Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cold denaturation of a protein dimer monitored at atomic resolution

Abstract

Protein folding and unfolding are crucial for a range of biological phenomena and human diseases. Defining the structural properties of the involved transient species is therefore of prime interest. Using a combination of cold denaturation with NMR spectroscopy, we reveal detailed insight into the unfolding of the homodimeric repressor protein CylR2. Seven three-dimensional structures of CylR2 at temperatures from 25 °C to −16 °C reveal a progressive dissociation of the dimeric protein into a native-like monomeric intermediate followed by transition into a highly dynamic, partially folded state. The core of the partially folded state seems critical for biological function and misfolding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature sensitivity of the CylR2 homodimer.
Figure 2: Dynamics of protein folding intermediates of CylR2.
Figure 3: Cold-induced dissociation of the native dimer.
Figure 4: The pathway of unfolding of CylR2 at atomic resolution.
Figure 5: Non-native contacts in the monomeric protein folding intermediate.
Figure 6: Three-dimensional structure of a highly dynamic, partially folded state.

Similar content being viewed by others

Accession codes

Primary accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

Referenced accessions

Biological Magnetic Resonance Data Bank

References

  1. Brockwell, D.J. & Radford, S.E. Intermediates: ubiquitous species on folding energy landscapes? Curr. Opin. Struct. Biol. 17, 30–37 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fersht, A.R. From the first protein structures to our current knowledge of protein folding: delights and scepticisms. Nat. Rev. Mol. Cell Biol. 9, 650–654 (2008).

    CAS  PubMed  Google Scholar 

  3. Englander, S.W., Mayne, L. & Krishna, M.M. Protein folding and misfolding: mechanism and principles. Q. Rev. Biophys. 40, 287–326 (2007).

    CAS  PubMed  Google Scholar 

  4. Canet, D. et al. Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat. Struct. Biol. 9, 308–315 (2002).

    CAS  PubMed  Google Scholar 

  5. Khurana, R. et al. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Biochemistry 40, 3525–3535 (2001).

    CAS  PubMed  Google Scholar 

  6. Neudecker, P. et al. Structure of an intermediate state in protein folding and aggregation. Science 336, 362–366 (2012).

    CAS  PubMed  Google Scholar 

  7. Kiefhaber, T. Protein folding kinetics. Methods Mol. Biol. 40, 313–341 (1995).

    CAS  PubMed  Google Scholar 

  8. Bernstein, R., Schmidt, K.L., Harbury, P.B. & Marqusee, S. Structural and kinetic mapping of side-chain exposure onto the protein energy landscape. Proc. Natl. Acad. Sci. USA 108, 10532–10537 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fersht, A. & Winter, G. Protein engineering. Trends Biochem. Sci. 17, 292–295 (1992).

    CAS  PubMed  Google Scholar 

  10. Balbach, J. et al. Protein folding monitored at individual residues during a two-dimensional NMR experiment. Science 274, 1161–1163 (1996).

    CAS  PubMed  Google Scholar 

  11. Feng, H., Takei, J., Lipsitz, R., Tjandra, N. & Bai, Y. Specific non-native hydrophobic interactions in a hidden folding intermediate: implications for protein folding. Biochemistry 42, 12461–12465 (2003).

    CAS  PubMed  Google Scholar 

  12. Feng, H., Zhou, Z. & Bai, Y. A protein folding pathway with multiple folding intermediates at atomic resolution. Proc. Natl. Acad. Sci. USA 102, 5026–5031 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kato, H., Feng, H. & Bai, Y. The folding pathway of T4 lysozyme: the high-resolution structure and folding of a hidden intermediate. J. Mol. Biol. 365, 870–880 (2007).

    CAS  PubMed  Google Scholar 

  14. Religa, T.L., Markson, J.S., Mayor, U., Freund, S.M. & Fersht, A.R. Solution structure of a protein denatured state and folding intermediate. Nature 437, 1053–1056 (2005).

    CAS  PubMed  Google Scholar 

  15. Zhou, Z., Feng, H., Ghirlando, R. & Bai, Y. The high-resolution NMR structure of the early folding intermediate of the Thermus thermophilus ribonuclease H. J. Mol. Biol. 384, 531–539 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Friel, C.T., Smith, D.A., Vendruscolo, M., Gsponer, J. & Radford, S.E. The mechanism of folding of Im7 reveals competition between functional and kinetic evolutionary constraints. Nat. Struct. Mol. Biol. 16, 318–324 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Redfield, C. NMR studies of partially folded molten-globule states. Methods Mol. Biol. 278, 233–254 (2004).

    CAS  PubMed  Google Scholar 

  18. Schulman, B.A., Kim, P.S., Dobson, C.M. & Redfield, C. A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat. Struct. Biol. 4, 630–634 (1997).

    CAS  PubMed  Google Scholar 

  19. Meinhold, D.W. & Wright, P.E. Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion. Proc. Natl. Acad. Sci. USA 108, 9078–9083 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Neudecker, P., Lundstrom, P. & Kay, L.E. Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding. Biophys. J. 96, 2045–2054 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Palmer, A.G. III . NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 104, 3623–3640 (2004).

    CAS  PubMed  Google Scholar 

  22. Vallurupalli, P., Hansen, D.F., Stollar, E., Meirovitch, E. & Kay, L.E. Measurement of bond vector orientations in invisible excited states of proteins. Proc. Natl. Acad. Sci. USA 104, 18473–18477 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Korzhnev, D.M., Religa, T.L., Banachewicz, W., Fersht, A.R. & Kay, L.E. A transient and low-populated protein-folding intermediate at atomic resolution. Science 329, 1312–1316 (2010).

    CAS  PubMed  Google Scholar 

  24. Korzhnev, D.M. et al. Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430, 586–590 (2004).

    CAS  PubMed  Google Scholar 

  25. Neudecker, P., Zarrine-Afsar, A., Davidson, A.R. & Kay, L.E. Φ-value analysis of a three-state protein folding pathway by NMR relaxation dispersion spectroscopy. Proc. Natl. Acad. Sci. USA 104, 15717–15722 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bouvignies, G. et al. Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477, 111–114 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lindorff-Larsen, K., Piana, S., Dror, R.O. & Shaw, D.E. How fast-folding proteins fold. Science 334, 517–520 (2011).

    CAS  PubMed  Google Scholar 

  28. Piana, S., Lindorff-Larsen, K. & Shaw, D.E. How robust are protein folding simulations with respect to force field parameterization? Biophys. J. 100, L47–L49 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Babu, C.R., Hilser, V.J. & Wand, A.J. Direct access to the cooperative substructure of proteins and the protein ensemble via cold denaturation. Nat. Struct. Mol. Biol. 11, 352–357 (2004).

    CAS  PubMed  Google Scholar 

  30. Privalov, P.L. Cold denaturation of proteins. Crit. Rev. Biochem. Mol. Biol. 25, 281–305 (1990).

    CAS  PubMed  Google Scholar 

  31. Szyperski, T. & Mills, J.L. NMR-based structural biology of proteins in supercooled water. J. Struct. Funct. Genomics 12, 1–7 (2011).

    CAS  PubMed  Google Scholar 

  32. Foguel, D. & Silva, J.L. Cold denaturation of a repressor-operator complex: the role of entropy in protein-DNA recognition. Proc. Natl. Acad. Sci. USA 91, 8244–8247 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wong, K.B., Freund, S.M. & Fersht, A.R. Cold denaturation of barstar: 1H, 15N and 13C NMR assignment and characterisation of residual structure. J. Mol. Biol. 259, 805–818 (1996).

    CAS  PubMed  Google Scholar 

  34. Davidovic, M., Mattea, C., Qvist, J. & Halle, B. Protein cold denaturation as seen from the solvent. J. Am. Chem. Soc. 131, 1025–1036 (2009).

    CAS  PubMed  Google Scholar 

  35. Lassalle, M.W., Li, H., Yamada, H., Akasaka, K. & Redfield, C. Pressure-induced unfolding of the molten globule of all-Ala α-lactalbumin. Protein Sci. 12, 66–72 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Haas, W., Shepard, B.D. & Gilmore, M.S. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415, 84–87 (2002).

    CAS  PubMed  Google Scholar 

  37. Skalicky, J.J., Sukumaran, D.K., Mills, J.L. & Szyperski, T. Toward structural biology in supercooled water. J. Am. Chem. Soc. 122, 3230–3231 (2000).

    CAS  Google Scholar 

  38. Kosen, P.A. Spin labeling of proteins. Methods Enzymol. 177, 86–121 (1989).

    CAS  PubMed  Google Scholar 

  39. Campbell, J.C. & Whitten, S.T. Mutational analysis of m-values as a strategy to identify cold-resistant substructures of the protein ensemble. Proteins 80, 184–193 (2012).

    CAS  PubMed  Google Scholar 

  40. Vendruscolo, M., Paci, E., Dobson, C.M. & Karplus, M. Three key residues form a critical contact network in a protein folding transition state. Nature 409, 641–645 (2001).

    CAS  PubMed  Google Scholar 

  41. Religa, T.L. et al. The helix-turn-helix motif as an ultrafast independently folding domain: the pathway of folding of Engrailed homeodomain. Proc. Natl. Acad. Sci. USA 104, 9272–9277 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    CAS  Google Scholar 

  43. Ramboarina, S. & Redfield, C. Probing the effect of temperature on the backbone dynamics of the human α-lactalbumin molten globule. J. Am. Chem. Soc. 130, 15318–15326 (2008).

    CAS  PubMed  Google Scholar 

  44. Whittaker, S.B., Spence, G.R., Gunter Grossmann, J., Radford, S.E. & Moore, G.R. NMR analysis of the conformational properties of the trapped on-pathway folding intermediate of the bacterial immunity protein Im7. J. Mol. Biol. 366, 1001–1015 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ecroyd, H., Thorn, D.C., Liu, Y. & Carver, J.A. The dissociated form of κ-casein is the precursor to its amyloid fibril formation. Biochem. J. 429, 251–260 (2010).

    CAS  PubMed  Google Scholar 

  46. Quintas, A., Saraiva, M.J. & Brito, R.M. The tetrameric protein transthyretin dissociates to a non-native monomer in solution. A novel model for amyloidogenesis. J. Biol. Chem. 274, 32943–32949 (1999).

    CAS  PubMed  Google Scholar 

  47. Quintas, A., Vaz, D.C., Cardoso, I., Saraiva, M.J. & Brito, R.M. Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J. Biol. Chem. 276, 27207–27213 (2001).

    CAS  PubMed  Google Scholar 

  48. Razeto, A. et al. Expression, purification, crystallization and preliminary crystallographic studies of the Enterococcus faecalis cytolysin repressor CylR2. Acta Crystallogr. D Biol. Crystallogr. 60, 746–748 (2004).

    PubMed  Google Scholar 

  49. Rumpel, S., Becker, S. & Zweckstetter, M. High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment. J. Biomol. NMR 40, 1–13 (2008).

    CAS  PubMed  Google Scholar 

  50. Gruene, T. et al. Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy. J. Biomol. NMR 49, 111–119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sklenar, V. & Bax, A. Spin-echo water suppression for the generation of pure-phase two-dimensional NMR-spectra. J. Magn. Reson. 74, 469–479 (1987).

    CAS  Google Scholar 

  52. Battiste, J.L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data. Biochemistry 39, 5355–5365 (2000).

    CAS  PubMed  Google Scholar 

  53. Iwahara, J. & Clore, G.M. Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 440, 1227–1230 (2006).

    CAS  PubMed  Google Scholar 

  54. Aymard, P., Durand, D. & Nicolai, T. The effect of temperature and ionic strength on the dimerisation of β-lactoglobulin. Int. J. Biol. Macromol. 19, 213–221 (1996).

    CAS  PubMed  Google Scholar 

  55. Bischof, J.C. & He, X. Thermal stability of proteins. Ann. NY Acad. Sci. 1066, 12–33 (2005).

    CAS  PubMed  Google Scholar 

  56. Güntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).

    PubMed  Google Scholar 

  57. Berjanskii, M.V., Neal, S. & Wishart, D.S. PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res. 34, W63–W69 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Rezaei-Ghaleh for useful discussions. This work was supported by the START and Ventures Programmes of Foundation for Polish Science (Fundacja na rzecz Nauki Polskiej; http://www.fnp.org.pl/) operated within the Innovative Economy Operational Programme (IE OP) 2007-2013 within European Regional Development Fund (L.J. and M.J.), the Iuventus Plus project no. IP2011 019471 from Polish Ministry of Sciences and Higher Education (M.J.) and the Cluster of Excellence and Deutsche Forschungsgemeinschaft Research Center “Nanoscale Microscopy and Molecular Physiology of the Brain” (to M.Z.). C.D.S. was supported by the Intramural Research Program of the Center for Information Technology at the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.J. performed structure determination, data acquisition and data analysis, and contributed to writing the paper. L.J. performed structure determination, data acquisition and data analysis, and contributed to writing the paper. H.-Y.K. performed data acquisition and analysis. M.-K.C. analyzed data, C.D.S. performed ensemble calculations, K.G. and S.B. prepared samples, and M.Z. performed data acquisition, designed and supervised the project and wrote the paper.

Corresponding author

Correspondence to Markus Zweckstetter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 9488 kb)

Supplementary Video 1

NCHEMB-A120200128E-movie (MOV 3115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaremko, M., Jaremko, Ł., Kim, HY. et al. Cold denaturation of a protein dimer monitored at atomic resolution. Nat Chem Biol 9, 264–270 (2013). https://doi.org/10.1038/nchembio.1181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing