du, Hengchong Shi, Shuaishuai Yuan, Yuming Yang, Jinghua Yin. A hierarchical polymer brush coating with dual-function antibacterial capability. Colloids and Surfaces B: Biointerfaces 2017, 150 , 250-260. https://doi.org/10.1016/j.colsurfb.2016.08.033
    62. Juan Rodríguez-Hernández. Antimicrobial Hydrogels. 2017, 179-204. https://doi.org/10.1007/978-3-319-47961-3_8
    63. Shunjie Yan, Lingjie Song, Shifang Luan, Zhirong Xin, Shanshan Du, Hengchong Shi, Shuaishuai Yuan, Yuming Yang, Jinghua Yin. A hierarchical polymer brush coating with dual-function antibacterial capability. Colloids and Surfaces B: Biointerfaces 2017, 149 , 260-270. https://doi.org/10.1016/j.colsurfb.2016.08.012
    64. Yuqin Tang, Xueqin Cai, Yingying Xiang, Yu Zhao, Xinge Zhang, Zhongming Wu. Cross-linked antifouling polysaccharide hydrogel coating as extracellular matrix mimics for wound healing. Journal of Materials Chemistry B 2017, 5 (16) , 2989-2999. https://doi.org/10.1039/C6TB03222B
    65. Vinod B. Damodaran, N. Sanjeeva Murthy. Bio-inspired strategies for designing antifouling biomaterials. Biomaterials Research 2016, 20 (1) https://doi.org/10.1186/s40824-016-0064-4
    66. Pengcheng Hu, Tengfei Jiang, Huagang Ni, Peng Ye, Zhiyuan Han, Zeliang Zhao, Chaoying Zhu, Xiaolin Lu. Synthesis, characterization and antifouling performance of ABC-type fluorinated amphiphilic triblock copolymer. Polymer Bulletin 2016, 73 (5) , 1405-1426. https://doi.org/10.1007/s00289-015-1554-6
    67. Vinod B. Damodaran, Victoria Leszczak, Melissa M. Reynolds, Ketul C. Popat. Zwitterionic Polymeric Materials. 2016, 8299-8310. https://doi.org/10.1081/E-EBPP-120050037
    68. Wibke Hartleb, Julia S. Saar, Peng Zou, Karen Lienkamp. Just Antimicrobial is not Enough: Toward Bifunctional Polymer Surfaces with Dual Antimicrobial and Protein‐Repellent Functionality. Macromolecular Chemistry and Physics 2016, 217 (2) , 225-231. https://doi.org/10.1002/macp.201500266
    69. Yi-Shi Dong, Xin-Hong Xiong, Xiao-Wen Lu, Zhao-Qiang Wu, Hong Chen. Antibacterial surfaces based on poly(cationic liquid) brushes: switchability between killing and releasing via anion counterion switching. Journal of Materials Chemistry B 2016, 4 (36) , 6111-6116. https://doi.org/10.1039/C6TB01464J
    70. Markéta Ilčíková, Ján Tkáč, Peter Kasák. Switchable Materials Containing Polyzwitterion Moieties. Polymers 2015, 7 (11) , 2344-2370. https://doi.org/10.3390/polym7111518
    71. Yang Lu, Zhanguo Yue, Wei Wang, Zhiqiang Cao. Strategies on designing multifunctional surfaces to prevent biofilm formation. Frontiers of Chemical Science and Engineering 2015, 9 (3) , 324-335. https://doi.org/10.1007/s11705-015-1529-z
    72. P. Ajit Walter, T. Muthukumar, B.S.R. Reddy. Assessment of antifouling efficacy of polyhedral oligomeric silsesquioxane based poly (urea-urethane-imide) hybrid membranes. Letters in Applied Microbiology 2015, 61 (3) , 274-282. https://doi.org/10.1111/lam.12457
    73. Xue Li, Yongfeng Gao, Michael J. Serpe. Reductant-responsive poly( N -isopropylacrylamide) microgels and microgel-based optical materials. Canadian Journal of Chemistry 2015, 93 (7) , 685-689. https://doi.org/10.1139/cjc-2014-0555
    74. Qin Liu, Xiufang Wen, Shouping Xu, Pihui Pi, Jiang Cheng, Renchang Zeng. Synthesis and properties of the antibacterial hydrogels with enhanced mechanical strengths. Colloid and Polymer Science 2015, 293 (6) , 1705-1712. https://doi.org/10.1007/s00396-015-3548-1
    75. Rihab Ben Slama, Bechir Mrabet, Amina Bakhrouf, Zakaria Salmi, Idriss Bakas, Mohamed M. Chehimi. Polymer/silver hybrid thin films for anti-pathogenic bacterial applications. Surface Innovations 2015, 3 (2) , 103-114. https://doi.org/10.1680/si.14.00007
    76. Qian Yu, Zhaoqiang Wu, Hong Chen. Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia 2015, 16 , 1-13. https://doi.org/10.1016/j.actbio.2015.01.018
    77. Jinmei Wang, Hong Sun, Junjie Li, Dianyu Dong, Yabin Zhang, Fanglian Yao. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption. Carbohydrate Polymers 2015, 117 , 384-391. https://doi.org/10.1016/j.carbpol.2014.09.077
    78. I. Irwansyah, Yong‐Qiang Li, Wenxiong Shi, Dianpeng Qi, Wan Ru Leow, Mark B. Y. Tang, Shuzhou Li, Xiaodong Chen. Gram‐Positive Antimicrobial Activity of Amino Acid‐Based Hydrogels. Advanced Materials 2015, 27 (4) , 648-654. https://doi.org/10.1002/adma.201403339
    79. Lin Li, Wirasak Smitthipong, Hongbo Zeng. Mussel-inspired hydrogels for biomedical and environmental applications. Polymer Chemistry 2015, 6 (3) , 353-358. https://doi.org/10.1039/C4PY01415D
    80. Bin Cao, Qiong Tang, Linlin Li, Chen-Jung Lee, Hua Wang, Yanqiao Zhang, Homero Castaneda, Gang Cheng. Integrated zwitterionic conjugated poly(carboxybetaine thiophene) as a new biomaterial platform. Chemical Science 2015, 6 (1) , 782-788. https://doi.org/10.1039/C4SC02200A
    81. Zhiling Zhu, Jun Wang, Analette I. Lopez, Fei Yu, Yongkai Huang, Amit Kumar, Siheng Li, Lijuan Zhang, Chengzhi Cai. Surfaces presenting α-phenyl mannoside derivatives enable formation of stable, high coverage, non-pathogenic Escherichia coli biofilms against pathogen colonization. Biomaterials Science 2015, 3 (6) , 842-851. https://doi.org/10.1039/C5BM00076A
    82. Yaoxin Li, Xiaoxian Zhang, John Myers, Nicholas L. Abbott, Zhan Chen. Room temperature freezing and orientational control of surface-immobilized peptides in air. Chemical Communications 2015, 51 (55) , 11015-11018. https://doi.org/10.1039/C5CC03274A
    83. Huagang Ni, Tengfei Jiang, Pengcheng Hu, Zhiyuan Han, Xiaolin Lu, Peng Ye. Self-decontaminating properties of fluorinated copolymers integrated with ciprofloxacin for synergistically inhibiting the growth of Escherichia coli. Journal of Biomaterials Science, Polymer Edition 2014, 25 (17) , 1920-1945. https://doi.org/10.1080/09205063.2014.960696
    84. Victor W.L. Ng, Julian M.W. Chan, Haritz Sardon, Robert J. Ono, Jeannette M. García, Yi Yan Yang, James L. Hedrick. Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections. Advanced Drug Delivery Reviews 2014, 78 , 46-62. https://doi.org/10.1016/j.addr.2014.10.028
    85. Bin Cao, Qiong Tang, Gang Cheng. Recent advances of zwitterionic carboxybetaine materials and their derivatives. Journal of Biomaterials Science, Polymer Edition 2014, 25 (14-15) , 1502-1513. https://doi.org/10.1080/09205063.2014.927300
    86. Miriem Santander-Borrego, David W. Green, Traian V. Chirila, Andrew K. Whittaker, Idriss Blakey. Click functionalization of methacrylate-based hydrogels and their cellular response. Journal of Polymer Science Part A: Polymer Chemistry 2014, 52 (13) , 1781-1789. https://doi.org/10.1002/pola.27183
    87. Ren Chang Zeng, Jiang Cheng, Shou Ping Xu, Qin Liu, Xiu Fang Wen, Pi Hui Pi. Preparation of Antimicrobial PHEMA-g-PCBMAE Hydrogels with Improved Mechanical Properties. Applied Mechanics and Materials 2014, 576 , 49-53. https://doi.org/10.4028/www.scientific.net/AMM.576.49
    88. Roy Bernstein, Viatcheslav Freger, Jin-Hyung Lee, Yong-Guy Kim, Jintae Lee, Moshe Herzberg. ‘Should I stay or should I go?’ Bacterial attachment vs biofilm formation on surface-modified membranes. Biofouling 2014, 30 (3) , 367-376. https://doi.org/10.1080/08927014.2013.876011
    89. Luo Mi, Shaoyi Jiang. Zwitterionische Polymere mit antimikrobiellen und Nonfouling‐Eigenschaften. Angewandte Chemie 2014, 126 (7) , 1774-1782. https://doi.org/10.1002/ange.201304060
    90. Luo Mi, Shaoyi Jiang. Integrated Antimicrobial and Nonfouling Zwitterionic Polymers. Angewandte Chemie International Edition 2014, 53 (7) , 1746-1754. https://doi.org/10.1002/anie.201304060
    91. Shouping Xu, Renchang Zeng, Jiang Cheng, Zhiqi Cai, Xiufang Wen, Pihui Pi. Preparation of antimicrobial polycarboxybetaine‐based hydrogels for studies of drug loading and release. Journal of Applied Polymer Science 2014, 131 (3) https://doi.org/10.1002/app.39839
    92. Ana Salomé Veiga, Joel P. Schneider. Antimicrobial hydrogels for the treatment of infection. Peptide Science 2013, 100 (6) , 637-644. https://doi.org/10.1002/bip.22412
    93. Bin Cao, Linlin Li, Qiong Tang, Gang Cheng. The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer. Biomaterials 2013, 34 (31) , 7592-7600. https://doi.org/10.1016/j.biomaterials.2013.06.063
    94. Bin Cao, Qiong Tang, Linlin Li, Jayson Humble, Haiyan Wu, Lingyun Liu, Gang Cheng. Switchable Antimicrobial and Antifouling Hydrogels with Enhanced Mechanical Properties. Advanced Healthcare Materials 2013, 2 (8) , 1096-1102. https://doi.org/10.1002/adhm.201200359
    95. Chao Zhao, Jun Zhao, Xiaosi Li, Jiang Wu, Shenfu Chen, Qiang Chen, Qiuming Wang, Xiong Gong, Lingyan Li, Jie Zheng. Probing structure–antifouling activity relationships of polyacrylamides and polyacrylates. Biomaterials 2013, 34 (20) , 4714-4724. https://doi.org/10.1016/j.biomaterials.2013.03.028
    96. Chao Zhao, Kunal Patel, Lindsay Marie Aichinger, Zhaoqian Liu, Rundong Hu, Hong Chen, Xiaosi Li, Lingyan Li, Ge Zhang, Yung Chang, Jie Zheng. Antifouling and biodegradable poly(N-hydroxyethyl acrylamide) (polyHEAA)-based nanogels. RSC Advances 2013, 3 (43) , 19991. https://doi.org/10.1039/c3ra42323a
    97. Hannah H. Tuson, Douglas B. Weibel. Bacteria–surface interactions. Soft Matter 2013, 9 (17) , 4368. https://doi.org/10.1039/c3sm27705d
    98. Shao Qiong Liu, Chuan Yang, Yuan Huang, Xin Ding, Yan Li, Wei Min Fan, James L. Hedrick, Yi‐Yan Yang. Antimicrobial and Antifouling Hydrogels Formed In Situ from Polycarbonate and Poly(ethylene glycol) via Michael Addition. Advanced Materials 2012, 24 (48) , 6484-6489. https://doi.org/10.1002/adma.201202225
    99. Luo Mi, Shaoyi Jiang. Synchronizing nonfouling and antimicrobial properties in a zwitterionic hydrogel. Biomaterials 2012, 33 (35) , 8928-8933. https://doi.org/10.1016/j.biomaterials.2012.09.011
    100. Akihiko Terada, Keisuke Okuyama, Megumi Nishikawa, Satoshi Tsuneda, Masaaki Hosomi. The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation. Biotechnology and Bioengineering 2012, 109 (7) , 1745-1754. https://doi.org/10.1002/bit.24429
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect