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Details of Association Regions 
Table S1. Association evidence at loci previously identified as influencing multiple sclerosis. 

Chr rsID Position# 
Putative gene of 

interest 
Risk 

Allele P value+ OR (95% CI) 

Best Tag (r2 > 
0.5) previously 
reported SNP$ P value 

1 rs4648356 2699024 MMEL1 C 3.10E-14 1.16 (1.12-1.21) rs3748816 1.10E-13 
1 rs11810217 92920965 EVI5 A 6.50E-12 1.15 (1.11-1.20) rs10874727 7.90E-10 
1 rs1335532 116902480 CD58 A 2.00E-09 1.18 (1.12-1.24) rs1335532 1.00E-09 
1 rs1323292 190807644 RGS1 A 8.80E-07 1.12 (1.07-1.18) rs1323292 4.40E-07 
1 rs7522462 199148218 KIF21B G 9.20E-07 1.11 (1.06-1.15) rs7522462 4.60E-07 
3 rs2028597 107041527 CBLB G 2.10E-04 1.13 (1.06-1.21) rs1910499 0.00072 
3 rs2293370 120702624 TMEM39A G 1.10E-09 1.16 (1.11-1.22) rs1132200 1.10E-07 
3 rs2243123 161192345 IL12A G 3.70E-06 1.09 (1.05-1.14) rs2366408 2.50E-05 
5 rs6897932 35910332 IL7R G 2.60E-06 1.11 (1.06-1.16) rs6897932 1.30E-06 
5 rs4613763 40428485 PTGER4 G 6.90E-14 1.21 (1.15-1.28) rs1373692 4.30E-10 
6 rs13192841 138008907 OLIG3 A 2.30E-06 1.10 (1.06-1.15) rs6938486 0.0036 
8 rs1520333 79563593 IL7 G 6.10E-07 1.11 (1.06-1.15)   
10 rs3118470 6141719 IL2RA G 2.00E-09 1.12 (1.08-1.17)   
10 rs1250550 80730323 ZMIZ1 A 1.40E-06 1.10 (1.06-1.14) rs1250552 6.30E-05 
11 rs650258 60588858 CD6 G 1.70E-09 1.12 (1.08-1.16) rs929230 2.50E-07 
12 rs1800693 6310270 TNFRSF1A G 1.80E-10 1.12 (1.08-1.16) rs1800693 9.20E-11 
12 rs12368653 56419523 CYP27B1 A 2.00E-07 1.11 (1.06-1.15) rs703842 2.40E-06 
12 rs949143 122161116 MPHOSPH9 G 1.50E-04 1.08 (1.04-1.12) rs1106240 0.00058 
16 rs7200786 11085302 CLEC16A A 6.30E-14 1.15 (1.11-1.20) rs725613 4.30E-13 
16 rs13333054 84568534 IRF8 A 7.00E-08 1.12 (1.08-1.17)   
17 rs9891119 37761506 STAT3 C 4.60E-07 1.10 (1.06-1.14) rs744166 3.50E-06 
19 rs8112449 10381064 TYK2 G 1.50E-06 1.10 (1.06-1.14)   
20 rs2425752 44135527 CD40 A 1.70E-06 1.10 (1.06-1.14) rs2425752 8.50E-07 

 
The last two columns provide the rsid and one-sided p-value, respectively, for the SNP in our dataset with the highest correlation coefficient with the previously reported 
SNP. No SNP is reported in these columns if the square of the maximum correlation coefficient is below 0.5 (see Supplementary Data Table C for details). Note that the 
MPHOSPH9 gene is not mentioned in figure 2 of the main text as there is a more logical candidate nearby (ARL6IP4). Similarly OLIG3 is not included in figure 2 as it is not 
technically within the interval associated with rs13192841 although it is the closest gene. 
# Positions are in NCBI human genome build 36 coordinates 
+ Two-sided p-value 
$ Correlation between this SNP and previously reported SNP calculated using HapMap Phase 2 CEPH haplotypes (http://www.hapmap.org/) 
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Table S2. Novel independent regions with replicated evidence for association and combined p-value < 5.0E-08 (upper tier) and combined p-value < 5.0E-07 (lower tier).  
     Discovery Replication Combined 

Chr rsID Position# Gene 
Risk 

Allele P value OR (95% CI) P value$ OR (95% CI) P value 
Associated regions  

1 rs11581062 101180107 VCAM1 G 3.70E-10 1.13 (1.09-1.18) 0.042 1.07 (0.99-1.15) 2.50E-10 
2 rs12466022 43212565 No gene C 1.10E-06 1.1 (1.06-1.14) 3.00E-05 1.16 (1.08-1.24) 6.20E-10 
2 rs7595037 68500599 PLEK A 6.50E-07 1.1 (1.06-1.14) 3.40E-06 1.15 (1.08-1.22) 5.10E-11 
2 rs17174870 112381672 MERTK G 7.80E-06 1.1 (1.06-1.15) 0.00014 1.15 (1.06-1.23) 1.30E-08 
2 rs10201872 230814968 SP140 A 9.70E-08 1.13 (1.08-1.19) 0.00022 1.15 (1.06-1.24) 1.80E-10 
3 rs11129295a  27763784 EOMES A 2.30E-08 1.11 (1.07-1.16) 0.0065 1.09 (1.02-1.16) 1.20E-09 
3 rs669607 28046448 No gene C 2.90E-11 1.13 (1.09-1.17) 5.60E-06 1.15 (1.08-1.23) 1.90E-15 
3 rs9282641 123279458 CD86 G 1.50E-09 1.21 (1.14-1.29) 8.70E-04 1.2 (1.07-1.34) 1.00E-11 
5 rs2546890 158692478 IL12B A 2.70E-07 1.1 (1.06-1.14) 2.00E-06 1.15 (1.09-1.22) 1.20E-11 
6 rs12212193 91053490 BACH2 G 9.90E-07 1.09 (1.05-1.13) 5.70E-03 1.08 (1.02-1.15) 3.80E-08 
6 rs802734 128320491 THEMIS A 1.60E-06 1.1 (1.06-1.14) 3.40E-04 1.13 (1.05-1.21) 5.50E-09 
6 rs11154801 135781048 MYB A 1.50E-12 1.15 (1.1-1.19) 3.50E-03 1.09 (1.02-1.16) 1.00E-13 
6 rs17066096 137494601 IL22RA2 G 3.40E-10 1.14 (1.09-1.18) 2.10E-04 1.14 (1.06-1.22) 6.00E-13 
6 rs1738074 159385965 TAGAP G 5.30E-11 1.13 (1.09-1.17) 1.30E-05 1.14 (1.07-1.22) 6.80E-15 
7 rs354033 148920397 ZNF746 G 6.10E-06 1.1 (1.06-1.15) 6.70E-05 1.14 (1.07-1.22) 4.70E-09 
8 rs4410871 128884211 MYC G 1.70E-07 1.11 (1.07-1.16) 6.40E-03 1.09 (1.02-1.17) 7.70E-09 
8 rs2019960b  129261453 PVT1 G 1.40E-05 1.1 (1.05-1.15) 1.90E-05 1.16 (1.08-1.24) 5.20E-09 

10 rs7923837 94471897 HHEX G 3.00E-07 1.1 (1.06-1.14) 2.30E-03 1.09 (1.03-1.16) 4.90E-09 
12 rs10466829 9767358 CLECL1 A 1.10E-05 1.09 (1.05-1.13) 1.20E-04 1.12 (1.05-1.19) 1.40E-08 
14 rs4902647 68323944 ZFP36L1 G 3.80E-08 1.11 (1.07-1.15) 2.40E-05 1.13 (1.07-1.2) 9.30E-12 
14 rs2300603 75075310 BATF A 1.90E-07 1.11 (1.07-1.16) 1.50E-02 1.08 (1.01-1.16) 2.00E-08 
14 rs2119704 87557442 GALC C 3.50E-10 1.26 (1.17-1.36) 2.50E-02 1.12 (1-1.26) 2.20E-10 
18 rs7238078 54535172 MALT1 A 2.20E-06 1.11 (1.06-1.16) 1.20E-04 1.14 (1.06-1.23) 2.50E-09 
19 rs1077667 6619972 TNFSF14 G 2.10E-12 1.16 (1.11-1.21) 6.40E-03 1.14 (1.03-1.27) 9.40E-14 
19 rs874628 18165700 MPV17L2 A 4.30E-08 1.12 (1.08-1.17) 2.80E-02 1.07 (1-1.14) 1.30E-08 
19 rs2303759 54560863 DKKL1 C 3.80E-07 1.11 (1.07-1.15) 2.00E-03 1.11 (1.03-1.19) 5.20E-09 
20 rs2248359 52224925 CYP24A1 G 5.10E-09 1.12 (1.08-1.16) 6.30E-04 1.11 (1.04-1.19) 2.50E-11 
22 rs2283792 20461125 MAPK1 C 4.00E-06 1.09 (1.05-1.13) 1.30E-04 1.12 (1.05-1.18) 4.70E-09 
22 rs140522 49318132 SCO2 A 3.90E-06 1.09 (1.05-1.14) 4.90E-04 1.12 (1.05-1.2) 1.70E-08 

Regions with strong evidence for association 
4 rs228614 103797685 NFKB1 G 9.10E-06 1.09 (1.05-1.13) 2.40E-03 1.09 (1.03-1.16) 1.40E-07 
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11 rs630923 118259563 CXCR5 C 6.90E-06 1.11 (1.06-1.17) 6.40E-03 1.13 (1.03-1.24) 2.80E-07 
16 rs2744148 1013553 SOX8 G 2.80E-06 1.12 (1.07-1.17) 4.70E-03 1.12 (1.03-1.22) 8.40E-08 
17 rs180515 55379057 RPS6KB1 G 1.40E-07 1.11 (1.07-1.15) 5.00E-02 1.05 (0.99-1.12) 8.80E-08 
20 rs6062314 61880157 TNFRSF6B A 8.30E-07 1.17 (1.1-1.25) 2.50E-02 1.14 (1-1.29) 1.30E-07 

 
a The p-value and OR values provided are after conditioning on SNPs rs669607. 
b The p-value and OR values provided are after conditioning on SNPs rs4410871. 
# Positions are in NCBI human genome build 36 coordinates 
$ One sided p-value. 
The explicit criteria for inclusion on the table are indicated below 
SNPs in the upper tier have pGWAS <1x10-4.5, one-sided pReplication <0.05, and pCombined <5x10-8 
SNPs in the lower tier have pGWAS <1x10-4.5, one sided pReplication <0.05, and pCombined <5x10-7 
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Table S3. Secondary signals of association within loci previously identified as influencing multiple sclerosis (top tier) and novel regions with pGWAS <1x10-4, one sided 
pReplication <0.05, and pCombined <5x10-6 (lower tier). 

      Discovery Replication Combined 
Chr rsID Position# SNP(s) 

conditioned 
on 

Gene Risk 
Allele 

P value OR (95% CI) P value$ OR (95% CI) P value 

 Previously identified secondary signal of association 
10 rs7090512a 6150835 rs3118470 IL2RA G 2.60E-14 1.19 (1.13-1.24) 1.40E-07 1.21 (1.13-1.31) 4.60E-20 

 Novel secondary signals of association 
1 rs12048904 101104124 rs11581062 VCAM1 A 3.70E-07 1.1 (1.06-1.14) 0.017 1.08 (1.01-1.15) 4.00E-08 
3 rs4285028 123143354 rs9282641 CD86 A 3.40E-07 1.11 (1.07-1.16) 7.40E-03 1.09 (1.02-1.16) 1.80E-08 
3 rs4308217 123275877 rs4285028, 

rs9282641 
CD86 C 2.20E-06 1.1 (1.06-1.14) 3.80E-03 1.09 (1.02-1.17) 5.70E-08 

a SNP rs7090512 replicates  SNP rs11594656 previously identified in Maier et al1.  
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Background 
 
To date six moderately powered2-7 and three smaller8-10 multiple sclerosis GWAS have been 
reported (as listed in Table S4); seven of these were completed by members of our 
consortium. These GWAS, and subsequent follow up of interesting markers in additional 
samples, have identified 16 multiple sclerosis susceptibility alleles with association p-value 
<5x10-8, and a further 10 alleles with p-values just slightly above this threshold. 
 
Table S4. Multiple sclerosis GWAS reported to date 
GWAS Cases Controls SNPs 
IMSGC 931 parents 334,923 
WTCCC1 975 1,466 12,374 
GeneMSA 978 883 551,642 
BWH 860 1,720 709,690 
ANZgene 1,618 3,413 302,098 
Sardinian 882 872 555,335 
Dutch Isolate 45 195 250,000 
Finnish Isolate 68 136 297,343 
German 592 825 300,000 
GWAS = Genome-Wide Association Study, IMSGC = International Multiple Sclerosis 
Genetics Consortium,2 WTCCC1 = Wellcome Trust Case Control Consortium phase 1,3 
GeneMSA = Genetic Multiple Sclerosis Asociations,4 BWH = Brigham and Women‟s 
Hospital Partners Study,5 ANZgene = Australia and New Zealand Multiple Sclerosis Genetics 
Consortium,6 German,10 Sardinian,7 Dutch8 and Finnish.9 
 
The results for the 26 non-MHC risk loci that have been suggested through follow up of the 
six reasonably well powered GWAS are summarised in Table S5. 
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Table S5. Previously identified non-MHC multiple sclerosis susceptibility alleles. 
SNP Allele Freq / % OR Locus λs Gene 
rs6897932_C 72 1.18 1.0051 IL7Rα 

rs2104286_T 75 1.19 1.0052 IL2Rα 

rs12708716_A 69 1.18 1.0055 CLEC16A 

rs2300747_A 88 1.30 1.0060 CD58 

rs12122721_G 72 1.22 1.0073 KIF21B 

rs1132200_C 84 1.24 1.0054 TMEM39A 

rs10735781_G 38 1.11 1.0026 EVI5 

rs2587156_G 93 1.59 1.0095 IL7 

rs34536443_G 97 1.32 1.0017 TYK2 

rs3748816_T 66 1.16 1.0047 MMEL1 

rs9523762_A 35 1.36 1.0234 GPC5 

rs1800693_G 45 1.20 1.0083 TNFRSF1A 

rs17445836_G 81 1.25 1.0067 IRF8 

rs17824933_G 25 1.18 1.0056 CD6 

rs744166_G 42 1.15 1.0048 STAT3 

rs1790100_G 22 1.10 1.0016 MPHOSPH9 

rs4680534_C 34 1.11 1.0025 IL12A 

rs2760524_G 83 1.15 1.0025 RGS1 

rs6896969_C 61 1.10 1.0021 PTGER4 

rs882300_C 55 1.19 1.0073 CXCR4 

rs1250540_G 38 1.12 1.0031 ZMIZ1 

rs9321619_A 54 1.12 1.0032 OLIG3 

rs703842_A 71 1.23 1.0081 CYP27B1 

rs6074022_G 28 1.20 1.0072 CD40 

rs9657904_A 83 1.40 1.0128 CBLB 

rs763361_A 47 1.13 1.0037 CD226 

SNP Allele = the associated SNP and risk allele (the 16 loci in bold have achieved p < 5x10-8 
in at least one well powered study), Freq = Frequency of the risk allele in the general 
population, OR = Odds Ratio, Locus λs = the locus specific λs (the increased relative risk in 
the siblings of an affected individual attributable to this allele), Gene = the nearest gene (it is 
not necessarily established that this is the relevant gene). 
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Samples 
 
All individuals involved in this study (cases and controls) gave valid informed consent in 
accordance with approval from the relevant local Ethical Committees or Institutional Review 
Boards (IRBs). Apart from the small number of African-Americans included in the USA 
twins cohort, all individuals self-reported as being of European ancestry. 
 

Case collections 
 
As there are no diagnostic laboratory tests for multiple sclerosis, the diagnosis depends on 
meeting established and well-validated criteria that combine clinical and para-clinical 
laboratory-based information, introduced in 1983 and revised and updated between 2001 and 
2005.11-13 The principle of these criteria is to establish that focal areas consistent with 
inflammatory demyelination have occurred in more than one part of the brain and spinal cord 
and on more than one occasion, and for which there is no better explanation than the 
diagnosis of multiple sclerosis. In the majority of centres disease severity has been 
documented using the Expanded Disability Status Score (EDSS)14 and its dependent 
derivative the Multiple Sclerosis Severity Score (MSSS).15 Clinical course, relapse and 
progression are defined in accordance with consensus criteria.12,16-18 The clinical 
characteristics of the samples included in the study were typical (see below). 
 
In most centres, DNA was extracted from samples of venous blood using standard methods.  
In some, DNA was extracted from cell lines or from saliva. Quantification, normalisation and 
storage methods varied between centres, however prior to screening all samples were 
quantified and normalised at the Sanger Institute, Cambridge, UK.  Across centres DNA 
extraction rates were high (>98%) and in most centres samples were not subject to any 
additional purification. Population specific details regarding the samples recruited at each 
centre are provided below along with the three digit code for each group. 
 
Australia (ANZ) 
All cases were self-identified volunteers recruited at centres located in Adelaide, Brisbane, 
Gold Coast, Hobart, Melbourne, Newcastle, Perth and Sydney. 
 
Belgium (BEL) 
Cases were recruited between 2000 and 2008 amongst out-patients and hospitalized patients 
with definite MS attending the Neurology Department of the University Hospital of Leuven 
or the “National MS Center” in Melsbroek. Both centres are located 28 km apart in the centre 
of Belgium and recruited mainly amongst patients from the northern Dutch-speaking part of 
Belgium. Participation rate of patients attending these clinics is virtually 100%. At both 
centres, the majority of patients are followed-up longitudinally by neurologists specialized in 
MS with at least yearly visits. Approximately 40% of patients are being treated with an 
immunomodulatory therapy. The average EDSS/MSSS score is relatively high because the 
National MS Center tends to be visited by the more severely affected patients. 
 
Denmark (DEN) 
Patients were recruited by neurologists at multiple sclerosis centres from across the whole of 
Denmark, although the majority of patients originate from the Copenhagen area. This clinic 
based approach means that the proportion of patients with relapse remitting multiple sclerosis 
(RRMS) is higher than is seen in the general population. 
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Finland (FIN) 
Cases were recruited from seven centres (Helsinki University Central Hospital, Tampere 
University Hospital, Kuopio University hospital, Oulu University Hospital, Seinäjoki Central 
Hospital, Satakunta Central Hospital and Rovaniemi Central Hospital) and thus come from 
many different regions of Finland. All were identified in hospital clinics by experienced 
neurologists.  Twelve percent were recruited before 1998 as part of an effort to collect either 
multiplex families (at least two cases in a family) or trio/nuclear families (an affected 
individual with both parents and if not available with one parent and siblings), and the rest 
were recruited between 2000 and 2006 as trio/nuclear families by neurologists of the MGEN 
consortium.  Thirteen percent of the trio cases and 95 percent of cases of multiplex families 
originate from the MS high-risk isolate of Southern Ostrobothnia, with increased prevalence 
and familial occurrence of the disease. 
 
France (FRA) 
The French MS Genetics group (REFGENSEP) has been collecting samples since 1992. 
Three main centres are involved in the recruitment of the patients and their families 
(Toulouse, Rennes and Paris) with an experienced physician based at each centre. Some 
patients self-refer in response to advertising campaigns run all over France through patient 
associations. All volunteers are examined by a REFGENSEP physician to confirm the 
diagnosis. Only individuals from trio (an affected and his two parents) or multiplex families 
(at least two affected sibs and their parents if possible) were included in this study. 
REFGENSEP physicians hold two annual meetings in order to review the diagnosis and 
clinical features of included patients. 
 
Germany 
Three centres contributed cases. 
 
a) Berlin (GEB) 
The samples have been collected from outpatients and inpatients of the Cecilie Vogt Klinik at 
the University Medicine Berlin. Individuals originally came from multiple sites in Germany. 
b) Munich(GEM) 
The samples from Munich can be stratified mainly in two cohorts regarding the origin and 
acquisition strategy. The first cohort comprises patients with multiple sclerosis from central 
Germany. The second cohort was recruited from across multiple sites and includes individuals 
treated with interferon-beta for at least 6 months. 
c) Hamburg (GEH) 
 
Samples were collected from Hamburg and the Northern part of Germany with the majority 
recruited through out-patient-clinics (ambulatory) and a minority recruited from the 
neurological wards. 
 
Ireland (IRE) 
The samples are regional from a clinic based population, ascertained through hospital based 
neurology clinics. The cohort has no specifically unusual attributes. 
 
Italy 
Two centres contributed cases. 
 
a) Piedmont (ITP) 
Patients were collected from Continental Italy (excluding Sardinia) as part of the 
PROGEMUS (PROgnostic GEnetic factors in MUltiple Sclerosis) project, 87% of cases were 
collected in North-West Italy (Novara, Torino, Milano, Pavia) and 13% in Central Italy 
(Rome). These patients were all recruited from hospital based clinics; mean participation rate 
was approximately 60% (range 20%-90%). 
b) San Raffaele, Milan (ITM) 
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Patients have been consecutively recruited from two main projects: the Italian Network of 
Primary Progressive Multiple Sclerosis (PROGRESSO consortium), and from the inpatients 
and outpatient clinics of the Scientific Institute San Raffaele in Milan. Most of the patients are 
from the North of Italy (65%). 
 
New Zealand (ANZ) 
Patients were recruited across the country as part of a recent national prevalence survey. 
Genomic DNA was isolated from saliva self-collected into Oragene DNA tubes according to 
the manufacturer‟s instructions (DNAgenotek). Because of possible bacterial contamination 
and difficulty in obtaining reliable pico green and spectrophotometry measurements, all saliva 
DNA samples were assessed for their integrity by agarose gel electrophoresis and at least one 
other method. 
 
Norway (NOR) 
The Norwegian samples were derived from two sources; the Oslo MS DNA biobank and the 
Norwegian Multiple Sclerosis Registry and Biobank held in Bergen. In the Oslo MS DNA 
biobank the majority of patients are recruited by the neurologists at Oslo University Hospital, 
Ullevål with the remainder coming from local MS Societies and other neurological 
departments serving the suburban Oslo areas. Samples in the Norwegian Multiple Sclerosis 
Registry and Biobank were recruited from all other parts of Norway. This collection started in 
2007, and currently includes approximately 1/5 of the prevalent MS patients in Norway. 
 
Poland (POL) 
All Polish patients were recruited from amongst those treated in the Department of 
Neurology, Medical University of Lodz. The patients were white and Polish. None of the 
patients selected in the study have a family history of the disease. 
 
Spain (SPN) 
Patients were recruited from amongst those attending the neurology outpatient clinic in the 
Unitat de Neuroimmunologia Clínica - Hospital Universitari Vall d'Hebron 
(http://www.vhebron.net/), the Hospital Clinic of Barcelona (http://www.hospitalclinic.org/), 
and the MS centre at the University of Navarra (http://www.unav.es/). 
 
Sweden (SWE) 
Swedish samples were derived from three sources (overlaps between these were prevented 
using the national personal identification numbers): An ongoing population based case-
control study called EIMS (Epidemiological Investigations in Multiple Sclerosis)19 in which 
diagnosis was established at neurological clinics throughout Sweden, a set of local patients 
from Stockholm County (recruited and diagnosed at Karolinska University Hospital and 
Danderyds Hospital) and a set of patients being treated with Natalizumab (recruited and 
diagnosed throughout Sweden in conjunction with the start of treatment).  Sample handling 
and DNA extraction for first and third sources was performed at the Karolinska Insitutet 
Biobank, while it was performed at the Department of Clinical Neurosciences, Karolinska 
Insitutet for the second cohort. 
 
Control individuals were also recruited from the EIMS study matched to the EIMS patients 
for age, sex, and geographic location. As these samples were processed alongside the case 
samples that are described here. 
 
United Kingdom 
Five centres contributed cases. 
 
a) University of Cambridge (UKC) 
Cases were recruited from across the British Isles with the majority coming from South East 
England (56% living within 100 miles of Cambridge). All were identified and referred by 
Members of the Association of British Neurologists and recruited between 2002 and 2009; 
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10% have a family history of the disease. Sixteen percent were recruited as part of an effort to 
collect trio families (an affected individual and both his / her parents), and as a result have a 
slightly lower than average age for prevalent people with multiple sclerosis. Other than 
steroids only a minority of patients have received immunomodulatory therapy such as beta-
Interferon (9%), Glatiramer Acetate (3%), Campath-1H (4%) or other cytotoxics (e.g. 
Mitoxantron) (3%). 
b) University of Cardiff (UKW) 
The University Hospital of Wales serves a local population of 1.2 million and provides a 
network of MS clinics across the South Eastern part of the country. Cases were recruited from 
these clinics. 
c) University of Keele, Greater Manchester (UKN) 
Cases were recruited from the North Staffordshire Hospital in Stoke-on-Trent, Hope Hospital 
in Manchester and Walton Centre in Liverpool during the period from 2000 to 2008.  
Together these centres cover a significant part of north of England (Merseyside, Greater 
Manchester, Cheshire, Staffordshire and Derbyshire). Participation rate from neurology 
clinics recruitment is currently approximately 60%. Patients were recruited from general 
neurology outpatient clinics, Disease Modifying Treatment Clinics and newly diagnosed MS 
patients‟ clinics. 
d) University of Plymouth (UKP) 
Samples were obtained from recruits to the Cannabinoid Use in Progressive Inflammatory 
brain Disease (CUPID). This 30 centre UK-wide placebo controlled trial randomised 
individuals with primary or secondary progressive disease with EDSS between 4.0 and 6.5. 
e) Imperial College MS Tissue Bank (UKC) 
All post-mortem tissues were obtained via a UK prospective donor scheme. In these 
individuals the diagnosis of multiple sclerosis has been confirmed neuropathologically 
according to the ICDNS criteria (www.ICDNS.org). Tissue blocks for DNA extraction were 
removed from the cerebellum of the fresh brain, snap frozen in isopentane on dry ice and 
stored at -80°C. 
 
United States of America 
Four centres contributed cases. 
 
a) Boston (USB) 
Patients were recruited from three different sources: the Brigham & Women's Hospital, the 
Accelerated Cure Project (http://www.acceleratedcure.org/repository/index.php) and 
Washington University St Louis. Each subject was recruited through an MS Centre at an 
academic institution. 
b) San Francisco (USC) 
Patients were recruited from the UCSF MS clinic and from other sites in the US via referral 
from physicians or self-referral in response to advertisements in MS newsletters and at MS 
functions. To minimize inter-observer variability and guarantee cohesive and thorough 
training of all collaborators, detailed instructional sessions on ascertainment procedures are 
performed at each site by UCSF personnel. Phlebotomy is performed at the individual‟s 
preferred clinic, or at the subject‟s home by a nationwide phlebotomy service. Blood 
specimens (4 x 7.5 ml tubes) are transferred or mailed by courier to the UCSF laboratory for 
processing. For this study, blood samples were collected between 1987 and 2007. 
c) Berkley (USL) 
Patients from the University of California Berkeley/ Kaiser Permanente Division of Research 
were recruited from Northern California between 2006 and 2008.  All cases were current 
members of the Kaiser Permanente Northern California Region (KPNCR) and were identified 
through the KPNCR clinical database. All were between 18-60 years of age and were 
unrelated to anyone else already recruited.  Participation rate among the initially identified 
cases was 64%. DNA was extracted from the blood using Purgene(Gentra). Quantification 
was performed with either Nanodrop or Tecan spectrophotometer. 
d) Twins (UST) 
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Twins with MS were sought by advertisements in North American newspapers and other 
periodicals from 1980 through 1992. Ascertainment was designed to capture pairs of twins in 
whom at least one member had physician-diagnosed MS. No concordant pairs were doubly 
ascertained. Pairs identified as discordant for the disease were verified based on the 
neurological health of the unaffected co-twin, most often by direct contact. Zygosity was 
initially assigned according to the twins' own perception. We have estimated that 
approximately 27% of the North American twin cases prevalent at any time during the period 
were identified. The characteristics of the twin respondents have been described 
previously.20,21 
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Clinical Information 
 
Data regarding age at onset, age (at EDSS assessment), EDSS, MSSS and clinical course 
(primary progressive or relapsing onset) were available in 89%, 78%, 74%, 72% and 86% of 
the 9,772 cases. Across these samples the mean age at onset, age (at EDSS assessment), 
EDSS and MSSS were 32.3 years, 44.8 years, 3.9 and 4.9 respectively. In terms of clinical 
course 11% of cases had primary progressive disease. The clinical characteristics of each 
group are shown in Table S6. 
 
Table S6. Clinical characteristics by group. 
Group AAO / y AGE* / y EDSS MSSS PPMS / % 
ANZ 33.5 47.6 3.6 4.2 1 
BEL 33.1 48.6 5.0 5.9 12 
DEN 30.7 39.6 3.6 5.5 4 
FIN 29.8 44.1 4.1 4.7 8 
FRA 26.8 37.2 3.6 4.7 0 
GEB 28.4 35.7 2.3 3.6 0 
GEM 32.5 40.2 3.3 4.8 7 
GEH 33.2 42.9 3.2 4.5 21 
ITP 31.3 42.3 3.2 4.2 8 
ITM 33.5 45.0 3.9 4.8 41 
NOR 33.7 48.5 3.8 4.4 13 
POL 31.2 39.9 2.8 1.5 11 
SPN 30.7 46.1 4.7 5.2 23 
SWE 33.3 39.2 1.4 3.7 5 
UKC 32.9 48.4 5.0 5.7 15 
UKN 32.6 44.6 4.8 6.1 12 
UKP 37.8 51.9 5.8 6.7 41 
UKW 31.3 44.5 4.5 5.7 9 
USB 32.1 45.5 3.2 3.9 9 
USC 32.2 45.8 4.1 5.1 7 
USL 30.6 49.5 2.9 2.7 0 
UST 30.3 55.9 3.8 5.2 0 
All 32.3 44.8 3.9 4.9 11 
* The age at which the EDSS was recorded. No clinical data were available for the Irish 
cases. 
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Control collections 
 
In this study we used the common control data sets generated as part of WTCCC2 (2,737 
from the National Blood Service (NBS) and 2,930 from the 1958 Birth Cohort). We also 
generated control data from 665 healthy subjects from the Swedish EIMS study (as described 
above). To supplement these internally generated control data and provide more appropriate 
controls for the non-UK populations we collated data from existing Illumina typed control 
samples obtained from independent sources (external control data). The Swedish EIMS 
samples are described above alongside the Swedish cases. 
 
National Blood Service (NBS) 
These samples were obtained from the UK blood transfusions services repository of 
anonymised DNA samples that was originally established to support WTCCC1.22 
 
1958 Birth Cohort (58C) 
These samples were obtained from the National Child Development Study an epidemiological 
survey based on all individuals born in England, Wales and Scotland during one week in 1958 
(www.b58cgene.sgul.ac.uk/followup.php). DNA was obtained from EBV-transformed cell 
lines. These internal control samples were subjected to the same DNA QC process outlined 
for the case samples. 
 
CAHRES (Cancer Hormone Replacement Epidemiology in Sweden) 
These data were obtained as part of a population-based case-control study of postmenopausal 
breast cancer in women born in Sweden aged 50-74 years at the time of enrolment which was 
between October 1, 1993 and March 31, 1995. The control subjects were randomly selected 
from the Swedish Registry of the Total Population and frequency matched to the expected age 
distribution of the cases. Details on data collection and subjects have been described 
previously.23 
 
CHOP (Children’s Hospital of Philadelphia) 
These data were obtained from healthy controls recruited through the CHOP Health Care 
Network, including various primary care clinics and well child clinics. The control subjects 
were screened for any neurological or chronic medical conditions by a questionnaire and this 
was further confirmed by review of electronic medical records. The subjects included here 
were all of European ancestry (detailed self-reported assessment and genetic based analysis). 
 
EGEA (Epidemiological study of Genetics and Environment of Asthma) 
These data were obtained from the control subjects involved in the Epidemiological study on 
the Genetics and Environment of Asthma (EGEA).24,25 EGEA is a 12-year longitudinal survey 
where all individuals were of European ancestry and were born in France.  Controls were a 
combination of population-based and unaffected family members of probands. Genotyping 
was carried out using the Illumina Human610 quad array at the Commissariat à L‟Energie 
Atomique, Institut de Génomique, Centre National de Génotypage, Evry, France. Raw data 
was analyzed using GTS Image and extracted for statistical analysis. Only two of eight 
Asthma associated SNPs (rs1342326, rs3771166, rs744910, rs3894194, rs2284033, 
rs2786098, rs1588265, rs7216389) listed in the GWAS catalogue 
(http://www.genome.gov/26525384) showed nominally significant evidence of association 
with multiple sclerosis - rs1588265 (p=0.037) and rs7216389 (p=0.019). 
 
GAS (Gabriel Advanced Survey) 
These data were obtained from the control subjects involved in the GABRIEL ADVANCED 
SURVEY a cross-sectional population-based survey conducted in rural areas of Austria, 
Germany, and Switzerland. In total, 135,359 children aged 6-12 years were addressed through 
schools. Genomic DNA was purified from blood samples using the Puregene chemistry 
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(QIAGEN, Hilden, Germany) on an Autopure LS instrument (QIAGEN, Hilden, Germany). 
Genotyping was carried out using the Illumina Human610 quad array at the Commissariat à 
L‟Energie Atomique, Institut de Génomique, Centre National de Génotypage, Evry, France. 
Raw data was analyzed using GTS Image and extracted for statistical analysis. 
 
HealthMet 2000 
These data were provided from the controls involved in the GenMetS subset of the Health 
2000 project. All individuals are aged 30 and were collected from all across Finland. 
 
KORA 
The KORA S4 survey (4,261 participants), an independent population-based sample from the 
general population living in the region of Augsburg, Southern Germany, was conducted in 
1999/2001. A total of 3,080 subjects participated in a follow-up examination of S4 in 2006-08 
(KORA F4), comprising individuals who, at that time, were aged 32–81 years.26 Genotyping 
was done in 488 selected individuals using the Illumina 550K GeneChip array. 
 
POPGEN 
These data were provided from the PopGen project.27 A collection of individuals recruited 
from Northern Germany for the express purpose of providing control genotypes and extensive 
phenotypic details to aid the analysis of studies in complex genetics. Genotyping was 
performed as a service by Illumina. 
 
HYPERGENES 
These control data were collected as part of the HYPERGENES (European Network for 
Genetic-Epidemiological Studies) project (HEALTH-F4-2007-201550). The individuals 
involved were recruited after 2000 from across Continental Italy (excluding Sardinia), mainly 
in the area surrounding Milan. All individuals self-reported as being exclusively of European 
ancestry, in particular Italian origin for more than two generations. All individuals were more 
than 55 years of age. Each DNA sample was quantified and normalized to 50ngul-1 prior to 
genotyping. The genotyping was performed in the Genomic Laboratory of the Genomic and 
Bioinformatic platform at the University of Milan. Each sample was genotyped using 
Illumina Infinium II 1M duo BeadChips (Illumina, San Diego, CA, USA). 
 
MG_GWAS (Myaesthenia Gravis GWAS) 
These genome-wide data were obtained from healthy Norwegian individuals recruited 
through the Norwegian Bone Marrow Donor Registry held at the Institute of Immunology, 
Oslo University Hospital, Norway (http://www.nordonor.org/). These samples were 
genotyped on the IIlumina 550 chip by the Myasthenia Gravis Genetic Consortium (MGGC) 
who generously provided these data as external controls. 
 
PROCARDIS 
A total of 340 men and 340 women, free of coronary artery disease, were recruited at random 
from the general population of the greater Stockholm area for inclusion as controls in the 
PROCARDIS program.28,29 
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Genotyping and Quality Control 

Genotyping 
 
Case samples (along with the Swedish EIMS controls and co-twins) were genotyped on the 
Human660-Quad chip; a custom designed array based on the Human550 supplemented with 
60,000 additional probes that were intended to allow the genotyping of common CNVs as 
identified by the Structural Variation Consortium.30 The WTCCC2 common controls were 
genotyped on the Human1.2M-Duo chip (a second custom array based on the Human1M-Duo 
supplemented with the same 60,000 CNV probes). All genotyping was performed on the 
Illumina Infinium platform at the Wellcome Trust Sanger Institute (WTSI). 
 
All genotypes used for analysis were called using the program Illuminus,31 run at the WTSI, 
by processing each of the two shared control collections, the WTCCC2 funded MS study 
samples and each external control collection as separate batches.  
 

Sample QC 
 
We describe below the quality control (QC) of the case samples collected as part of the 
WTCCC2 MS analysis; where appropriate similar approaches were used for both internal and 
external controls. A summary of the total numbers of exclusions are given at the end of this 
section. 
 
Collectively the 23 research groups contributing cases to this study provided a total of 20,526 
DNA samples. Most of these (14,730) were first sent to the Centre for Integrated Genomic 
Medical Research (CIGMR) in Manchester (UK) where they were set on to 96 well plates 
prior to shipment to the Wellcome Trust Sanger Institute in Cambridge (UK). The remainder 
were shipped directly to the Sanger Institute on 96 well plates. The 20,526 samples included 
665 unaffected Swedish controls and 236 US affected twin pairs (472 samples); 115 
monozygotic pairs (31 concordant for disease) and 121 dizygotic pairs (11 concordant for 
disease); 11 of the twin pairs are of African American origin all other pairs are white. 
Counting only the index affected individual from each white twin pair (n=225) there were 
19,614 independent white cases in total. 
 
At the Sanger Institute each sample was finger printed with a panel of Sequenom markers 
(either 30 or 31 in total); 609 samples (3.0%) either failed to genotype on Sequenom or gave 
data of inadequate quality. These samples were therefore excluded. Amongst the 20,526 
individuals, gender was specified by the provider as female in 14,470, male in 5,971 
(2.4F:1M) and was unspecified in the remaining 85. Sequenom X-linked markers were un-
interpretable in 502 of the 20,441 gender known individuals. Amongst the 19,939 testable 
individuals the specified gender was confirmed in 98.4% (19,626). The 313 (1.6%) 
individuals with mis-specified gender were excluded. DNA concentration was measured in 
duplicate with picogreen. The average concentration in our samples was 155ngμl-1 (ranging 
from 0 to 991). Samples were considered unsuitable for screening if the concentration was 
below 50ngμl-1 or if there was more than 10% difference in the two measurements. A total of 
17,085 samples passed Pico QC from which 17,055 were normalised to 50ngμl-1. Running 
DNA from the 17,055 normalised samples on an agarose gel revealed 165 samples with 
degraded DNA and 191 samples with a weak or absent band. In total 16,133 (78.6%) samples 
passed all aspects of the DNA QC process. 
 
For each group samples were prioritised for screening according to the availability of 
phenotypic information and appropriate population specific controls. As a result the 
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proportion of samples from each group selected for screening varies. In total 11,527 samples 
were selected and typed, and of these 10,908 (94.6%) gave call rates of > 92.5% in 
Beadstudio analysis (the Illumina genotyping program). Typing was re-attempted in the 619 
that failed to reach this threshold and 540 (87.2%) of these repeats gave call rates of >92.5%. 
Typing was attempted a third time in the 79 samples that had failed both previous attempts 
but only 13 (16.5%) of these passed the minimum 92.5% call rate threshold. As part of the 
QC and DNA tracking process 228 samples were genotyped in duplicate. (Note that all 
samples were subsequently recalled using Illuminus.) 
 
The same QC process applied to the case samples was also applied to the internal control data 
(see below). For the external control samples there was no Sequenom finger printing 
available, but all other sample related QC checks were performed. 
 
Probe intensity outliers 
 
First pass analysis of these data revealed an unexpectedly large number of SNPs showing 
apparent evidence of association in the absence of any corresponding evidence in correlated 
flanking SNPs. Inspection of the cluster plots from these isolated SNPs suggested that these 
aberrant associations resulted from deviation in the measured signal intensities from a subset 
of samples (see Figure S1). 
 

 
Figure S1. An example of a cluster plot (rs272516) distorted by inclusion of intensity 
difference outlier samples. The outliers are coloured black to highlight them from the main 
clusters. 
 
In an attempt to identify those samples with a systematic difference in the signal intensity 
between the two channels used to indicate the presence of the alternate alleles at a SNP 
(channels x and y), we calculated and compared the mean relative intensity difference 
between the channels across a set of 10,000 randomly selected SNPs from across the 22 
autosomal chromosomes in each of the samples (i.e. the mean of y-x over these markers). The 
resulting distribution revealed a significant number of outliers. Moreover, plotting this mean 
difference with respect to the time at which each sample was processed (see Figure S2) 
showed that many of these outlying samples were clustered on particular 96 well plates, 
raising concerns about the measured intensities in the other samples from these plates. 
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Figure S2. The mean difference in intensity for each sample plotted with respect to the 
chronological order in which they were processed. The vertical gray and white bars indicate 
individual 96 well plates. The X-axis shows the cumulative number of wells (Note not all 
plates were full). The plot also shows some data related to control samples and samples from 
other WTCCC2 trait samples analysed alongside multiple sclerosis samples on these 
particular plates. 
 
To correct for this unexpected effect we excluded all data sets that gave mean differences that 
were outliers and all data sets from plates where more than 50% of the samples were outliers 
regardless of the mean difference calculated. Repeat typing was completed in 970 samples.  
After this additional typing genome-wide datasets passing the minimum Beadstudio call rate 
threshold of 92.5% were available from 11,370 samples. Six of these samples were typed in 
duplicate - two from Finland, one from France, one twin and two Swedish controls - so that in 
total 11,376 data sets were potentially available for analysis and were transferred to the 
Wellcome Trust Centre for Human Genetics in Oxford. Re-plotting the mean difference in 
relative intensities showed that just five of these data sets were modest outliers (see Figure 
S3) and these were excluded in subsequent analysis. Inspection also showed that 27 samples 
had <90% concordance in the genotype calls that were defined in the Sequenom finger 
printing at the start of the DNA handling process. These samples were also subsequently 
excluded. 
 

 
Figure S3. The mean difference in intensity for each sample plotted with respect to the 
chronological order in which they were processed after excluding outlying samples and plates 
and repeat typing in the excluded samples. The five outlier samples are shown in red. 
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Identifying outliers by clustering 
 
Rather than applying arbitrary thresholds to standard measures of genotyping QC we 
modelled the distribution of relevant variables over the collection as a whole and used 
Bayesian clustering approaches to identify and exclude samples inferred to be outliers.32 
Considering the call rate and mean heterozygosity for each sample we established that 471 
samples deviated from the inferred distribution of these variables and were therefore excluded 
from analysis (see Figure S4). 
 

 
 
Figure S4. Plot of mean heterozygosity against logit(call rate). Samples considered to be 
significant outliers (n=471) are shown as red circles and those consistent with the main 
distribution are shown as green circles. 
 
We then used the mean intensity in a single channel from the SNPs in the non-pseudo 
autosomal part of the X chromosome to consider gender, anticipating a significantly lower 
mean intensity in males than in females (see Figure S5). Four samples gave mean intensity 
values that differed from their nearest gender specific distribution, 16 samples gave mean 
levels that were inconsistent with the gender reported by the sample supplier and 35 samples 
had no gender information supplied. All 55 of these samples were also excluded. 
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Figure S5. Mean intensity of one channel in SNPs from the non-pseudo autosomal part of the 
X chromosome. Male samples give clearly lower mean values than female samples (as they 
less often carry alleles measured by the tested channel). Bayesian cluster analysis shows that 
four samples gave mean values that were significant outliers in comparison to either gender 
specific group. 
 
Estimating relatedness via HMMs 
 
To investigate recent shared ancestry between samples we used a hidden Markov model 
(HMM) to estimate the identity by descent (IBD) across the genome between each pair of 
individuals. Theoretically the concept of IBD is defined with respect to some time-point in the 
past which in our HMM should be reflected by the allele frequencies of the ancestral 
population at that time. In this analysis we have simply used the allele frequencies of the 
current population which should work well when the goal is to identify relatedness just a few 
generations back in time. This analysis was based on a genome-wide subset of 11,547 SNPs 
which should be enough for identifying close relatedness, although may not be enough to 
accurately estimate more distant relatedness. For each pair of individuals with >5% of the 
genome IBD for at least one allele we iteratively removed the individual with the lowest call 
rate until all pairs of individuals had <5% IBD (in this process we allowed for the expected 
relationships between the twin samples and preferentially kept the affected index twin even if 
the unaffected co-twin had a higher call rate). In total 289 individuals were excluded in this 
process and a large majority of them belonged either to a duplicate or a first-degree relative 
pair (see Figure S6). 
 

 
Figure S6. Identity by descent (IBD) across the genome for the 1000 most related sample 
pairs (ranked from the most related on the left to the least related on the right). The genome in 
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each pairwise comparison is represented by a vertical line. Grey colouration indicates zero 
alleles IBD, blue indicates 1 allele IBD and red indicates 2 alleles IBD. Those pairs where the 
line is entirely red are monozygotic twins or duplicate samples (intentional or unintentional). 
Those where the line is entirely blue are parent-child pairs and those where the sharing is 
approximately one quarter red (2 sharing), one half blue (1 sharing) and one quarter gray 
(zero sharing) are siblings or dizygotic twins. Other samples with inflated IBD sharing 
represent less related individuals, i.e. grandparents, aunts, uncles, cousins etc. The upper most 
horizontal dotted line indicates the 5% IBD cut-off threshold and the other dotted horizontal 
lines 25% centiles. 
 
PCA clustering 
 
In order to begin to correct for the structure in this complex data set we used principal 
components analysis (PCA) using the program SHELLFISH 
(www.stats.ox.ac.uk/~davison/software/shellfish/shellfish.php) to identify and exclude 
samples with significant non-European ancestry. To do this we selected SNPs from among 
our post-QC set with non-complementary alleles and minor allele frequency (MAF) > 0.05 in 
each HapMap Phase 2 population. We then filtered this set of SNPs to minimize the 
correlation between markers due to linkage disequilibrium (LD). This established a subset of 
206,508 SNPs for the internal samples (198,992 SNPs for the external samples) that covered 
the genome (excluding the MHC region, a set of highly differentiated SNPs identified in 
WTCCC1, and all SNPs in regions with unusually high loadings based on visual inspection of 
the first 20 axes of a PCA applied to control samples only). Using the data from this subset of 
SNPs we projected our samples onto the first two principal components from the PCA of the 
Hapmap data. Through Bayesian clustering analysis we excluded 180 samples with non-
European ancestry (see Figure S7 and Figure S8). 
 

 
 
Figure S7. The projection of samples onto the first two principal components of the Hapmap 
data. Our samples are labelled in black, while the European (CEU) samples are red, the Asian 
(JPT + CHB) samples are blue and the African (YRI) samples are labelled in green. 
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Figure S8. A close-up view of the main cluster of our samples with those showing evidence of 
being outliers from the main distribution coloured in red and those being part of the main 
distribution being coloured in green. 
 
After visual inspection of a PCA plot applied to the UK samples only, 21 additional outlying 
UK cases were also excluded (see Figure S9). 
 
 

 
 
Figure S9. First two eigenvectors of PCA analysis applied to the UK cases and controls only. 
The removed outlying case subjects are shown in green. The remaining cases are shown in 
red and the controls in grey. 
 
Estimating ancestry proportions  
 
To further refine our correction for ancestry, we estimated the proportion of each individual's 
genome that is most closely related ancestrally to each of the 10 Hapmap Phase 3 populations, 
allowing for a “Null” group to allow for potential genotyping errors (see Figure S10). 
Specifically for each individual we used a beta-binomial model to describe the probability of 
the individual‟s observed genotypes conditional on the allele counts of each HapMap 
population at each SNP. We then calculated the expected posterior proportion of the 
individual‟s SNPs genome-wide that are most closely related to each HapMap population 
under this model, assuming a priori that each population is equally likely to be most related. 
Further refinements were implemented to account for ancestry proportions of the HapMap 
populations. We used the phased build 36 (release 2) HapMap Phase 3 data downloaded from 
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/, using 
the combined set of all phased haplotypes across the trio, duo, and unrelated samples for each 
population. The 10 populations represented samples of (1) African ancestry in Southwest 
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USA (ASW), (2) Utah residents with Northern and Western European ancestry (CEU), (3) 
Han Chinese in Beijing, China plus Japanese in Tokyo, Japan (CHB+JPT), (4) Chinese in 
Metropolitan Denver, Colorado (CHD), (5) Gujarati Indian in Houston, Texas (GIH), (6) 
Luhya in Webuye, Kenya (LWK), (7) Mexican ancestry in Los Angeles, California (MEX), 
(8) Maasai in Kinyawa, Kenya (MKK), (9) Toscans in Italy (TSI), and (10) Yoruba in Ibadan, 
Nigeria (YRI). To determine proportions of ancestry, we used the 188,110 SNPs 
corresponding to the overlapping set between the SNPs selected for PCA and the SNPs 
contained in our HapMap3 samples. Based on this analysis, we excluded 37 individuals with 
a significantly different ancestry profile relative to the others, defined as having either (a) a 
total proportion of “Null” SNPs  > 0.05, or (b) a combined non-Null proportion from the four 
HapMap populations with African ancestry (i.e. ASW, LWK, MKK, YRI) > 0.05.  
 

 
Figure S10. Admixture plot. Each individual's genome is represented by a vertical line 
divided into differently coloured sections corresponding to the proportion of their genome 
most closely related to each of the 10 Hapmap 3 populations, allowing for an uninformative 
“Null” group (see colour key). Within each country specific set of samples, individuals are 
ordered according to their ranking along the first axis of a PCA applied to their estimated 
admixture proportions. As expected almost all individuals are best represented as some 
mixture of northern (CEU) and southern (TSI) European Hapmap populations. A degree of 
Asian ancestry is seen in the Scandinavian groups, especially the Finnish. 
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Summary of sample exclusions 
 
After comparing the genotype data generated in this study with that generated for the same 
samples in previous studies we excluded 25 samples due to inconsistencies, along with a 
further 13 for which the clinical diagnosis was considered to fall outside the research 
definitions. Non-white and unaffected twins (n=90) were also excluded. At the end of the QC 
process 1077 of the samples (8.9%) were excluded, approximately 20% of these for more 
than one reason. This left 9,772 cases and 527 controls (Swedish) for inclusion in the 
analysis. Table S7 shows the population specific breakdown for the exclusions while Table 
S8 shows the group specific breakdown of the samples processed through to inclusion. 
The same QC process applied to the case samples was also applied to the Internal control 
data. For the external control samples there was no Sequenom finger printing to check but all 
other sample related QC checks were performed (for additional SNP QC checks performed on 
these data see below). Table S9 shows the population specific breakdown for the exclusions 
in the control data sets while Table S10 shows the group specific breakdown of the control 
samples processed through to inclusion. 
 
Table S7. Country specific breakdown of exclusions 
Country I S CR/H G R PC A O 
Australia 0 3 24 5 13 9 6 0 
Belgium 0 0 14 0 5 2 0 2 
Denmark 0 0 18 2 3 8 0 0 
Finland 0 1 29 0 24 19 0 2 
France 0 14 23 4 11 17 2 1 
Germany 0 1 29 9 5 21 1 2 
Ireland 0 0 11 0 1 0 0 0 
Italy 0 0 19 7 3 1 2 0 
New Zealand 0 0 5 2 1 0 2 0 
Norway 0 2 42 1 25 9 0 0 
Poland 0 0 1 0 0 0 0 0 
Spain 0 0 4 0 1 1 0 0 
Sweden 0 0 103 4 14 63 4 6 
UK 4 4 80 20 60 15 0 32 
USA 1 2 69 1 123 15 20 104 
Total 5 27 471 55 289 180 37 149 
I = Intensity outliers, S = Sequenom check, CR/H = Call Rate and Heterozygosity, G = 
Gender check, R = Relatedness check, PC = Hapmap Principal Component Analysis, A = 
Ancestry/Admixture analysis (includes UK outliers), O = Other exclusions - inconsistency 
with previous genotypes (25), UK only PCA analysis outliers (21), doubt over diagnosis (13), 
non-white and unaffected twins (90). 
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Table S8. Sample disposition by group. 
PreFix Collected Passed 

DNA QC 
Screening 
Attempted 

Screening 
Successful 

Analysed 

ANZ 1,225 1,043 868 861 793 
BEL 719 625 577 566 544 
DEN 802 687 366 363 332 
FIN 894 674 655 650 581 
FRA 751 658 535 535 479 
GEB 339 194 64 63 53 
GEM 1,952 1,697 1,059 1,053 1,000 
GEH 665 603 50 50 47 
IRE 465 288 76 73 61 
ITP 832 515 385 382 366 
ITM 528 419 395 394 379 
NOR 2,072 1,967 1040 1,030 953 
POL 95 63 59 59 58 
SPN 768 700 214 211 205 
SWEa 1,812/665 729/602 777/630c 773/626 685/527 
UKC 1,248 1,078 894 848 762 
UKN 822 414 410 379 324 
UKW 567 521 510 509 481 
UKP 454 384 313 312 287 
USB 1,274 1010 624 616 563 
USC 541 489 419 417 382 
USTb 225/247 133/115 133/107 130/104 102/0 
USL 564 525 367 366 335 
Total 20,526 16,133 11,527 11,370 10,299 
a For the Swedish samples cases and controls are shown separately (cases/controls) 
b For the twins the first number indicates the number of unrelated white affected individuals 
while the second number indicates the number of all additional individuals, i.e. affected and 
unaffected co-twins. Twin based analysis will be reported elsewhere and in this report only 
the unrelated white affected index twins were considered. 
c These numbers include 251 samples (223 cases and 28 controls) that failed one or more 
aspects of DNA QC but had rich phenotypic data and were therefore included in preference to 
samples with less detailed phenotypic data that had passed QC. The results of analysis with 
respect to these detailed phenotypic data will be published elsewhere. In total 216 (86%) of 
these lower quality samples (192 cases and 24 controls) were ultimately included in the 
analysis presented here. 
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Table S9. Study specific breakdown of control exclusions 
Study S I CR/H G R PC A 
Internal        
NBS 8 23 111 14 52 51 0 
58C 1 32 163 11 19 57 0 
External        
CAHRES - 0 12 2 4 0 0 
CHOP_1 - 11 133 25 45 34 16 
CHOP_2 - 13 250 74 115 87 71 
CHOP_3 - 0 178 0 79 109 56 
EGEA - 0 4 1 0 1 4 
GAS - 0 7 4 2 0 0 
HealthMet2000 - 1 154 20 42 6 1 
HYPHSR - 4 20 15 10 0 5 
KORA - 7 16 1 3 0 1 
MGGWAS - 0 3 0 2 0 0 
POPGEN - 1 0 0 1 0 1 
PROCARDIS - 1 11 5 4 2 2 

  38 788 147 307 239 157 
S = Sequenom check, I = Intensity outliers, CR/H = Call Rate and Heterozygosity, G = 
Gender check, R = Relatedness check, PC = Hapmap Principal Component Analysis, A = 
Ancestry/Admixture analysis. 
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Table S10. Control Data sets 
Study Population Illumina 

Chip 
Samples - 
pre QC 

Samples - 
post QC 

Internal     
NBS UK 1.2M 2737 2501 
58C UK 1.2M 2930 2674 
External     
CAHRES Sweden 550v3 764 746 
CHOP_1 USA 555v1 991 746 
CHOP_2 USA 561v3 3,024 2,464 
CHOP_3 USA 610 2,554 2,160 
EGEA France 610 357 347 
GAS Germany 610 784 771 
HealthMet2000 Finland 610v1 2,355 2,165 
HYPERGENES Italy 1M 619 571 
KORA Germany 550v3 486 463 
MG_GWAS Norway 550v3 125 121 
POPGEN Germany 550v3 468 465 
PROCARDIS Sweden 1M 678 655 
Total  533,595* 18,872 16,849 
* The number of SNPs common to all data sets. 
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SNP QC 
 
In order to remove SNPs for which incorrect genotype calling could lead to differences in 
allele frequencies between collections we developed and applied two novel approaches. These 
new tools were used in conjunction with more standard filters on genotype summary 
statistics. Filters on SNP metrics were applied as shown in Table S11: 
 
Table S11. SNP metric filters 

 
Minor 
allele 

frequency 
Statistical 

Information 
Call 
rate 

Hardy-
Weinberg 

p-value 

Plate 
association 

p-value 
Additional 

filters 
Shared 
control 
data* 

> 0.1% >0.9 NA > 10-50 > 10-50 
Automated 

cluster 
checks 

Internal 
MS data > 0.1% >0.9 NA > 10-50 > 10-50 

Automated 
cluster 
checks 

External 
control 

data 
> 0.1% >0.975 >98% > 10-20 NA 

Beta-
binomial 
modelling 

*These filters were applied separately to the 1958BC and UKBS control set. SNPs were 
removed if they failed to meet the above criteria in either group. 
 
Most of these filters are based on metrics which are routinely used for GWAS QC. The plate 
association P-value is an n-degrees of freedom test looking for significant differences in allele 
frequency between the 96-well plates on which samples were genotyped. The statistical 
information filter is a measure which offsets the degree of uncertainty about the allele 
frequency of the SNP against how much would be expected if the SNP was genotyped 
perfectly (with the same expected allele frequency). See 
www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html and 33 for more details. In practice 
this filter has the effect of requiring higher call rates for rarer SNPs (see for example 32).  
 
In total these measures reduced the number of available SNPs by 15% from 533,595 to 
475,806. A further 94 SNPs were removed after visual inspection of their cluster plots. 
 
Automated cluster checking 
 
The first of the novel SNP QC approaches was applied to data generated by the genotyping 
funded as part of the WTCCC2: the two shared control groups and the samples (largely cases) 
collected for the MS study. Each of these three collections went through the WTSI 
genotyping and calling pipeline as separate experimental batches. As a result, slight 
differences in genotyping performance or sporadic errors of the clustering algorithm can give 
rise to incorrect genotype calls, which can in turn lead to false positive signals of association. 
 
Errors of this kind often become clear when the raw intensities (from which the genotypes are 
called) are plotted and coloured by the inferred genotypes (so-called cluster plots), with 
individuals in the same location in 2-dimensional space being called differentially across 
batches or collections. In the large majority of cases these errors can be detected using 
standard metrics, as one or more batches will either have a decreased call rate or deviate 
strongly from Hardy-Weinberg equilibrium. However, this is not always the case and 
problematic SNPs can be missed. In order to further protect against differential calling 
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between batches, we implemented an automated approach that checks that the positions of the 
inferred genotype clusters are consistent.  
 
The approach is applied at each SNP as follows, assuming there are three batches: 
 

 For each batch fit a bi-variate normal distribution to each of the genotype clusters 
using the calls provided. We now have three sets of fitted clusters, one for each batch. 

 Recall the genotypes in each batch using the clusters fitted both to the batch from 
which the clusters were inferred and from the two other batches. 

 For each cluster there are now four sets of calls: 
 The original calls 
 The calls obtained by fitting clusters to the same batch 
 The calls obtained by using the clusters fitted to each of the other two batches. 

 For each batch do a chi-squared test for an allele frequency difference between the 
original calls and the 3 sets of calls obtained by fitting the inferred cluster. 

 Exclude SNPs where any of the nine p-values is < 10-10. 
 
The consequence of applying the above procedure is to remove SNPs where either the 
clusters are not well described by refitting a bi-variate normal distribution, or where the 
difference in the position or size of the clusters between batches is sufficient to significantly 
change the estimated allele frequency. 
 

 

 
Figure S11. Cluster plots at two SNPs removed by the automated checking. Each individual is 
represented by a point plotting the intensity of the probes targeting the two alleles at each 
SNP, and coloured by the inferred genotypes. Superimposed on the plots are cluster positions 
inferred from the calls in that batch (solid black lines) and from the other two batches (dotted 
black lines).  
 
Two examples of SNPs which failed the automated cluster plot check are shown above in 
Figure S11. In the first example the calling algorithm has labelled an outlying cluster as being 
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heterozygote (green) in the 58C collection and homozygote (red) in the MS and NBS 
collections. When the cluster positions of these two collections are applied to the 58C data, 
these individuals will get reassigned new genotypes and will generate a significant difference 
in allele frequency with respect to the original call. The second example above illustrates the 
sensitivity of the check to subtle differences between the collections in the position of the 
clusters. In the MS collection the increased sample size and experimental noise expands the 
scope of the heterozygote cluster into space in which individuals are called homozygotes 
(blue) in the other two collections. Both examples lead to differences in allele frequencies 
between cases and controls and are not identified by simple summaries of the genotype data.  
 
 
Beta-binomial model 
 
In an attempt to identify SNPs with potentially misspecified genotypes in one or more of our 
control datasets, we compared observed allele frequencies across datasets with that expected 
under a simple population genetic model.  Following the approach suggested by Balding and 
Nichols34 we assumed that the populations represented by our control datasets are all related 
to a single ancestral population via a star-shaped phylogeny. At each SNP, we assume that the  
frequency of a particular allele in a dataset follows a beta distribution with mean representing 
the allele frequency of the ancestral population common to all datasets and variance 
proportional to the level of “drift” in that dataset.  We then assume that a dataset‟s observed 
genotype counts at a SNP follow a binomial distribution with the mean equal to this ancestral 
allele frequency. The level of “drift” in a dataset is estimated using joint information across 
all SNPs (see Figure S12), and SNPs for which any dataset does not follow this beta-binomial 
model are flagged as “errors”. We used a Markov Chain Monte Carlo (MCMC) procedure 
(somewhat analogous to that in 35) to estimate drift, ancestral allele frequencies at each SNP, 
and the probability that each SNP is an “error”, using genotype counts from each of the 
external datasets, 58BC and NBS datasets to define separate “populations.” SNPs were 
flagged if the posterior probability of being an “error” was ≥ 0.1 in any population, resulting 
in 36,424 SNP exclusions across all chromosomes. Examples of excluded SNPs are shown in 
Figure S13 and Figure S14. 
 

 
Figure S12. Estimated deviations (“drift”) from average allele frequencies across all SNPs in 
the different control datasets. From left to right, these datasets are (corresponding to the labels 
in Table S9): CHOP_3, CHOP_2, CHOP_1, KORA, GAS, NBS, 58C, EGEA, POPGEN, 
PROCARDIS, CAHRES, MGGWAS, HYPHSR, and HealthMet2000. As average allele 
frequency estimates at each SNP are based on sample allele frequencies, they are heavily 
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influenced by sample size; hence the estimated drift for USA samples (for which we have 
many samples relative to the other datasets) are low. As expected, however, estimated drift 
increases in the northern and southern European populations relative to the central European 
populations. 
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Figure S13. (top) Example of SNP rs2160760, depicting the probability that the SNP is a 
“non-error” (open circles, with 95% credible intervals in horizontal lines through the circle) 
and the sample allele frequency (crosses) for each population. The dashed line gives the 
estimated ancestral allele frequency under the model. Here, the first Swedish population 
corresponding to the Infinum_1M_SwedishProcardis dataset, has an outlying sample allele 
frequency and is flagged by the model as an “error”. (bottom) Visual inspection of the 
intensity cluster plots at this SNP suggests that this dataset has questionable calls, as all SNPs 
that appear to be heterozygous (grey cloud) were classified as missing. 
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Figure S14. (top) Example of SNP rs8139654 (see legend above). Here the Norwegian and 
Italian populations, corresponding to the Infinum_550_Norwegian and Infinum_1M_ITALY 
datasets respectively, have outlying sample allele frequencies and are flagged by the model as 
“errors”. (bottom) Visual inspection of the intensity cluster plots at this SNP suggests that 
these two datasets have questionable calls relative to the other datasets. 
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Results 

Controlling for population structure 
 
Acknowledging that it is probably impossible to completely eliminate stratification artefacts 
while still maintaining adequate power, we tried several approaches to cope with this issue 
and used estimates of λ, the genomic inflation factor,36,37 as the primary quantity for judging 
the extent to which the confounding effects of structure had been removed. This parameter is 
the ratio between the median observed test statistic and the median expected under the null. 
The parameter thus estimates the factor by which test statistics are inflated in the majority of 
SNPs.38 Two main reasons for an elevated λ are population structure between cases and 
controls and the polygenic architecture of the phenotype under which very many of the tested 
SNPs are truly associated but each only exerts a very modest individual effect.39,40 In line with 
our previous observations22 we saw little evidence for inflation when analysis was restricted 
to the UK alone. However, substantial inflation was apparent when the rest of the data were 
included in the analysis (see Figure S15). Since, on the one hand, there are obvious sources 
for spurious population structure effects in our non-UK part of the data set and, on the other 
hand, we have previously observed evidence for polygenic architecture underlying 
susceptibility to multiple sclerosis41, it is likely that the observed genomic inflation reflects 
both of these components. But we are not able to convincingly separate these two sources of 
inflation from each other by any statistical approach. In Figure S15 and the rest of this section 
where SNPTESTv2 (www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html ) was used, 
we tested each SNP for association using the frequentist model which is additive for log-odds, 
incorporating uncertainty in individuals' genotype calls and using a score test to calculate p-
values. 
 

 
 
Figure S15. Q-Q plots without any correction for structure. Plots based on the UK data alone 
are shown on the top row and those based on the frequentist fixed effect meta-analysis of UK 
and non-UK data sets are shown on the bottom row. In each row the plot for the whole 
genome is shown on the left and that obtained after excluding the MHC is shown on the right. 
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Each panel shows the expected distribution under the null (thin black dotted line) and its 95% 
confidence limits (thin black solid lines). Each panel also shows the observed results for that 
analysis (blue dots) and the corresponding genomic inflation factor, λ. Note the x-axis scale is 
twice as long in the panels on the top row. 
 
Principal Components As Covariates 
 
In one attempt to address population stratification in our dataset, we performed a principal 
components analysis (PCA) based solely on the data from the samples we had genotyped 
ourselves, the “internal data,” i.e. the data from the cases, the specific Swedish controls and 
the 58BC and NBS cohorts. This PCA was performed using the SHELLFISH program and 
was based on a subset of SNPs (n=205,688) selected to have minimal inter-SNP LD, as 
described above. We then projected each of the remaining samples (the “external data” - the 
data from the control samples generated at other sites as part of other experiments) onto the 
top 100 of these principal components. Visual inspection indicated that the first seven 
principal components were capturing genome-wide structure (ancestry) in the genotypes, 
while subsequent components were dominated by local genome effects (LD). In view of these 
findings we used the first seven principal components as covariates in the analysis of the non-
UK data and repeated the analysis using SNPTESTv2. The results from this first pass attempt 
to correct for structure using principal components are shown in Figure S16. We also 
analyzed each case population individually against all controls, and stepwise removed case 
populations with the highest λ in these individual analyses. However, λ was reduced only 
modestly when the more outlying case populations (Finland, Poland and Ireland) were 
excluded and could not be reduced below 1.11 even when less extreme populations such as 
Italy, the USA, Germany and Sweden were excluded. 
 

 
 
Figure S16. Q-Q plots demonstrating the impact of PCA correction on the frequentist fixed 
effect meta-analysis of UK and non-UK data sets. The plot for the whole genome is shown on 
the left and that obtained after excluding the MHC is shown on the right. In each panel the 
expected distribution under the null (thin black dotted line) and its 95% confidence limits 
(thin black solid lines). Each panel also shows the observed results for that analysis (blue 
dots) and the corresponding genomic inflation factor, λ. 
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Clustering into Subgroups Based on Ancestry 
 
A second technique we implemented to control for structure was to cluster case and control 
subjects into subgroups, with the property that within a subgroup cases and controls are well-
matched for ancestry. More specifically, for each subject we used a beta-binomial model to 
estimate the proportion of SNPs from that individual that were ancestrally related to each of 
the 10 HapMap Phase 3 populations42 (using the same subset of LD-free SNPs as were used 
for PCA). We then applied a Markov Chain Monte Carlo (MCMC) clustering algorithm 
similar to that employed in STRUCTURE version 143 to cluster individuals into a fixed 
number of subgroups K based on similarities among their vectors of HapMap copying 
proportions. We then tested for association in each sub-group separately using SNPTESTv2. 
We then combined scores across the K subgroups using a fixed effects meta-analysis 
approach that weighted each subgroup's log-odds estimate by the inverse of its estimated 
variance. Plots of the results are given below (Figure S17) for K=7, where individuals were 
assigned to clusters based on their posterior probabilities of cluster membership after running 
the MCMC for 20,000 iterations. The genomic inflation factor λ within each of our seven 
clusters in this example ranged from 1.13 to 1.65, and λ resulting from a fixed-effect meta-
analysis across clusters was 1.44. 

 
 
Figure S17. (left) All post-QC samples projected onto the first two components of a PCA 
applied to the internal samples, color-coded by which population they have been clustered 
into using the method described above. (right) Despite this apparently sensible clustering, the 
resulting meta-analysis Q-Q plot gives an over-inflated lambda of 1.44. 
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Linear Mixed Model 
 
Our third approach was to use a linear mixed model that explicitly accounts for correlations in 
individuals' phenotypes due to their relatedness. One major advantage of this approach is that 
it accounts for structure due to relatedness on multiple time scales, from close relatives to 
distant ancestral structure. We generated a covariance matrix R by calculating for every pair 
of individuals the genome-wide averaged correlation among their genotypes. This 
corresponds to a method of moments estimate of the proportion of genome related identical-
by-descent between two individuals sampled from the population.44 Linear mixed models that 
incorporate this type of measure of relatedness in a GWAS setting have been used before.44-49 
In this study we use a novel implementation described below. 
 
Let Y denote case/control status across n individuals, X be an n by k matrix with columns 
containing individuals' information across k covariates, and β a vector containing the 
coefficients corresponding to the k covariates. As in standard linear regression, we assume 
 

 XY  
 
but in contrast to standard linear regression, we incorporate the estimated relatedness among 
individuals as a component of the phenotypic variance: 
 

  0E       and           IhRhVar 22 1    
 
Here R is a symmetric n by n matrix with each entry the relatedness estimate for a pair of 
individuals, σ2 is the remaining phenotypic variance after accounting for the covariate effects, 
h is the proportion of this variance explained by R, and I is the identity matrix. In basic scans 
without extra covariates, for each SNP, X is an n by 2 matrix with the first column consisting 
of 1s and the second column consisting of each individual's genotype (determined as the 
expected genotype given by the genotype calling method). Since our phenotype is binary, the 
linear model corresponds to an additive model on the probability scale. We have verified that 
the use of a standard linear model for our case-control ratios and effects sizes in non-MHC 
SNPs (OR<1.3) gives an excellent approximation to the additive model on log-odds scale. We 
have also established a transformation of the parameter estimates and standard errors from the 
linear model to the log-odds scale using a Taylor series approximation. The reason for 
applying a linear mixed-model, rather than generalized linear mixed-model, to case-control 
data set is computational. Assuming normally distributed errors we use a conditional 
maximization procedure to find the maximum likelihood estimates (MLEs) of σ2, h, and β 
under this full model and to find the MLEs of σ2 and h under a null model where β is fixed to 
0. This allows us to implement the likelihood-ratio test for SNP effects. In contrast to several 
previously published implementations of linear mixed models for large GWAS data 
sets,46,48,49 we maximise both of the variance parameters at each SNP. This is expected to lead 
to a gain of statistical power49 although this gain is typically small because the variance 
parameters do not vary much across SNPs when the effect sizes of individual SNPs are small. 
The computation is challenging when the covariance matrix R is large, and for this reason we 
applied the linear mixed model to the "UK cohort" (7,029 individuals) and "non-UK cohort" 
(20,119 individuals) separately and then combined scores using a fixed-effect meta-analysis 
as described below. The matrix R for the "UK cohort" was estimated using 199,761 SNPs and 
the matrix R for the "non-UK cohort" was estimated using 191,166 SNPs. Q-Q plots obtained 
using this method are shown in Figure S18. This gave λ values suggesting that the overall 
genome-wide structure is well accounted for under this approach. We note that in addition to 
the population structure effects, the linear mixed model also accounts for the possible 
polygenic component of the genetic susceptibility to MS. This may lead to a slight loss of 
power to see associations at those loci which have been used in computing the R matrix. On 
the other hand, by including the polygenic component in the model we are explaining some of 
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the small effects of SNPs genome-wide and this ability to more accurately model the 
phenotype may also gain us power to see individual associations at some of the SNPs.  

 
 
Figure S18. Q-Q plots using linear mixed model. Plots are equivalent to those shown in 
Figure S16 but using the linear mixed model. Top row UK alone, bottom row fixed effects 
meta-analysis of UK and non-UK data, left hand including the MHC and right hand excluding 
the MHC. 
 
Validation of the Linear Mixed Model Approach 
 
Even though the overall genome-wide distribution of the test statistic in the linear mixed 
model scan is well controlled for population structure as measured by λ, there could still exist 
some SNPs that are highly differentiated between European populations and that could 
produce spurious association signals. To investigate this we considered the impact of 
including the seven primary PCs as covariates in the linear mixed model scan. Figure S19 
shows that the results of the linear mixed model at our 102 lead SNPs in the non-UK data set 
are not affected by adding seven PCs as covariates in the linear mixed model, but that the 
results between logistic regression with seven PCs and the linear mixed model (without PCs) 
are different. These results are in accordance with the genomic-inflation factors (λ=1.015 for 
linear mixed model in non-UK and λ=1.22 for logistic regression with 7 PCs in non-UK) and 
suggest that for our lead SNPs the structure captured by the leading PCs is well accounted for 
by the linear mixed model, but not vice-versa. We only considered the non-UK data set here 
because in the UK data the effects of the structure corrections are very modest. 
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Figure S19. Left panel shows -log10(p) for the 102 lead SNPs in the non-UK data set 
calculated using the linear mixed model (MM) with and without the seven primary principal 
components (PC) as covariates. The y-axis on the right hand panel shows the same data 
analysed using a logistic model with seven PCs as covariates. 
 
Because matrix decompositions were by far the most demanding part of the computations, we 
were not able to perform SNP-wise exclusions of individuals according to the SNP-specific 
quality of the genotype data. Our approach was to use the expected allele counts from the 
genotype calling algorithm for those individuals whose probability of the NULL class was 
below 0.90, and to set the remaining genotypes to the average genotype of the population. 
Table S12 lists quality statistics for the 102 SNPs that we took to replication, and shows that 
the calls were of excellent quality with negligible amount of uncertainty. Our inability to take 
the genotyping uncertainty into account does not have any practical consequences at these 
SNPs. 
 
Table S12. Quality statistics in our 27,148 discovery samples (UK and non-UK together) at 
the 102 SNPs taken to replication. 

 min 1st quartile median 3rd quartile max 

Avg call prob 0.9992 0.9997 0.9998 0.9999 1.0 

Avg NULL prob 4.0E-06 1.0E-04 1.8E-04 2.8E-04 7.8E-04 

NULL>0.90 0 1 2 4 15 

MAF 0.049 0.230 0.284 0.384 0.493 
Rows: (1) Average genotype calling probability. (2) Average probability of NULL class (i.e. 
1-calling probabilities of the three genotypes). (3) Number of individuals whose NULL class 
probability is > 0.90. These individuals were set to have population average genotype. (4) 
MAF = Minor allele frequency in the whole sample. 
 
 
All reported p-values and effect size estimates for the non-MHC SNPs in the main paper 
and, unless otherwise stated, also in this supplementary material were calculated using 
the linear mixed model approach. 
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Summary of approaches for protecting against population structure  
 
While we acknowledge that completely accounting for any structural bias induced by our 
sampling protocol is a challenging problem, we have implemented several means of 
minimising or evaluating the extent to which population stratification is influencing our 
results. These include: 
 

 using a linear mixed model (with and without including the top principal components 
as covariates) to account for correlations in individuals‟ phenotypes that can be 
explained by their level of genome-wide relatedness 

 
 using a beta-binomial model to test if population allele frequencies differ among 

control datasets according to frequencies expected under a simple population genetics 
model 

 
 for each SNP showing strong evidence of association, calculating the proportion of 

non-QC SNPs genome-wide that have an “allele variability” score greater than that of 
the lead SNP, where the “allele variability” score is a Pearson‟s chi-squared statistic 
testing for allele frequency differences among all control datasets (13 degrees of 
freedom) and case datasets (14 degrees of freedom); these empirical quantiles are 
provided in the Supplementary Data 

 
 investigating whether associated SNPs tag known differentiated SNPs from the 1000 

Genomes project (see section on 1000 Genomes analysis below) 
 
 assessing population heterogeneity in the effect size estimates (see section on 

population homogeneity below) 
 

A possible consequence of applying these criteria is to exclude regions of the genome 
that may harbour variation which influences MS susceptibility.  
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Meta Analysis 
 
In all our scans where several data sets were analysed separately, we combined the results 
using a fixed-effects meta-analysis. All of these meta-analyses were performed by combining 
parameter estimates weighted by the inverses of their estimated variances. The combined 
parameter estimate (b) and its standard error(s) were calculated according to the following 
formulae 
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where bi and si are the parameter estimates and standard errors of the individual studies. We 
found that the p-values obtained using this approach were highly correlated (see Figure S20) 
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Figure S20. UK and non-UK susceptibility meta-analysis p-values obtained by combining 
parameter estimates weighted by their inverse-variance (y-axis) compared with those obtained 
by combining weighted z-scores (x-axis). 
 
Combined Bayes factors under the fixed-effects model were calculated using the approximate 
Bayes factor.50 These can be found in Supplementary Data. 
 
 
Meta-analysis in the non-UK data set using sub-populations 
 
In attempting to correct for stratification we also tested the approach of simply dividing the 
non-UK data into the seven population specific groups where we had population appropriate 
controls (Table S10). We ran a logistic regression with seven PCs as covariates separately for 
each of these populations and combined the results using fixed-effects meta-analysis. 
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Genomic inflation factors () for each country are shown in Table S13 for the meta-analysis 
=1.114 and when Finland was excluded from the meta-analysis, =1.077. 17 out of 23 
previously established associations with MS had lower p-values in the linear mixed model 
scan than in the population-based meta-analysis when genomic control was applied to make 
inflation factors equal in both methods (see Figure S21). Both methods used the same set of 
controls but the linear mixed model made use of 1,993 additional cases, which were not 
collected from any of these seven countries. 
 
Table S13. Non-UK countries included in the subpopulation meta-analysis. 
 Finland France Germany Italy Norway Sweden USA 

Cases 581 479 1100 745 953 685 1382 
Controls 2165 347 1699 571 121 1928 5370 
 1.228 1.045 1.049 1.028 1.088 1.018 1.033 
 

 
Figure S21. P-values (-log10 transformed) from meta-analysis using seven non-UK 
populations (x-axis) against p-values from linear mixed model on all non-UK data (y-axis). 
Values on the x-axis have been corrected to have the same inflation factor (1.015) that is 
present in linear mixed model results. 23 previously known SNPs for MS susceptibility are 
marked by red triangles, 31 novel SNPs are marked by blue squares and five SNPs with 
strong evidence are marked with black circles. 
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Evidence at Previously Suggested Loci 
 
Table S14 gives the p-value of our highest scoring SNP in the previously identified regions 
listed in Table S5, as well as its correlation with the previously identified SNP. 
 
Table S14. Outcome for previously identified or strongly suspected loci 
Original New r2 D’ Gene -log10(p) 
rs6897932_C rs6897932_C 1.00 1.00 IL7Rα 5.6 
rs2104286_T rs3118470_G 0.13 1.00 IL2Rα 8.7 
rs12708716_A rs7200786_A 0.48 1.00 CLEC16A 13.2 
rs2300747_A rs1335532_A 0.87 1.00 CD58 8.7 
rs12122721_G rs7522462_G 0.79 0.96 KIF21B 6.0 
rs1132200_C rs2293370_G 0.63 0.90 TMEM39A 9.0 
rs10735781_G rs11810217_A 0.57 1.00 EVI5 11.2 
rs2587156_G rs1520333_G 0.02 0.00 IL7 6.2 
rs34536443_G rs8112449_G - - TYK2 5.8 
rs3748816_T rs4648356_C 0.93 1.00 MMEL1 13.5 
rs9523762_A rs9523762_A 1.00 1.00 GPC5 0.02 
rs1800693_G rs1800693_G 1.00 1.00 TNFRSF1A 9.7 
rs17445836_G rs13333054_A 0.10 1.00 IRF8 7.2 
rs17824933_G rs650258_G 0.04 0.47 CD6 8.8 
rs744166_G rs9891119_C 0.65 1.00 STAT3 6.3 
rs1790100_G rs949143_G 0.47 0.94 MPHOSPH9 3.8 
rs4680534_C rs2243123_G 0.11 0.28 IL12A 5.4 
rs2760524_G rs1323292_A 0.86 1.00 RGS1 6.1 
rs6896969_C rs4613763_G 0.14 1.00 PTGER4 13.2 
rs882300_C rs7371043_A 0.03 0.58 CXCR4 0.8 
rs1250540_G rs1250550_A 0.45 0.74 ZMIZ1 5.9 
rs9321619_A rs13192841_A 0.02 0.60 OLIG3 6.2 
rs703842_A rs12368653_A 0.44 1.00 CYP27B1 6.7 
rs6074022_G rs2425752_A 0.70 0.86 CD40 5.8 
rs9657904_A rs2028597_G 0.23 1.00 CBLB 3.7 
rs763361_A rs763361_A 1.00 1.00 CD226 0.8 
Original = the SNP and risk allele previously identified as listed in Table S5. New = the most 
strongly associated SNP and risk allele in the current study at the previously identified locus. 
Linkage disequilibrium between these two markers is shown in terms of r2 and D‟. Gene = the 
nearest gene to the originally identified SNP (it is not necessarily established that this is the 
relevant gene). -log10(p-value) for the most strongly associated marker in our new GWAS 
from the region encompassing the original signal. Genes in bold were not identified in the 
new data at the cut-off used for inclusion in the replication phase. 
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As anticipated, for most of these loci HapMap data showed positive LD between the original 
risk allele and the most significantly associated risk allele from the same region identified in 
our new study. In some areas the interpretation was less straightforward: 
1) TYK2 region. Since the original SNP implicating TYK2 (rs34536443) was identified in a 
screen of non-synonymous SNPs3 and this SNP was not included on the Illumina Human660-
Quad chip or on HapMap it was not possible to directly calculate LD between this SNP and 
the association seen with rs8112449. However, these SNPs are only 60kb apart and both lie 
within the same LD block making it likely that these are the same rather than independent 
associations. 
2) IL7 region. The new screen does not include any good proxies for the original SNP 
(rs2587156) from the IL7 region51 suggesting that this signal is likely to be independent of 
that we have identified in this new study. 
3) CXCR4 region. The Illumina Human660-Quad chip SNPs from this region that were in 
LD with the original SNP implicating CXCR4 (rs882300)5 all failed QC in our new study. As 
a result we had no power to detect the presence or absence of this association. This suggests 
that our failure to observe association in the region of CXCR4 is possibly a false negative. 
4) GPC5 and CD226 regions. In both cases several SNPs in strong LD with the originally 
implicated SNPs were successfully typed in this new screen but we saw no evidence for 
association in this screen in either region. 
 
Only CXCR4, GPC5 and CD226 failed to show nominally significant evidence for association 
in the new study (CXCR4 had little power). In considering the concordance between these 
new results and the previously established/suggested loci, it should be noted that since most 
of the previous multiple sclerosis GWAS used the WTCCC1 controls as part of their screen 
and many of the samples used in the replication and follow up studies identifying these 26 
loci are now included in this screen, these studies are not fully independent. 
 
In addition to our top-scoring SNP in each previously reported region, we report in the 
Supplementary Data the score at the SNP in our dataset that had the highest correlation 
coefficient with the previously reported SNP, according to the phased HapMap Phase 2 
CEPH haplotypes (if more than one SNP had the same highest correlation with the previously 
reported SNP, we report the SNP with the lowest p-value in our data). Scores are given for 
these SNPs both with and without the WTCCC1 controls included in the analysis.  
 

Analysis of signals of association  
 
Independent signals 
 
To identify association signals we used an iterative process in which we ranked all non-MHC 
autosomal SNPs on the basis of the p-value from linear mixed model scan, and then directly 
inspected the cluster plot for the most associated SNP. If the clustering was considered to be 
suspect, this SNP was ignored and the cluster plot for the next most associated was inspected. 
Once a SNP with satisfactory clustering was identified, we declared this the lead SNP for the 
region and excluded all SNPs within 1Mb of this SNP. The process was then repeated for 
each successive SNP until we had no SNPs with -log10(p) > 4.5. This identified a total of 85 
regions each characterised by a lead SNP with -log10(p) > 4.5 and satisfactory clustering. To 
identify potentially independent associations within the 2Mb interval containing each of the 
lead SNPs, we repeated the analysis for all SNPs in each interval after conditioning on the 
corresponding lead SNP. In those intervals with at least one SNP with a conditional -log10(p) 
> 4.0, we ranked the SNPs on the basis of the conditional p-values and inspected the cluster 
plot for the most associated SNP. If the cluster plot was satisfactory, the SNP was defined as a 
secondary lead SNP. If the clustering was suspect, then that SNP was ignored and the cluster 
plots for next most associated SNP was inspected. This process was repeated until a SNP with 
adequate cluster plots and -log10(p) > 4.0 was identified, or there were no further SNPs with 
p-values exceeding this threshold. Through this process we identified secondary signals in 16 
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regions. The SNPs in these 16 intervals were then re-analysed after conditioning on both the 
original lead and secondary lead SNPs, and in one region a third association was identified 
(with reliable cluster plots and -log10(p) > 4.0). We thereby identified 102 SNPs that were 
taken to replication. Association plots illustrating each signal are available on line (see below) 
and the details of each SNP are available in Supplementary Data 
 
In ten of 16 regions containing a secondary SNP, we deemed the secondary SNPs as being 
independent from the lead SNP according to the following criteria:  
 

 The association regions (defined below) for the secondary SNP and the lead SNP did 
not substantially overlap.  

 The p-value and effect size estimates of the secondary SNP did not vary substantially 
between the original unconditioned scan and after conditioning on the lead SNP.  

 The r2 between the lead and secondary SNPs was <0.01. 
 
In three regions the secondary SNP in the region showed a substantial increase in association 
signal after conditioning on the lead SNP (see "Haplotype Analysis" below for details of these 
regions). As a result we identified 95 independent regions of association with five containing 
an additional secondary signal and one containing two secondary signals (95 + 1 x 5 + 2 x 1 = 
102).  
 
 
Defining association regions 
 
For each of the 102 SNPs chosen for replication, each SNP with a combined p-value < 1E-03 
in the discovery cohort (used in the pathway analysis described below), we defined an 
association region to be an interval of 0.25cM centred on the SNP using the HapMap phase II 
recombination map52. We defined the flanking region to be the association region plus a 
margin of 25kb at either end. For each SNP we then identified a list of proximal genes, 
defined as those having at least one transcript intersecting the flanking region, and noted the 
nearest gene to the SNP among the list of proximal genes. Gene transcripts were identified 
using the refGene.txt file available from UCSC Genome Bioinformatics.53 
 
 
Regional association plots 
 
Based on the analysis of our GWAS data we generated a regional association plot for each of 
the 102 lead SNPs, available at http://www.well.ox.ac.uk/wtccc2/ms.  In each plot there are 
six panels. The two panels on the left depict the association region surrounding the lead SNP 
listed in the plot title, plus 100kb to the left and right of the association region boundaries. 
The top left plot shows the -log10(p-value) for all SNPs within this interval, with the SNPs' 
positions in megabases given on the x-axis. SNPs are coloured by their squared correlation 
coefficient (estimated from the 58C control genotypes) with the lead SNP according to the 
legend in the top left corner; SNPs represented with a black dot have r2< 0.01. The bottom left 
plot gives the recombination rate in the region in cM/Mb and lists all genes found in the 
region, with horizontal solid red lines indicating the start and end of the gene and arrows 
denoting the direction of transcription. Vertical red dotted lines denote the boundaries of the 
LD region, and the horizontal and vertical black dotted lines intersect at the location of the 
lead SNP. On the right, allele intensity cluster plots for the lead SNP are shown for each of 
the MS internal ("MSCCC2"), 58C ("58C"), UK National Blood Service ("UKBS"), and MS 
external ("MS_ext") datasets. For those plots generated after conditional analysis, the SNP 
conditioned on is also indicated in the title. 
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Replication analysis 
 
Replication of the 102 SNPs that reached our pre-specified statistical significance criteria was 
performed in silico using data from previously published GWAS (Table S15). These data 
were considered in six strata roughly corresponding to those used in the original studies, but 
amended so as to increase matching of cases and controls and to avoid any overlap with the 
cases and controls used in our discovery screen. Three of the strata (GeneMSA CH, 
GeneMSA NL, GeneMSA US) were the three component studies previously published by the 
GeneMSA group.4 These three had already gone through QC and imputation (with HapMap 
phase II release 21 as the reference panel) and were used in our previously published meta-
analysis of multiple sclerosis GWAS.5 For the other three strata we performed equivalent QC 
(see below) and imputation (using HapMap phase II release 22 as the reference panel). These 
strata consisted of: 
 
1) The ANZgene study6 (without the 1,425 WTCCC1 controls). 
 
2) 971 cases and 271 matched controls form the Brigham & Women‟s Hospital (BWH) 
GWAS, enriched with 2,681 controls from a myocardial infarction study (MIGEN).54 Part of 
this dataset was used in the previous meta-analysis of GWAS.5 
 
3) A dataset including the cases from our previous IMSGC GWAS2 along with US control 
data but not the WTCCC1 controls. This strata thus included US and UK cases and US 
controls. As with the GeneMSA and BWH GWAS, these data were previously included in 
our meta-analysis of multiple sclerosis GWAS.5 
 
Replication p-values were calculated from imputed data using a fixed effect meta-analysis as 
previously described.5 In brief, for all six datasets the same QC criteria were applied for 
sample exclusion (genotype call rate >95%, gender discordance, excess heterozygosity) and 
for SNP exclusion (Hardy-Weinberg equilibrium p<10-6; minor allele frequency (MAF) 
<1%, genotype call rate >95%). We used EIGENSOFT55 to calculate the dominant 10 
eigenvectors within each stratum, and to remove outliers in terms of genetic ancestry. All six 
datasets were imputed with the MACH software.56 Post-imputation, SNPs with a MAF less 
than 0.01 or imputation quality score (ratio of the observed vs. the expected variance) equal or 
less than 0.10 were excluded. The imputed allelic dosage data were analysed per dataset in a 
logistic regression model using the 10 first eigenvectors of the principal components analysis 
as covariates in PLINK.57 For the SNPs that were included in the list of variants to replicate 
after the conditional analyses, we analysed the datasets also by adjusting with respect to the 
lead SNP(s) per locus. For each of the six datasets the genomic inflation factor (λ) was 
calculated36 (see Table S15). The results from the replication and combined analysis are 
available in Supplementary Data. 
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Table S15. GWAS data used in replication and the strata considered. 

Dataset GeneMSA 
CH 

GeneMSA 
NL 

GeneMSA 
US ANZ BWH IMSGC 

Cases 253 230 486 1618 973 795 
Controls 208 232 431 1988 2952 1679 

Clinical       
F/M 2.8 2.9 3.1 2.6 2.6 3.1 
Duration/Years 12 13 15 NA 14 13 
AAO/Years 33 33 33 34 33 28 

Analysis       

Platform Illumina 550 Illumina 550 Illumina 550 Illuminaa Affy 6.0 Affy  500K 
Casesb 251 225 477 1616 860 789 
Controlsb 208 228 425 1987 2772 1676 
Lambda 1.040 1.026 1.029 1.061 1.050 1.032 
F/M = the female to male ratio, Duration is the mean duration and AAO the mean age at 
onset, NA = not available. 
a The cases were typed with Illumina 370CNV and the controls with Illumina Infinium 
b These rows indicate the number of samples passing QC and included in the analysis 
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Further Analysis 
 
1000 Genomes analysis 
 
Haplotype data available through the 1000 Genomes population resequencing project58 
allowed us to extensively catalogue variants correlated with SNPs implicated in this study. 
For the most associated SNP in each of the association regions we used these data, in 
conjunction with other publically available annotations, to flag SNPs which are in LD with 
variants in the following three categories: 
 

 Putatively functional SNP:  r2 > 0.8 with a 1000 Genomes SNP labelled as either 
generating a stop codon or amino acid change, or lying within an essential splice site 
or miRNA. These functional categories were assigned using the Ensembl variation 
api (http://www.ensembl.org/info/docs/api/variation/index.html). 

 
 Highly differentiated SNP: r2 > 0.1 with any of the 292 highly differentiated SNPs 

identified in the analysis of the 1000 Genomes pilot paper. A list of these SNPs can 
be found in Supplementary Tables 7 and 8 of 58. 

 
 Previous GWAS SNP: r2 > 0.1 with a SNP listed in the NHGRI GWAS catalogue59 as 

downloaded in December 2010. Only SNPs associated with autoimmune phenotypes 
are used. 

 
The above annotations are related to the 1000 Genomes data using rsIDs. Therefore it is 
possible that associations could be missed if either SNPs are not contained with the 1000 
Genomes data used (taken from haplotypes provided at 
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html ) or if rsIDs are inconsistent with the 
annotations. For computational efficiency LD was calculated only for SNPs within 0.5Mb of 
the most associated SNP within the region, assuming r2 to be less than 0.1 outside this 
interval. Note that none of the SNPs identified from the analysis of the discovery data tagged 
any highly differentiated SNPs using the criteria defined above. 
 
Gene Ontology analysis 
 
For each term in the Gene Ontology (GO) hierarchy,60 we performed a simple 
overrepresentation analysis using the genes annotated to MS-associated SNPs as follows. 
Analysis was restricted to a list of human protein-coding genes obtained from UniProtKB.61 
We used the GO term gene annotations available in the assocdb database downloaded from 
the Gene Ontology website (http://archive.geneontology.org/lite/2011-01-01/).  For each of 
the three SNP categories (i. SNPs in Table S1; ii. SNPs in the top tier of Table S2 or with 
P<1x10-4.5 in discovery and the same direction of effect in replication; iii. SNPs in either of 
the above category), we performed a Fisher‟s exact test on the 2x2 table of gene counts 
categorized by gene status (nearest gene, as defined above, to one of the selected SNPs) and 
term membership. In this context, Fisher‟s exact test tests the null hypothesis that a gene 
being nearest to one of the selected SNPs is independent of membership of a specific GO 
term. 
 
To show that results were not an artefact of the choice of nearest gene, we also repeated the 
analysis using all proximal genes (as defined above) to each selected SNP. These analyses 
gave similar results, with all of the most significantly overrepresented terms being immune-
related terms. This remained true whichever of the three SNP categories was used. Full results 
are available in the Supplementary Data. 
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In principle, the above analysis might be confounded by gene size, since larger genes would 
be more likely to occur as nearest or proximal to a given SNP even under the null hypothesis.  
However, we found that immune system process genes (those annotated to the “Immune 
system process” GO term) were shorter on average (mean 47.7kb, 0.062cM) than non-
immune system process genes (mean 60.3kb, 0.07cM). 
 
Sibling recurrence risk and variance explained on the liability scale 
 
We estimated that the non-HLA SNPs listed in tables S1 to S3 together explain sibling 
recurrence risk (s) of 1.148 (95% interval 1.142 - 1.153). Using the effect size estimates 
from the replication data only, the corresponding values are 1.153 (1.127 - 1.183). When 
combined with the estimated s of 1.38 for the four HLA-alleles (see below), we explain s of 
about 1.58 by marginal effects of the strongly implicated genetic variants in this study. 
 
In a large study in the Swedish population, Hemminki et al. (2009) report a sibling recurrence 
risk estimate of 6.3 (3.7 – 10.6) for multiple sclerosis.62 This estimate also includes possible 
environmental risk factors that are shared between siblings. The genetic variants strongly 
implicated in our study (57 SNPs and 4 HLA-alleles) explain about 25% (19% - 35%) of this 
total sibling risk estimate on the logarithmic scale. 
 
For heritability calculations we used a liability threshold model according to which the total 
variance on the liability scale is 1 in the population. By assuming that the prevalence of MS is 
K=0.001 this model identifies MS-cases as the individuals whose liability is larger than 
T=3.09, which is the point that separates the right-hand tail-area of K=0.001 from the 
standard normal distribution. By using the above mentioned sibling risk estimate for MS as if 
it were all due to genetic effects, we get an estimate for the heritability of MS on the liability 
scale of 38% (26% - 51%) (see formula 3 in the paper by Reich et al.63) 
 
For the chosen 57 SNPs and 4 HLA alleles we estimated the variance that they explain on the 
liability scale by defining, for each of them, an appropriate displacement t between the two 
homozygote genotypes in such a way that the mean liabilities for the non-risk homozygote, 
heterozygote and high-risk homozygote are –pt, 0.5t-pt and t-pt, respectively, where p is the 
risk-allele frequency in the population. In this situation the mean liability in the population is 
0, the variance explained by the variant is 0.5p(1-p)t2, and the proportion of the genetic 
variance that the variant explains is 0.5p(1-p)t2/h2, where h2 is the heritability estimate. To 
find a displacement t that approximately matches our estimated odds ratio (OR) of the variant 
under an additive model on a log-odds scale, we minimised the quantity 
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with respect to t, where  is the cumulative distribution function of the standard normal 
distribution. As a result the 57 SNPs together explain 6.5% and the 4 HLA-alleles (with 
frequencies and effect sizes from UK-analysis) together explain 10.5% of the genetic variance 
on the liability scale. Thus the proportion of the genetic variance explained by the implicated 
variants (57 SNPs and 4 HLA-alleles) is 17% (13% - 25%). The 95%-interval is derived only 
from the uncertainty in the sibling risk estimate whereas the uncertainty in the prevalence of 
MS, the possible environmental contribution to the sibling risk-estimate and the dependencies 
between different HLA-alleles have not been taken into account. As a consequence these 
results should be taken only as rough estimates for the underlying quantities.   
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Homogeneity of effects 
 
To assess possible heterogeneity among the 102 SNPs taken to replication, we separately 
analysed each of the eight populations with population specific controls in our discovery data 
set (Finland, France, Germany, Italy, Norway, Sweden, UK,  USA) using seven PCs as 
covariates in the logistic regression models. Heterogeneity was assessed in two ways. Firstly, 
we computed the I2 heterogeneity index64 and secondly, we computed Bayes factor (BF) 
between a hierarchical random-effects model and a fixed-effect model. More specifically, the 
fixed-effect model assumes that there is a common effect  with prior distribution N(0,0.22) 
(on log-odds scale) and the random-effects model assumes that each study draws its own 
effect from a t-distribution with a mean of , a scale of  and 3 degrees of freedom, where the 
prior on  is N(0,0.22) and the prior on  is Gamma(shape=2,scale=0.04). Values of I2 and the 
heterogeneity Bayes factor for each SNP taken to replication are given in Supplementary 
Data. 
 
Eight SNPs had I2 estimate >50% (Figure S22) and sixteen of the SNPs had BF>1 with two of 
the SNPs having BF>3 (rs11984075 BF=7.7 and rs281783 BF=4.9, also in Figure S22). To 
empirically assess significance of the heterogeneity measure, we simulated 1,000 replicates 
for each SNP of meta-analysis case-control data sets by assuming that the effect in each 
population was equal to the effect that we had estimated from the fixed-effect meta-analysis 
for that SNP. For each replication, the control allele frequencies were sampled from a 
Beta(40fi,40(1-fi)) distribution for population i, where fi was the observed risk allele 
frequency in our data for that population at that SNP. Control genotype frequencies were 
assumed to be in Hardy-Weinberg equilibrium and case genotype frequencies were then 
derived from the effect size estimate and the control genotype frequencies assuming the 
additive model on log-odds scale. For each of the simulated replicates we computed the I2 
heterogeneity index. We then calculated an empirical p-value as the proportion of the 
replicates, where the computed I2 index was higher than the I2 index in our original data set 
for that SNP. None of the 102 lead SNPs had an empirical p-value less than 0.01. 
 
We also divided individuals into Northern (Finland, Sweden, Norway) and Southern (UK, 
USA, Germany, France, Italy) groups and estimated the effects using logistic regression with 
seven PCs as covariates separately for the two groups. There were no general tendencies for 
larger effect sizes or higher risk allele frequencies in controls in either of the groups compared 
to the other at the 102 lead SNPs.  
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Figure S22. Forest plots with 95% CIs for the eight lead SNPs with I2 index > 50%. All 
possible divisions of the populations into a fixed-effects group and an independent-effects 
group (outlier populations) were considered and the one with the largest marginal likelihood 
determined the colours of the populations (black ones belong to the fixed-effects group, red 
ones to the independent-effects group). Top-left corners give Bayes factors between random-
effects model and the fixed-effects model. Bottom-left corner gives I2 index and its empirical 
p-value. Blue line at the bottom corresponds to the fixed-effects meta-analysis effect. 
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Interactions 
 
We tested all pair-wise interactions between the 102 lead SNPs (5151 pairs) using a linear 
mixed model, 



y  x11  x22  x1x2  , where y is the case-control status, x1 and x2 are 
the mean-centred SNP genotypes and  is the interaction parameter. The five pairs with p-
values < 5x10-4 for the interaction term are listed in Table S16. 
 
Table S16. Pairs of lead SNPs with pair-wise interaction p-values < 5x10-4. 
Chr1 SNP1 Chr2 SNP2 Sign of  p-value 
7 rs354033_G 7 rs2066992_C + 1.4x10-4 
16 rs7200786_G 22 rs2072711_G + 1.7x10-4 
10 rs3118470_G 14 rs2119704_C + 1.9x10-4 
6 rs17066096_G 18 rs7238078_C - 2.3x10-4 
12 rs12368653_G 2 rs281783_G + 2.6x10-4 
 
Haplotype analysis 
 
In our discovery analysis we identified three regions where conditioning on the lead SNP 
from the region revealed a second effect in the region with considerably larger effect than was 
seen at that SNP initially. In two cases the phenomenon replicated (Table S17), whereas the 
third SNP, rs2762932 on chromosome 20, did not replicate (p-values after conditioning on 
rs2248359 are 6x10-8 (discovery) and 0.66 (replication)). The 1000 Genomes database 
(www.1000genomes.org; accessed December 2010) suggests that only three two-SNP 
haplotypes segregate in the CEU population in the two successfully replicated regions. 
 
Table S17. Marginal and conditional results for two regions with haplotype effects. 
First column reports marginal effects of the lead SNP. Column “cond” reports results after 
conditioning on the lead SNP in the first column. Column “uncond” reports the marginal 
results (without conditioning on the lead SNP). 
Chr 10 
IL2RA 

rs3118470_G rs7090512_G cond rs7090512_G uncond 
OR p-value OR p-value OR p-value 

discovery 1.12 2.0x10-9 1.19 2.6x10-14 1.09 2.2x10-5 
replication 1.10 4.7x10-3 1.21 5.0x10-7 1.11 1.5x10-3 

 
Under the assumption that only three haplotypes exist in these regions, we inferred the 
haplotypes for the individuals in our discovery data set and applied the linear mixed 
model



y  x1 x2  , where x1 and x2 are the number of copies of the two risk 
haplotypes that an individual carries (Table S18). 
 

Chr 3 
CD86 

rs9282641_G rs4308217_C cond rs4308217_C uncond 
OR p-value OR p-value OR p-value 

discovery 1.21 1.5x10-9 1.11 3.3x10-7 1.08 1.3x10-4 
replication 1.20 2.3x10-3 1.10 5.5x10-3 1.08 2.5x10-2 
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Table S18. Haplotype effects. Each cell gives the OR and 95%-CI with respect to the most 
protective haplotype (which by definition is set to have OR=1) as well as the haplotype 
frequency calculated from controls. Proportions of individuals with missing haplotype data 
were 0.0039 and 0.00062 for chromosome 10 and chromosome 3 regions, respectively. 
 
Chr 10 IL2RA 
Haplotype effects 

rs7090512 
A G 

rs3118470 A 1 
37% 

1.20 (1.14-1.25) 
30% 

G 1.22 (1.16-1.27) 
33% 

----- 

 
Chr 3 CD86 
Haplotype effects 

rs4308217 
C A 

rs9282641 A 1 
9% 

----- 
 

G 1.25 (1.17-1.34) 
58% 

1.14 (1.06-1.23) 
33% 

 
Gender effects  
 
We divided the discovery data set into four parts in order to estimate gender-specific effects: 
UK females (1293 cases, 2564 controls), UK males (561 cases, 1122 controls), non-UK 
females (5683 cases, 6320 controls) and non-UK males (2235 cases, 5881 controls). To 
balance the case-control ratio in order to justify the linear mixed model, we have dropped 
some UK male controls from this analysis. The four data sets were analysed using the linear 
mixed model, and UK and non-UK results were combined by fixed-effects meta-analysis to 
get the overall results for both males and females. To compare males and females we used 
statistic 



(bM  bF )
2

(seM
2  seF

2 )
, where 



bM and 



bF  are estimated effects in males and females, and se‟s are their 

standard errors. P-values were computed from chi-square distribution with 1df and the SNPs 
with p<0.05 are shown in Table S19. We did not find any SNPs with estimated effects in 
different directions between males and females. 
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Table S19. The lead SNPs which show a difference in effect sizes between males and females 
at p<0.05. 
Chr SNP_Allele OR (M) P (M) OR (F) P (F) Pdiff 
16 rs13333054_A 1.24 2.1x10-9 1.06 0.0415 0.00029 
12 rs1800693_G 1.05 0.14 1.16 8.9x10-11 0.0078 
12 rs12368653_A 1.18 2.6x10-7 1.07 0.0072 0.012 
3 rs2293370_G 1.26 1.4x10-8 1.11 0.00076 0.012 
10 rs1250550_A 1.16 3.8x10-6 1.06 0.0083 0.032 
8 rs6986386_A 1.02 0.48 1.12 6.5x10-6 0.037 
5 rs756699_A 1.20 2.9x10-5 1.07 0.035 0.038 
5 rs6897932_G 1.18 6.4x10-6 1.07 0.0075 0.044 
M=males, F=females, OR=Odds ratio, P=p-value for association, Pdiff=p-value for difference. 
 
X chromosome analysis 
 
For X-chromosome analyses we used the same grouping as in the analysis of gender effects 
(UK males, UK females, non-UK males, non-UK females). We analysed the four data sets 
separately using the linear mixed model and then combined all results using fixed-effects 
meta-analysis. Male genotypes and homozygous females were coded as 0 and 2 and 
heterozygous females were coded as 1. This coding assumes that the difference in log-odds 
ratio is the same between the two homozygous female genotypes as it is between the two 
possible male genotypes. 
 
After QC there were 10,372 SNPs on the X-chromosome with usable data. The genomic 
inflation factor (λ) computed from X-chromosome SNPs was 1.116 for males, 1.080 for 
females and 1.130 for combined analysis. The expected 95% confidence interval for λ based 
on 10,372 independent samples from the chi-square distribution with 1df is 0.956 to 1.046. In 
addition to dependence between the observed statistics due to LD between SNPs, another 
reason for the apparent inflation with the linear mixed model is that the relatedness matrix 
computed from autosomal markers does not accurately capture the population structure that is 
present at the X-chromosome. Despite the apparent inflation, only one X-chromosomal SNP 
had p-value below 10-5(rs7052934_C, p=2.5x10-24, OR 1.40 (1.32 - 1.50)). However, the 
cluster plot for this SNP is suspect (see Figure S23) and the replication data (for males only) 
showed the effect in the opposite direction with OR=0.75 (95% CI=0.57 – 0.98) and p-
value=0.038. 
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Figure S23. The cluster plots for rs7052934 in the internally generated MS data, the 58BC, 
the NBS and the externally generated data. 
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Secondary phenotypes 
 
Age at onset (AAO) 
 
We ran a genome-wide scan with the linear mixed model considering age at onset (AAO) as 
the phenotype and treating gender as a covariate. AAO was available for 8,715 MS cases 
(mean AAO = 32.3 +/- 9.8). We applied the linear mixed model to the raw phenotypes and to 
the log-transformed phenotypes, but as the results were very similar only the results with the 
raw phenotypes are shown. Across the genome (465,508 SNPs) the genomic inflation factor 
(λ) was 1.005 with the linear mixed model. For comparison, λ=1.104 with the standard linear 
model. A Q-Q plot of the test statistics (Figure S24) revealed several SNPs with more 
extreme values than expected under the null, all from the MHC region. 
 

 
 
Figure S24. Q-Q plot for the AAO scan employing the linear mixed model and raw 
phenotypes. Expected chi2 is given on the x-axis and observed statistics on the y-axis. The 
null (y=x) line and the 95% confidence bands around this are marked by thin lines. Each 
circle is a single SNP from the whole genome scan. 
 
The strongest signal is seen with rs3129934 (p=9.7x10-9), see Figure S25. Adding 
geographical origin and the seven primary PCs to the linear mixed model as fixed-effect 
covariates had only minimal effect on the strength of the association (p=1.1x10-8). Each copy 
of the minor allele A at rs3129934 decreases age at onset by 10.6 months (+/-1.9 months). 
Allele A has a high positive correlation with our imputed DRB1*15:01 allele (correlation 
from genotype data = 0.86) and hence we see a very similar effect by using DRB1*15:01 
genotypes instead of rs3129934. No other regions contained p-values below 1.0x10-5. 
 
In principle, the association we have observed between AAO and DRB1*15:01 could result 
from ascertainment bias if diagnostic accuracy were to be inversely correlated with age. 
However, although the differential diagnosis for neurological dysfunction increases after 
middle life (age >50), and therefore the diagnostic accuracy is likely to be lower in older 
patients, it is unlikely that such a bias would generate the observed effect since only 10% of 
our cases were diagnosed after the age of 50. 
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Figure S25. Hit plot for the AAO scan employing the linear mixed model showing the region 
containing rs3129934. Each circle represents a SNP from the region colour coded according 
to the level of LD with the lead SNP (using the same legend as in the “regional association 
plots”). The y-axis indicates the -log10(P) for the SNPs and the x-axis their physical positions 
on chromosome 6. The bottom panel shows the recombination map and positions of the 
known genes. 
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We also noticed that the identified multiple sclerosis susceptibility loci tend to have smaller 
p-values in the AAO scan than expected by chance (Table S20), and that the direction of the 
effects between the susceptibility scan and the AAO scan at those SNPs tend to be more often 
consistent (i.e. multiple sclerosis risk allele decreases AAO) than expected by chance (Table 
S21). 
 
Table S20. AAO p-values at the 59 SNPs with strong evidence for association with MS. 

Threshold #Below Threshold #Total Prop below p-value 

0.5 35 59 0.59 0.10 

0.2 20 59 0.34 0.0087 

0.1 12 59 0.20 0.013 

0.05 8 59 0.14 0.0089 
Columns: (1) p-value threshold in AAO scan. (2) Number of susceptibility SNPs below 
threshold in AAO scan. (3) Number of susceptibility SNPs. (4) Proportion below threshold. 
(5) One-sided P-value for the null hypothesis that each SNP is below the given threshold with 
probability=threshold. 
 
Table S21. Consistency of the directions of the effects between susceptibility scan and AAO 
scan in our discovery data set (UK + non-UK) 

Threshold #Consistent #Total Prop cons p-value 

5x10-8 18 21 0.86 0.00075 

5x10-7 26 32 0.81 0.00027 

5x10-6 39 56 0.70 0.0023 

1x10-5 45 69 0.65 0.0077 
Columns: (1) p-value threshold in susceptibility scan. (2) number of SNPs that are below 
threshold in susceptibility scan and have “consistent” effects on AAO, where “consistent” 
means that the risk allele for MS decreases AAO. (3) Total number of SNPs below threshold 
in susceptibility scan. (4) Proportion of consistent SNPs. (5) One-sided P-value for the null 
hypothesis that each SNP is consistent with probability 0.5. 
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Clinical course 
 
The clinical course of multiple sclerosis is characterised by self-limiting episodes of 
neurological dysfunction (relapses) and the progressive accumulation of disability. Relapses 
are generally more common in women than in men and tend to decline in frequency with 
age.65 For most patients relapses are the earliest manifestations of the disease (Bout Onset 
multiple sclerosis, BOMS) and often occur for several years before the development of 
progression. Only a minority of patients never have a relapse and present exclusively with 
progressive disease (Primary Progressive multiple sclerosis, PPMS). In our data, as expected, 
PPMS was more common in males (17%) than in females (9%) and had a significantly older 
mean age at onset (AAO): 40.5 years for PPMS compared with 31.6 years for BOMS. The 
extent to which the variation in clinical course might reflect underlying genetic heterogeneity 
is unclear. 
 
We ran a genome-wide scan with the linear mixed model comparing PPMS and BOMS. 
Because BOMS (8041 cases) massively outnumbers PPMS (999 cases) it was not possible to 
include all the available data as it was unlikely that the linear approximation to the logistic 
model would hold in this setting. We therefore considered a subset of the data with 723 PPMS 
individuals and 2,209 BOMS individuals, who were matched with respect to gender and 
geographical origin to PPMS individuals. Because (as anticipated) AAO, and to a lesser 
extent age, were correlated with PPMS status (Figure S26) we included AAO and age as 
covariates. 
 

 
Figure S26. Proportion of PPMS by AAO. 
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In the PPMS vs BOMS scan the genomic inflation factor was 1.01 with the linear mixed 
model and 1.07 with the standard linear regression. Figure S27 shows that the distribution of 
the test statistic matches with its expectation under the null. Table S22 shows the results for 
the only four SNPs with p < 1x10-5. 

 
 
Figure S27. Q-Q plot for the PPMS vs. BOMS employing the linear mixed model and raw 
phenotypes. Expected chi2 is given on the x-axis and observed statistics on the y-axis. The 
null (y=x) line and the 95% confidence bands around this are marked by thin lines. Each 
circle is a single SNP from the whole genome scan. 
 
Table S22. Top results for PPMS vs. BOMS scan, where PPMS individuals were coded as 1 
(“cases”) and BOMS as 0 (“controls”). 

Chr SNP_Allele Position/bp OR p-value log10BF Gene 

9 rs1757948_C* 80500500 1.32 3.0E-06 3.81 PSAT1 

9 rs1634352_G* 80503640 1.30 8.0E-06 3.43 PSAT1 

13 rs9550637_G 19810527 1.31 5.9E-06 3.56 CRYL1 

14 rs1125221_G 73982583 1.29 7.1E-06 3.48 TMEM90A 
* These two alleles are in virtually complete LD. 
 
Five of the 102 lead SNPs of the MS susceptibility scan had p-values<0.05 in PPMS vs. 
BOMS analysis - rs7200786 (CLEC16A), rs2425752 (CD40), rs140522 (ODF3B), rs1843938 
(CARD11) and rs2066992 (IL6). Generally, we did not find evidence for smaller than 
expected p-values at the susceptibility lead SNPs in the PPMS vs. BOMS scan. 
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Rate of progression (severity) 
 
The rate at which individuals with multiple sclerosis accumulate disability is highly variable, 
with some patients only having minimal disability after decades of disease (benign disease) 
and others developing profound disability within a few years (severe disease). Since the 
Expanded Disability Status Scale (EDSS) score used to quantify disability inevitably 
increases with the passage of time, we measured severity using the Multiple Sclerosis 
Severity Scale (MSSS), which provides a decile score for each patient by comparing their 
EDSS with the distribution of EDSS scores seen in individuals with the same duration of 
disease. 
 
To identify genetic factors that might influence severity, we ran a genome-wide scan with the 
linear mixed model considering the MSSS as the phenotype, with gender and AAO as 
covariates. Raw phenotype values for 7,069 cases were fairly uniformly distributed between 0 
and 10 as shown in Figure S28. 
 

 
 

Figure S28. Distribution of MSSS in the MS cases with available scores.  
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We applied the linear mixed model to the raw phenotype values as well as to the quantile 
normalised values. In both cases the genomic inflation factor (λ) was 1.00 with the linear 
mixed model and 1.06 with the standard linear regression. Figure S29 shows a comparison of 
the results obtained using the two versions of phenotype data (465,506 SNPs). 
 

 
 

Figure S29. Plot comparing MSSS scan results (-log10(p)) based on raw data (y-axis) and 
quantile normalised data (x-axis) employing the linear mixed model. 
 
There were no SNPs with strong evidence for association. The three SNPs with p < 1x10-5 are 
listed in Table S23. Four of the 102 susceptibility lead SNPs had p-values<0.05 in the MSSS 
analysis: rs4285028 (SLC15A2), rs2762932(CYP24A1), rs1373089 (WNT9B) and rs1843938 
(CARD11). In general, we did not find evidence for smaller than expected p-values at the MS-
susceptibility SNPs in the MSSS scan, nor did we see evidence for consistency between 
direction of effects in the susceptibility scan and MSSS scan. 
 
Table S23. Top results for MSSS scan 

Chr SNP_Allele Position/bp ∆MSSS p-value log10BF Gene 

3 rs6798831_A 109204824 0.22 2.4E-06 3.78 CD47 

3 rs10937486_A 192722265 0.35 5.9E-06 3.55 CCDC50 

8 rs6998423_G 134058472 0.22 6.2E-06 3.39 TG 
∆MSSS indicates the average increase in MSSS per allele. 
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DRB1*15:01 stratified analysis 
 
Given the predominant effect of the DRB1*15:01 allele, we divided our data set into 
DRB1*15:01 carriers and non-carriers, and did separate genome-wide scans using the linear 
mixed model within each group to assess whether effects at some SNPs might depend on the 
DRB1*15:01 status. In the UK cohort we had 2,012 individuals who carried at least one copy 
of DRB*15:01 (916 cases and 1,096 controls) and 4,373 individuals with no copies of 
DRB*15:01 (850 cases and 3,525 controls). In the non-UK cohort there were 6,405 carriers 
(3,735 cases and 2,670 controls) and 13,094 non-carriers (3,824 cases and 9,270 controls). 
Some of the individuals from our primary analysis were excluded from this analysis because 
the QC-measures implicated that HLA-imputation was not reliable. Genomic inflation factors 
(λ) for the fixed-effects combined UK and non-UK scans were 1.034 for the DRB1*15:01 
carriers and 1.038 for the non-carriers. 
 
To test the difference of the effects in carriers (i=1) versus non-carriers (i=0) we used the 
statistic 
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where bi is the effect size estimate and sei its standard error in group i=0,1, and r=0.066 is the 
empirical correlation coefficient between b0 and b1 calculated from the whole genome 
(excluding MHC). 
 
After excluding the MHC, the genome-wide distribution of this statistic does not show any 
deviation from the chi-square distribution with one degree of freedom (Figure S30). 
 

 
 

Figure S30. Q-Q plot for the scan based on effect size difference between carriers vs. non-
carriers. Expected chi2 is given on the x-axis and observed statistics on the y-axis. The null 
(y=x) line and the 95% confidence bands around this are marked by thin lines. Each circle is a 
single SNP from the whole genome scan (excluding MHC). 
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Only one SNP (rs7195761) outside of the MHC showed evidence of association with a p-
value < 10-5 (p=3.1x10-6, ANKS4B). Five of the 102 susceptibility lead SNPs showed 
nominally significant evidence (p<0.05) for a difference in effect between the two groups as 
shown in Table S24. In general, we did not find evidence for smaller than expected p-values 
when testing for the differences in effect sizes between DRB1*15:01 carriers and non-carriers 
at the MS susceptibility SNPs. 
 
Table S24. Results for susceptibility lead SNPs showing nominally significant evidence for a 
difference of effect in the comparison of DRB1*15:01 carriers and non-carriers. 

Chr SNP_Allele Gene OR(+) p(+) OR(-) p(-) p∆ log10BF 

3 rs2293370_G TMEM39A 1.09 0.040 1.23 1.4E-10 0.014 0.516 

9 rs290986_A SYK 1.04 0.36 1.16 1.2E-06 0.021 0.409 

5 rs4613763_G PTGER4 1.14 0.0029 1.26 2.3E-11 0.049 0.0425 

20 rs6062314_A ZBTB46 1.33 3.6E-07 1.12 0.0074 0.014 0.439 

11 rs650258_G CD6 1.04 0.23 1.14 9.6E-08 0.018 0.396 
OR = Odds Ratio, p = p-value, + indicates the result in the carriers, - indicates the results in 
the non-carriers. p∆ indicates the significance of the difference and log10BF the log10 of the 
Bayes factor for that difference. 
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Month of Birth 
 
Given that month of birth (MOB) has been shown to influence the risk of developing multiple 
sclerosis66, we explored this issue in our samples. Since birth rate varies between populations 
and over time, as well as during the year, we established population and year specific control 
monthly birth rates using publicly available data sources. 
 
Australian Bureau of Statistics (ABS) http://www.abs.gov.au/ 
Centers for Disease Control and Prevention (CDC) http://www.cdc.gov/nchs/nvss.htm 
Eurostat http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ 
FPS Economie Belgium http://economie.fgov.be/ 
Institut national de la statistique et des études économiques (INSEE) www.insee.fr/ 
Instituto Nacional de Estadística www.ine.es/ 
Istituto Nazionale di Statistica (ISTAT) www.istat.it/ 
Northern Ireland Statistics and Research Agency (NISRA) www.nisra.gov.uk/ 
Statistisches Bundesamt Deutchland (DESTATIS) www.destatis.de/ 
Statistics Finland (STAT) http://www.stat.fi/index.html 
Statistics Norway (SSB) www.ssb.no/ 
UK National Statistics www.statistics.gov.uk 
 
We did not include Poland in this analysis as year of birth (YOB) and MOB data were only 
available for 17 Polish individuals and no population specific control data could be located. 
Excluding Poland we had MOB and YOB data for 17,875 of the cases from our study 
(counting each twin pair only once). Corresponding population and YOB specific control data 
were available for 86% of these individuals. For the remainder, control data were estimated 
using the closest available population and YOB specific monthly birth rate data. Considering 
the Northern and Southern hemispheres separately, data were combined across populations 
and each month was tested for association using a normal approximation to the binomial 
distribution. Data are shown in Table S25 (Northern hemisphere) and Table S26 (Southern 
hemisphere). In concordance with the earlier report 66, we saw nominally significant evidence 
for a MOB effect in our Northern hemisphere data with increased risk of multiple sclerosis in 
May and August, and reduced risk in November (restricting the analysis to just those cases 
which were born in a year with full control information did not significantly change the 
result). Simulating 50,000 replicate studies, where the observed birth months were assigned 
according to expected proportions, indicates that the probability of seeing concordant data by 
chance (i.e. significant in both May and November) is 0.002. There was no significant 
evidence for a MOB effect in the Southern hemisphere populations, but the considerably 
smaller sample size in this group limits the power of the test. Figure S31 and Figure S32 show 
the ratio of observed and expected monthly birth rates in the Northern and Southern 
hemisphere groups, respectively. We found no evidence for any effect of MOB on disease 
course (as has previously been suggested67), severity or age at onset. 
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Table S25. Number of observed and expected cases by MOB across the Northern hemisphere 
populations (Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Norway, Spain, 
Sweden, UK and US). P-values are two-tailed. 
 

Month Observed Expected Z-score p-value 
January 1397 1393.3 0.104 0.92 
February 1295 1329.6 -0.989 0.32 
March 1462 1491.4 -0.798 0.42 
April 1467 1450.5 0.453 0.65 
May 1548 1469.2 2.153 0.031 
June 1400 1393.6 0.179 0.86 
July 1426 1418.0 0.222 0.82 
August 1462 1380.9 2.279 0.023 
September 1388 1391.4 -0.0952 0.92 
October 1302 1349.9 -1.360 0.17 
November 1199 1274.8 -2.209 0.027 
December 1320 1323.3 -0.095 0.92 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S31. Ratio of observed to expected number of cases by MOB in Northern hemisphere 
populations, with 95% confidence intervals. 
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Table S26. Number of observed and expected cases by MOB across the Southern hemisphere 
populations (Australia and New Zealand). P-values are two-tailed. 
 

Month Observed Expected Z-score p-value 
January 110 102.2 0.806 0.42 
February 102 95.6 0.682 0.50 
March 112 103.6 0.863 0.39 
April 96 98.0 -0.211 0.83 
May 106 103.7 0.236 0.81 
June 91 99.4 -0.879 0.38 
July 96 103.4 -0.761 0.45 
August 89 103.1 -1.452 0.15 
September 112 102.4 0.991 0.32 
October 97 106.8 -0.993 0.32 
November 106 99.1 0.723 0.47 
December 96 95.7 0.0319 0.97 

 
Figure S32. Ratio of observed to expected number of cases by MOB in Southern hemisphere 
populations, with 95% confidence intervals (note the different scale on the y-axis compared to 
the Northern hemisphere figure). 

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature10251

WWW.NATURE.COM/NATURE | 69



  

Comparing the high risk “season” (April, May and June) with the low risk “season” (October, 
November and December) in the Northern hemisphere we find a relative risk of 1.057 (1.012 
- 1.105). This is smaller than any of the genetic effects thus far described. Because seasons 
were picked on the basis of the months with the highest deviation from expected, we would 
necessarily expect to see an apparent relative risk even if there were no actual MOB effect. In 
other words, the calculated value is likely to overestimate any real effect size (unless the 
relevant MOB varies considerably between populations). 

We then tested for evidence of association between case allele counts and MOB for all 
disease associated markers (with p < 0.01) using a Pearson's chi-squared test with 11 df. 
Figure S33 shows the Q-Q plot for this analysis. All disease associated markers lie within the 
95% confidence intervals, showing no evidence for any statistically significant variation in 
allele frequency with MOB at any of these markers. The SNP tagging DRB1*15:01 showed 
no evidence for association with MOB (p=0.6). 
 
 

 
 
Figure S33. Q-Q plot for association with MOB in all disease associated SNPs (i.e. those 
showing evidence of association with disease with p<0.01). Dotted line indicates the null and 
the solid curved lines the 95% confidence interval on the null. 
 
In our data the influence of MOB on the risk of developing multiple sclerosis appears small. 
Furthermore, none of our disease associated markers show any evidence of variation in allele 
frequency by MOB, suggesting this small but fascinating observation from the epidemiology 
of multiple sclerosis seems unlikely to have a strong genetic basis. 
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Imputation-based analysis of HLA 
 
Overview 
 
Genotypes at six classical HLA loci (HLA-A, B, C, DQA1, DQB1 and DRB1), where not 
available for samples, were imputed using the method of Leslie et al.68 with a reference panel 
consisting of over 3000 samples from the 1958 birth cohort and the extended HapMap CEU 
panel.69 Thresholding calls at a posterior probability of 0.7 gives call rates between 95% 
(HLA-DRB1) and 99% (HLA-DQB1) and an accuracy (posterior predictive value: PPV), 
estimated from 2/3 cross-validation and independent experiments, of over 97% for all loci at 
the two-digit level and between 97% (HLA-C) and 99% (HLA-DQB1) at the four-digit level.  
Validation results for all alleles mentioned in the text are given below. Previous unpublished 
work has established that matching genetic ancestry is important when imputing HLA alleles, 
hence we focused discovery on the UK samples, which also have the advantages of well-
matched controls and availability of SNP cluster plots to enable QC. The uncertainty 
associated with imputation (quantified by the posterior probability of the call) was 
incorporated into the logistic regression framework, with numerical optimisation used to find 
maximum likelihood estimates.  Only cohorts with both cases and controls were analysed to 
reduce effects of population stratification. These were analysed independently and then 
combined through fixed-effect meta-analysis with the variance of parameter estimates being 
obtained by bootstrap resampling, maintaining the proportions of cases and controls. To 
calculate the sibling recurrence risk predicted by the results, we simulated 10,000 pseudo-
sibships without recombination within the HLA from the phased 1958BC samples, and 
predicted their disease risk from the coefficients estimated by the logistic regression except 
for the base-line risk, which was modified so as to achieve an average disease risk of 1 in 
1000. 
 
Detailed methods for classical HLA allele imputation 
 
HLA*IMP68,70 uses a set of reference data in order to produce HLA type imputations for an 
imputation dataset. Both sets require careful quality control and data preparation. Here, we 
describe creation, assembly and quality control measures for the datasets we used in the 
present study. 
 
Reference Set 
The reference set, subsequently referred to as “Golden Set” (GS), was created by combining 
HLA- and SNP-genotyped samples from three cohorts: 
1. The 1958 Birth Cohort (http://www.b58cgene.sgul.ac.uk/), typed on the Illumina 1.2M 
(2589 samples) and the Affymetrix Genome-Wide Human SNP Array 6.0. (2711 samples). 
2. The HapMap CEU samples (60 samples)52 
3. The CEPH CEU+ additional samples (32 samples)69 
 
Step 1: Cohort-specific protocols 
 
1958 BC.  We removed all SNPs not present in HapMap r27 and those outside the extended 
MHC region (xMHC).  The region considered was that defined by Horton et al.71 with 50Kb 
flanks at the two ends. We removed all samples and SNPs which were not typed on both the 
Affymetrix and Illumina chip in order to be able to compare Affymetrix and Illumina typing 
data for each genotype in the remaining set (overlap 2462 samples). 
 

We applied an EM-based procedure to align SNP strandedness to HapMap (cohort 2) 
separately for the Illumina and Affymetrix data. First, non-complementary (i.e not A/T or 
G/C alleles) SNPs‟ strandedness was adjusted to HapMap. Then, for each complementary 
SNP, we selected the two nearest non-complementary neighbors (with the complementary 
SNP in the middle) and calculated the likelihood of the observed SNP triplet genotypes under 
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two hypotheses and under the observed HapMap haplotypes. H0: the complementary SNP‟s 
strand is not inverted compared to HapMap. H1: the complementary SNP‟s strand is inverted 
compared to HapMap. We selected the hypothesis with the higher likelihood, set the SNP 
strand accordingly and used an EM algorithm to estimate haplotype frequencies in the target 
dataset. Finally, we compared the likelihood of the observed SNP triplet genotypes under the 
EM-estimated haplotype frequencies and under the HapMap-observed haplotypes and flagged 
SNPs for removal from both datasets if the two likelihoods showed gross deviations. To 
merge data from the Affymetrix and Illumina datasets, we applied the following procedure: 
call each SNP genotype based on a call threshold of T = 0.9 on the posterior probability. Non-
called SNP genotypes were marked as „missing data‟. Compare each called SNP genotype 
between the two datasets and mark them as „missing data‟ if they do not agree. Finally, 
calculate the percentage of missing data for all SNPs and all samples and remove each SNP 
and each individual with missing data > 5% from both sets. For the final step of merging, 
average the posterior genotype probabilities for each genotype and call, employing a 
threshold of T = 0.9. All genotypes below this threshold are marked as „missing data‟. 
The resulting consensus dataset (2420 samples, 7733 SNPs) was phased using IMPUTE v2,72 
including phased HapMap samples as haplotype templates. Missing SNP data was imputed as 
part of this process. 
 
HapMap.  SNPs outside the xMHC region were removed. Missing data thresholds on the 
SNP genotype and individual level as described for cohort 1 were applied to the HapMap 
datasets. No data had to be removed.  Finally, we removed all SNPs which were not present 
in the merged version of cohort 1. 
 

CEPH CEU+.  SNPs outside the xMHC region were removed. Missing data thresholds on the 
SNP genotype and individual level as described for cohort 1 were applied. No data had to be 
removed. IMPUTE v2 was used for phasing, including phased HapMap samples. Missing 
SNP genotypes for SNPs present in the merged version of cohort 1 were imputed as part of 
the phasing process. 
 

The described quality control and data preparation measures led to a set of 5024 high-quality 
SNP haplotypes in 7733 SNPs in the xMHC region. 
 
Step 2: Combining classically typed HLA data and SNP haplotypes 
In order to obtain full SNP + HLA haplotypes, we had to merge classically typed HLA 
genotypes and the SNP haplotypes created in step 1. We applied the following procedure: for 
each cohort, remove individuals without HLA typing. Use PHASE73,74 to phase HLA alleles 
into the SNP haplotypes inferred in step 1, employing standard settings for multiallelic loci. 
To do so, input the SNP haplotypes from step 1 as invariable, so that only the phase of the 
HLA alleles, determined by the surrounding SNP context, is determined. 
 
Step 3: Final merging procedure & Summary 
Finally, we merged SNP and HLA data from all cohorts to obtain the Golden Set, comprising 
2474 (HLA-A), 3090 (HLA-B), 2022 (HLA-C), 175 (HLA-DQA1), 2629 (HLA-DQB1), 
2665 (HLA-DRB1) HLA- and SNP-genotyped chromosomes. 
 
Step 4: MS-specific protocols 
The imputation approach of HLA*IMP requires a pre-imputation model building stage, 
during which informative SNPs from the intersection of the reference and imputation SNP 
datasets are selected. Therefore, as a last step, the Golden Set was reduced to the intersection 
SNP set between the Golden Set and the quality-controlled imputation datasets (see next 
section), resulting in 5024 haplotypes in 2038 SNPs. 
 
MS case and control cohorts 
To prepare the MS case and control cohorts for imputation, we generally followed the 
procedures described under “Step 1” of the previous section: 
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1. Application of sample ID exclusion lists 
2. Removal of SNPs outside the xMHC 
3. Application of missing data thresholds (T = 0.05) for individuals then SNPs 
4. SNP strand adjustment 
5. Phasing with IMPUTE v2, including phased HapMap haplotype templates. Prior to 
phasing, we ensure that the cohort only includes SNPs which are also present in HapMap (this 
is generally the case). 
6. Reduction to SNPs which are also in the Golden Set. 
 
Note that “control cohorts” includes the MS country-specific controls and the NBS cohort. In 
a subsequent step, we also imputed missing 4-digit HLA types in the 1958BC, but this did not 
involve additional quality control measures. See Table S27 for a summary of the numbers 
involved. 
 
Table S27. Summary of pre- and post-QC SNPs, samples and haplotypes for the imputed 
cohorts. 

Cohort Pre QC Post QC / Phasing 
Samples SNPs Haplotypes SNPs 

NBS 2737 6284 5474 6205 
MS cases 11376 2879 20592 2307 
MS controls 13203 2083 23348 2069 

 
Validation of classical allele imputation for reported alleles 
 
We assessed expected imputation accuracy by a 2/3 (training) – 1/3 (validation) cross 
validation experiment, using the same statistical model (including an identical set of 
informative SNPs) also employed for producing the case and control cohort imputations. At 
4-digit HLA type resolution and applying a posterior probability call threshold of T = 0.7, 
accuracy ranged from 0.94 to 1, at call rates between 0.94 and 0.99 (see Table S28). We also 
examined sensitivity, specificity and positive predictive value (PPV) for alleles found to be 
associated with MS that are mentioned in the text (see Table S29). For DRB1*15:01, 
DRB1*03:01 and A*68:01, these values ranged from 0.92 to 1.00. DRB1*13:03 exhibited 
slightly decreased sensitivity (88%), but a high PPV (100%).  We found no systematic 
patterns in mis-imputation (which have the potential to lead to spurious associations). In 
addition, for some of the MS cases from the UK, experimental typing was available for a 
number of loci. These comparisons indicated discordance between imputation and direct 
typing of 3.9% for HLA-A, 1.6% for HLA-B, 1.2% for HLA-C, 1.2% for HLA-DQB and 
4.2% for DRB1. Errors in imputation will influence both our ability to identify association 
and also to detect interactions or departures from additivity. 
 
These analyses provide an upper limit on the inaccuracies of classical HLA allele imputation.  
It is worth noting that experimental typing methods also carry errors. Although anecdotal, a 
number of samples for which imputation and direct methods disagreed, were shown to be 
correctly imputed following further experimental analysis. 
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Table S28. Imputation accuracy and call rate at 4-digit type resolution in a 2/3 – 1/3 cross-
validation experiment with a threshold for calling on the posterior probabilities of 0.7. 

Locus Call Rate Accuracy 
HLA-A 0.98 0.97 
HLA-B 0.97 0.97 
HLA-C 0.99 0.97 
HLA-DRB1 0.95 0.93 
HLA-DQA1 0.98 0.98 
HLA-DQB1 0.99 0.98 

 
 
Table S29. Allele specific sensitivity, positive predictive value (PPV) and specificity for 
alleles discussed in the text in a 2/3 – 1/3 cross-validation experiment at 4-digit HLA type 
resolution with a threshold on the posterior probability of 0.7 

Allele Sensitivity PPV Specificity 
DRB1*15:01 0.98 0.97 1.00 
DRB1*13:03 0.88 1.00 1.00 
DRB1*03:01 0.98 0.99 0.99 
DRB1*08:01 1.00 0.92 1.00 
A*02:01 1.00 0.82 1.00 
A*68:01 0.92 1.00 0.99 

 
Details of classical HLA allele analysis 
 
As described in the main text, our analysis of association within the HLA was to focus 
discovery on the UK cohort, considering possible risk factors in a stepwise fashion to 
construct a coherent risk model.  Factors were considered if the strength of association in the 
relevant conditional analysis within the UK cohort had p<10-4 (assuming additivity on the 
log-odds-ratio). Such factors were then analysed in the other cohorts for which both cases and 
controls were available, using fixed effect meta-analysis to combined evidence. Only effects 
that had a combined p<10-9 are reported. Where appropriate, alleles included within the model 
were analysed for departures from additivity (on the log-odds-ratio), interactions with gender 
and interactions with other loci and alleles. We included sex as a covariate in all analyses 
(p=3.7x10-49; OR = 2.4 in the UK cohort). To choose among competing models we used 
likelihood ratio tests, where models are nested, and AIC otherwise. 
 
Analysis of DRB1*15:01 
Among both imputed classical HLA alleles and SNP variation, the strongest signal of 
association within the HLA is for the allele DRB1*15:01 (pUK=2.0x10-113; OR = 3.0).  Similar 
results are seen in all cohorts giving pcombined<10-320 and OR =3.1. Other alleles in the extended 
haplotype (DQB*06:02 and DQA*01:02) show similar association, but in six of the eight 
cohorts, the strongest signal is observed for DRB1*15:01. We therefore focus all subsequent 
analyses on DRB1*15:01 as the primary risk allele. 
 
Within the UK, we find no evidence for a departure from additivity on the log odds ratio for 
DRB1*15:01 (pUK=0.30), nor any evidence for sex-specific risk for DRB1*15:01 (pUK=0.46 
for the interaction term). However, we note that while the DRB1*15:01 allele has very similar 
frequencies in males and females (0.32 in females, 0.30 in males, p=0.25), a slightly higher 
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fraction of female cases are DRB1*15:01 positive (0.55 versus 0.50, p=0.06) and there is 
evidence for a departure from Hardy-Weinberg equilibrium (HWE) in females (p=0.005, with 
a dearth of 15:01 homozygotes), which is not observed in males (p=0.65).  Departures from 
HWE are observed in female cases (p<0.05) from six out of the eight cohorts where there are 
both cases and controls (FIN, FRA, NOR, SWE, UK, GER), but in only one such cohort 
(ITA) for males. 
Further analysis of the UK cohort using a retrospective likelihood rather than a prospective 
one (i.e. treating the genotypes as random variables, rather than the disease outcome), 
provides some evidence (p=0.005) for a differential risk profile for DRB1*15:01 in males and 
females, in which the allele acts in a purely additive manner in males (OR = 1.07), but is 
slightly dominant in females (OR = 1.18/2.14 for female heterozygotes and homozygotes 
respectively).  However, it is worth noting that any departure from additivity is, at best, small.  
For all subsequent analyses the effects of DRB1*15:01 were assumed to be additive and 
independent of gender. 
 
The protective class I signal is driven by HLA-A*02:01 
Once HLA-DRB1*15:01 is included in the risk model, the strongest signal within the UK 
cohort comes from HLA-A*02:01 (pUK = 7.9x10-17; OR = 0.66), which is, again, stronger than 
any other SNP signal across the HLA. Similar results are found across all cohorts, giving 
pcombined = 9.1x10-23 (OR = 0.73). Again, we find no evidence within the UK cohort for sex-
specific effects (pUK = 0.31) or a departure from additivity (p > 0.1). We also find no evidence 
for interactions with DRB1*15:01 (pUK = 0.57). 
 
Additional risk associated with the DRB1*03:01/DQB*02:01 haplotype 
After conditioning on both DRB1*15:01 and A*02:01, the next strongest signal in the UK 
cohort is DRB1*03:01 (pUK = 7.8x10-10; OR = 1.43), which is only slightly stronger than the 
highly-correlated allele (r2>0.95) DQB*02:01. A similarly strong signal is observed in the 
USA cohort (pUSA = 2.1x10-6) and in the other cohorts combined (pcombined = 3.6x10-10; OR = 
1.26). In these other cohorts the individually estimated coefficients are consistent, except for 
FIN and SWE, where the allele has lower frequency. In the combined analysis, DRB1*03:01 
has a more significant effect than DQB*02:01, and hence we include this allele within the risk 
model. Because of its rarity, we do not have power to detect a departure from additivity. We 
see no significant sex-specific effect or interaction with other alleles at HLA-A or HLA-
DRB1. 
 
Additional risk associated with DRB1*13:03 
Including DRB1 alleles 15:01 and 03:01 and the protective effect of A*02:01 reveals a further 
candidate for risk associated with DRB1*13:03 in the UK cohort (pUK = 2.5x10-5; OR = 2.2).  
Similar results are found in the other cohorts (pcombined  = 1.3x10-11; OR = 2.4). After 
conditioning on all classical alleles mentioned so far, no other allele meets the criteria for 
inclusion. One additional allele achieves the strength of association for candidacy (HLA-
B*38:01, pUK < 10-4).  However, apart from the GER cohort, there was no additional support 
for the allele from other cohorts and the allele did not achieve pcombined < 10-9. 
 
Evidence for risk associated with alleles at the HLA-DPB1 locus 
The above analysis has focused on classical HLA alleles. In addition, we have analysed 
patterns of associated SNPs genotyped across the region. Most patterns of association at SNPs 
can be explained by association to one of the alleles described above. However, we see an 
additional, independent signal around the HLA-DPB1 locus, for which we do not have 
classical HLA data for imputation. The signal is strongest at rs9277535 (pUK = 10-6; OR = 
1.25) and this replicates across cohorts (pcombined = 4.2x10-27; OR = 1.26). As discussed in the 
text, previous work has suggested that this association is driven by LD with DPB1*03:01 (r

2 
= 0.37).75 
 
In order to assess whether conclusions regarding classical HLA alleles other than 
DRB1*15:01 might be driven by slight (but non-significant) departures from 
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additivity at 15:01, we repeated our model fitting separately at each of A*02:01, 
DRB*13:03, and DRB*03:01 where now in each case DRB1*15:01 was included with a 
general (2-paramater) model.  The results, shown in Table S39 below, indicate that both the 
model fit and the effect size estimate at the other three alleles are very similar whether 
DRB1*15:01 is fitted additively or with the general model.   
 
Genecluster analysis of secondary signals at HLA-DRB1 and HLA-A 
 
The analysis described above considers each classical allele independently. However, because 
of the biological similarity of alleles, risk may be shared among closely-related alleles. The 
GENECLUSTER method is effectively a haplotype-based method for identifying groups of 
haplotypes carrying the same risk.76 This is achieved by identifying strong similarity between 
the haplotypes in the experimental sample and a reference set, here from the CEU population 
in the HapMap Project,52 for which a genealogical tree has been estimated previously at a 
given locus.  The algorithm then places mutations on the underlying tree, considering models 
with a single risk allele initially, but then expanding to consider models with additional risk 
alleles. By using this method it is therefore possible to explore risk signals in the data that do 
not correspond to one of the typed or imputed variants. 
The method was applied to both the HLA-DRB1 and HLA-A loci. At HLA-DRB1, the 
method identifies three clusters of risk alleles (Figure S34). Of these, within the 120 CEU 
haplotypes, one is nearly perfectly correlated with the presence of DRB1*15:01, one is 
perfectly correlated with DRB1*03:01 and one includes DRB1*13:03 and DRB1*08:01, thus 
in near-perfect agreement with the imputation-based analysis. It is worth noting that the 
imputation-based analysis did indicate a strong signal for DRB1*08:01 in the Finnish cohort 
(OR = 1.88, p=6.7x10-9). However, the signal in other cohorts is weak (p>0.01). Alleles 
DRB1*08:01 and DRB1*13:03 are closely related both in terms of protein sequence (5 amino 
acid differences and one 8 amino-acid insertion in 258 aligned residues) and haplotype 
background, lending support to the notion of shared risk. Independent data support this 
interpretation.77 
 
At HLA-A, the method identifies two variants (Figure S35). In the HapMap CEU panel, one 
of these jointly tags the A*02 alleles present (in the UK cohort 95% of these are A*02:01, 
with A*02:05 and A*02:06 comprising 3.5% and 1.5% respectively) and the closely-related 
allele A*68:01 (13 amino acid differences in 365 aligned residues). In the conditional 
analysis, A*68:01 shows some association with MS risk (pUK = 1.1x10-3), but while a 
protective effect is found in seven out of eight cohorts, the effect is not significant (pcombined = 
0.61).  Neither A*02:05 nor A*02:06 show a consistent protective effect, but their frequencies 
are very low (typically c. 1% and <1% respectively). The estimated ORs and p-values for 
HLA-DRB1*08:01 and HLA-A alleles A*02:05, A*02:06 and A*68:01 are shown below 
along with cohort-specific (and combined) estimates for each cohort for the alleles described 
in the main text. 
 
In addition, a second signal is identified that partially tags A*03:01. The tagged A*03:01 
haplotypes carry a DRB1*15:01 allele indicating that this signal is likely to reflect LD from 
15:01. Weak LD between HLA-A and HLA-DRB1 is well recognised; for A*03:01 and 
DRB1*15:01 the r

2 =0.2 in the 1958 Birth Cohort data. In the imputation analyses, after 
conditioning on DRB*15:01, we find no evidence for association between A*03:01 and 
disease risk (pUK>0.1). 
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Figure S34. DRB1 genealogical tree as in Figure 4 in the main text, but with expanded 
terminal branches showing individual haplotypes. 
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Figure S35. HLA-A genealogical tree as in Figure 4 in the main text with expanded terminal 
branches showing individual haplotypes. 
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Estimated coefficients for alleles in each cohort 
 
The following tables (Table S30- Table S38) show the p-values and estimated effect sizes for 
each of the risk factors (both established and discussed) in each of the cohorts for which we 
have both case and control data. In each cohort we have fitted the model 
 

male male 1 1 2 2 3 3 4 4 5 5log I G G G G G
1

p

p
      

 
       

 
 

 
where p is the probability (prospective) of an individual having the disease, β is the baseline 
coefficient, βmale  is a gender coefficient for male samples, Imale{0,1} is an indicator for 
gender (1 being male), and γ1-γ5 are the coefficients for the genotype effects of each of the 
five HLA alleles included in our model, denoted here as G1 - G5 , where Gx {0,1,2} for each 
of them. Here, G1 – G4 are the genotypes for the four risk factors for which there is 
convincing evidence of association with MS, namely DRB*15:01, DRB*13:03, DRB*03:01 
and A*02:01. G5 denotes HLA alleles for which there is some evidence of co-clustering with 
A*02:01 and DRB*13:03 in the GENECLUSTER analysis, namely A*68:01 and 
DRB*08:01. 
 
Table S30. Association of key alleles in defined risk model for UK cohort 
Locus/allele OR p-value Freq (cases) Freq (controls) 
DRB*15:01 3.22 3.7E-115 0.310 0.133 
DRB*13:03 2.2 3.7E-05 0.015 0.009 
DRB*03:01 1.47 2.2E-10 0.159 0.146 
A*02:01 0.71 3.1E-12 0.184 0.259 
DRB*08:01 1.4 2.5E-02 0.020 0.019 
A*02:05 0.69 1.1E-01 0.007 0.010 
A*02:06 0.73 4.1E-01 0.004 0.005 
A*68:01 0.88 1.1E-03 0.025 0.035 
 
Table S31. Association of key alleles in defined risk model for Italian cohort 
Locus/allele OR p-value Freq (cases) Freq (controls) 
DRB*15:01 2.66 4.0E-10 0.121 0.049 
DRB*13:03 3.09 4.1E-04 0.028 0.011 
DRB*03:01 1.22 1.4E-01 0.113 0.102 
A*02:01 0.76 1.4E-02 0.142 0.182 
DRB*08:01 1.43 1.7E-01 0.028 0.023 
A*02:05 0.78 4.2E-01 0.001 0.009 
A*02:06 1.60 7.4E-01 0.001 0.001 
A*68:01 0.88 5.9E-01 0.029 0.032 
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Table S32. Association of key alleles in defined risk model for Norwegian cohort 
Locus/allele OR p-value Freq (cases) Freq (controls) 
DRB*15:01 3.33 4.7E-11 0.322 0.132 
DRB*13:03 1.53 7.3E-01 0.006 0.004 
DRB*03:01 1.27 2.3E-01 0.151 0.132 
A*02:01 0.68 6.0E-03 0.237 0.322 
DRB*08:01 0.99 9.7E-01 0.041 0.054 
A*02:05 >1 1.1E-01 0.005 0 
A*02:06 0.42 3.3E-01 0.007 0.008 
A*68:01 0.43 4.5E-02 0.018 0.037 
 
Table S33. Association of key alleles in defined risk model for Swedish cohort 
Locus/allele OR p-value Freq (cases) Freq (controls) 
DRB*15:01 2.94 1.4E-36 0.329 0.151 
DRB*13:03 2.76 3.0E-03 0.015 0.006 
DRB*03:01 0.99 7.9E-01 0.106 0.127 
A*02:01 0.62 1.0E-09 0.216 0.317 
DRB*08:01 1.27 1.7E-01 0.043 0.044 
A*02:05 1.09 8.7E-01 0.004 0.004 
A*02:06 1.47 3.7E-01 0.011 0.010 
A*68:01 0.84 2.9E-01 0.044 0.046 
 
Table S34. Association of key alleles in defined risk model for USA cohort 
Locus/allele OR p-value Freq (cases) Freq (controls) 
DRB*15:01 3.25 1.5E-93 0.301 0.120 
DRB*13:03 2.35 1.3E-06 0.023 0.013 
DRB*03:01 1.39 4.4E-06 0.126 0.115 
A*02:01 0.77 9.0E-06 0.179 0.227 
DRB*08:01 1.25 1.5E-01 0.023 0.024 
A*02:05 0.55 2.6E-02 0.006 0.012 
A*02:06 1.48 4.8E-01 0.004 0.003 
A*68:01 1.08 5.3E-01 0.039 0.036 
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Table S35. Association of key alleles in defined risk model for German cohort 
Locus/allele OR p-value Freq (cases) Freq (controls) 
DRB*15:01 3.07 1.4E-48 0.302 0.134 
DRB*13:03 2.72 4.8E-06 0.027 0.014 
DRB*03:01 1.33 5.2E-03 0.113 0.104 
A*02:01 0.8 2.1E-03 0.193 0.235 
DRB*08:01 1.49 2.3E-02 0.031 0.029 
A*02:05 0.96 9.2E-01 0.006 0.006 
A*02:06 0.58 4.3E-01 0.003 0.003 
A*68:01 0.88 4.1E-01 0.036 0.043 
 
Table S36. Association of key alleles in defined risk model for French cohort 
Locus/allele OR p-value Freq (cases) Freq (controls) 
DRB*15:01 4.49 7.4E-22 0.281 0.091 
DRB*13:03 1.84 1.5E-01 0.022 0.016 
DRB*03:01 1.11 7.3E-01 0.104 0.115 
A*02:01 0.74 2.2E-02 0.168 0.226 
DRB*08:01 2.26 1.4E-02 0.035 0.023 
A*02:05 0.21 8.4E-02 0.001 0.009 
A*02:06 0.94 9.7E-01 0.001 0.001 
A*68:01 0.81 5.6E-01 0.018 0.025 
 
Table S37. Association of key alleles in defined risk model for Finnish cohort 
Locus/allele OR p-value Freq (cases) Freq (controls) 
DRB*15:01 3.03 4.2E-32 0.295 0.133 
DRB*13:03 1.77 3.2E-01 0.005 0.005 
DRB*03:01 1.12 9.0E-01 0.086 0.101 
A*02:01 0.78 1.4E-03 0.214 0.271 
DRB*08:01 1.87 6.7E-09 0.142 0.101 
A*02:05 0.02 1.6E-01 0 0.001 
A*02:06 1.43 1.9E-01 0.030 0.025 
A*68:01 0.91 4.6E-01 0.070 0.069 
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Table S38. Association of key alleles in defined risk model for combined cohorts 
Locus/allele OR p-value 
DRB*15:01 3.08 <1E-312 
DRB*13:03 2.43 1.3E-11 
DRB*03:01 1.26 3.6E-10 
A*02:01 0.73 9.1E-23 
DRB*08:01 1.18 1.6E-07 
A*02:05 0.76 1.5E-01 
A*02:06 1.23 5.1E-01 
A*68:01 0.97 6.1E-01 

 
Table S39. Association with MS in each cohort for each of A*02:01, DRB*13:03, and 
DRB*03:01 under an additive model, after including DRB*15:01 as an independent covariate 
in the risk model. For the leftmost -log10 p-value and OR, we have assumed a general (2-
parameter) model for the effect of DRB*15:01 that allows for departures from additivity. For 
the rightmost -log10p-value and OR, we have assumed the effect of DRB*15:01 to be additive. 
 

a) A*02:01. 

Cohort -log10P OR -log10P OR 
SWE 9.75 0.60 9.23 0.62 
NOR 2.60 0.63 2.41 0.65 
FIN 3.05 0.75 2.73 0.78 
FRA 1.80 0.71 1.72 0.73 
ITA 1.77 0.76 1.67 0.81 
USA 6.39 0.74 6.01 0.76 
GER 3.23 0.77 3.16 0.78 
UK 15.44 0.66 14.48 0.68 

 
 

b) DRB*13:03. 

Cohort -log10P OR -log10P OR 
SWE 2.95 3.07 2.87 2.98 
NOR 0.29 1.88 0.28 1.69 
FIN 0.39 1.50 0.36 1.45 
FRA 0.90 1.79 0.88 1.77 
ITA 3.28 2.98 3.22 2.92 
USA 5.49 2.27 5.36 2.23 
GER 5.29 2.63 5.11 2.56 
UK 4.11 2.11 4.00 2.07 
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c) DRB*03:01. 

Cohort -log10P OR -log10P OR 
SWE 0.26 1.07 0.22 1.06 
NOR 1.21 1.42 1.11 1.39 
FIN 0.20 1.06 0.19 1.06 
FRA 0.24 1.10 0.20 1.09 
ITA 0.99 1.24 0.94 1.22 
USA 5.86 1.41 5.44 1.38 
GER 2.82 1.36 2.59 1.33 
UK 13.61 1.56 12.61 1.52 
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