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Abstract

We show that a recurrent, second-order neural network using a real-time, forward
training algorithm readily learns to infer small regular grammars from positive and neg-
ative string training samples. We present simulations which show the effect of initial
conditions, training set size and order, and neural network architecture. All simula-
tions were performed with random initial weight strengths and usually converge after
approximately a hundred epochs of training. We discuss a quantization algorithm for
dynamically extracting finite state automata during and after training. For a well-
trained neural net, the it extracted automata constitute an equivalence class of state
machines that are reducible to the minimal machine of the inferred grammar. We then

show through simulations that many of the neural net state machines are dynamically
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stable, i.e. they correctly classify many long unseen strings. In addition, some of these
extracted automata actually outperform the trained neural network for classification of

unseen strings.

1 INTRODUCTION

Grammatical inference, the problem of inferring grammar(s) from sample strings of a
language, is a hard problem, even for regular grammars; for a discussion of the levels of
difficulty see [Gold 78] and [Angluin 83]. Consequently, there have been many heuristic
algorithms developed for grammatical inference; which either scale poorly with the number
of states of the inferred automata or require additional information such as restrictions
on the type of grammar or the use of queries [Angluin 83]. For a summary of inference
methods, see [FFu 82], [Angluin 83] and the recent, comprehensive summary by [Miclet 90].

The history of finite state automata and neural networks is a long one. For example,
[Minsky 67] proved that ‘Every finite-state machine is equivalent to, and can be simulated
by some neural network.” More recently the training of first-order recurrent neural networks
that recognize finite state languages was discussed by [Williams 89], [Cleeremans 89] and
[Elman 90]. The recurrent networks were trained by predicting the next symbol and using
a truncation of the backward recurrence. [Cleeremans 89] concluded that the hidden unit
activations represented past histories and that clusters of these activations can represent
the states of the generating automaton. [Mozer 90] applies a neural network approach
with a second-order gating term to a query learning method [Rivest 87]. These methods
([Rivest 87] and [Mozer 90]) require active exploration of the unknown environments, and

produce very good finite state automata (FSA) models of those environments.



We discuss a recurrent neural network solution to grammatical inference and show that
second-order recurrent neural networks learn fairly well small regular grammars with an
infinite number of strings. This greatly expands upon our previous work [Giles 90] and
[Liu 90] which only considered regular grammars of unusual state symmetries. Our ap-
proach is similar to that of [Pollack 90] and differs in the learning algorithm (the gradient
computation is not truncated) and the emphasis on what is to be learned. In contrast to
[Pollack 90], we emphasize that a recurrent network can be trained to exhibit fixed-point
behavior and correctly classify long, previously unseen, strings. [Watrous 92] illustrates
similar results using another complete gradient calculation method. We also show that
from different trained neural networks, a large equivalence class of FSA can be extracted.
This is an important extension of the work of [Cleeremans 89] where only the states of the
FSA where extracted. This work illustrates a method that permits not only the extraction

of the states of the FSA, but the full FSA itself.

2 GRAMMARS

2.1 Formal Grammars and Grammatical Inference

We give a brief introduction to formal grammars and grammatical inference; for a thor-
ough introduction, we recommend respectively, [Harrison 78] and [Fu 82]. Briefly, a gram-
mar G is a four tuple {N,T,P,S}, where N and T are sets of nonterminals and terminals
(alphabet of the grammar), P a set of production rules and S the start symbol. For every
grammar, there exists a language L, a set of strings of the terminal symbols, that the gram-
mar generates or recognizes. There also exist automata which recognize and generate that

grammar. In the Chomsky hierarchy of phrase structured grammars, the simplest grammar



and its associated automata are regular grammars and finite state automata (FSA). This
is the class of grammars we will discuss here. It is important to realize that all gram-
mars whose string length and alphabet size are bounded are regular grammars and can be
recognized and generated, maybe inefficiently, by finite state automata.

Grammatical inference is concerned mainly with the procedures that can be used to
infer the syntactic rules (or production rules) of an unknown grammar G based on a finite
set of strings 7 from L(G), the language generated by G and possibly also on a finite set
of strings from the complement of L(G) [Fu 82]. Positive examples of the input strings are
denoted as 7, and negative examples as Z_. We replace the inference algorithm with a
recurrent second-order neural network, and the training set consists of both positive and

negative strings.

2.2 Grammars of Interest

In order to explore the inference capabilities of the recurrent neural net, we have cho-
sen to study a set of seven relatively simple grammars originally created and studied by
[Tomita 82] and recently by [Pollack 90], [Giles 91], and [Watrous 92]. We hypothesize that
formal grammars are excellent learning benchmarks; that no feature extraction is required
since the grammar itself constitutes the most primitive representation. For very complex
grammars, such as the regular grammar that represents Rubik’s cube, the feature extrac-
tion hypothesis might break down and some feature extraction method, such as diversity
[Rivest 87], would be necessary. The grammars shown here are simple regular grammars
and should be learnable. They all generate infinite languages over {0,1}* and are repre-
sented by finite state automata of between three and six states. Briefly, the languages these

grammars generate can be described as follows:



#1— 1%,

#2— (10,

#3 — an odd number of consecutive 1’s is always followed by an even number of con-
secutive 0’s,

#4 — any string not containing “000” as a substring,

#5 — even number of 0’s and even number of 1’s, (see p383, [Giles 90]), [our interpre-
tation of Tomita #5],

#6 — number of 1’s - number of 0’s is a multiple of 3,

H#7 — 0% 1% 0% 1%,

The FSA for Tomita grammar #4 is given in figure lc. Note that this FSA contains a so-
called “garbage state”, that is, a non-final state in which all transition paths lead back to
the same state. This means that the recurrent neural net must not only learn the grammar
but also its complement and thus correctly classify negative examples. Not all FSA will
have garbage states. In this case there are no situations where “illegal characters” occur —

there are no identifiable substrings which could independently cause a string to be rejected.

3 RECURRENT NEURAL NETWORK

3.1 Architecture

Recurrent neural networks have been shown to have powerful capabilities for modeling
many computational structures; an excellent discussion of recurrent neural network models
and references can be found in [Hertz 91]. To learn grammars, we use a second-order re-
current neural network [Lee 86], [Giles 90], [Sun 90], [Pollack 90]. This net has N recurrent

hidden neurons labeled S;; L special, nonrecurrent input neurons labeled Ij; and N? x L



real-valued weights labeled W;;;.. Aslong as the number of input neurons is small compared
to hidden neurons, the complexity of the network only grows as O(N?), the same as a linear
network. We refer to the values of the hidden neurons collectively as a state vector S in
the finite N-dimensional space [0,1]"Y. Note that the weights W,k modify a product of the
hidden 5; and input /; neurons. This quadratic form directly represents the state transition
diagrams of a state process — {input, state} = {neatstate}. This recurrent network ac-
cepts a time-ordered sequence of inputs and evolves with dynamics defined by the following
equations:

S = (=), ==Y WS,

7.k

where ¢ is a sigmoid discriminant function. Each input string is encoded into the input
neurons one character per discrete time step t. The above equation is then evaluated for
each hidden neuron 5; to compute the next state vector S of the hidden neurons at the next
time step ¢t + 1. With unary encoding the neural network is constructed with one input
neuron for each character in the alphabet of the relevant language. This condition might

be restrictive for grammars with large alphabets.

3.2 Training Procedure

For any training procedure, one must consider the error criteria, the method by which
errors change the learning process, and the presentation of the training samples. The
error function Fjy is defined by selecting a special “response” neuron Sy which is either on
(S0 > 1 —¢) if an input string is accepted, or off (5¢ < ¢€) if rejected, where € is the response
tolerance of the response neuron. We define two error cases: (1) the network fails to reject

a negative string 7_ (i.e. So > €); (2) the network fails to accept a positive string 7, (i.e.



So < 1 —€). For these studies, the acceptance or rejection of an input string is determined

only at the end of the presentation of each string. The error function is defined as:
1
Eo = 5(n0~ s§2.

where 75 is the desired or target response value for the response neuron Sp. The target
response is defined as 79 = 0.8 for positive examples and 79 = 0.2 for negative. The
notation S(()f) indicates the final value of Sy, i.e., after the final input symbol.

The training is an on-line (real-time) algorithm that updates the weights at the end of

each sample string presentation (assuming there is an error Fy > .5¢%) with a gradient-

descent weight update rule:
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where a is the learning rate. We also add a momentum term, an additive update to
AWipp, which is n, the momentum, times the previous AWj,,,,. To determine AWy, the

852»(f)/8Wlmn must be evaluated. From the recursive network state equation, we see that
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where ¢’ is the derivative of the discriminant function. In general, f and f — 1 can be
replaced by any t and t — 1, respectively. These partial derivative terms are calculated
iteratively as the equation suggests, with one iteration per input symbol. This on-line
learning rule is a second order form of the recurrent net of [Williams 89]. The initial terms
852»(0)/8W1mn are set to zero. After the choice of the initial weight values, the as}’f)/awlmn
can be evaluated in real time as each input I,gt) enters the network. In this way, the error

term is forward-propagated and accumulated at each time step t. However, each update of



asft)/awlmn requires O(N* x L?) terms. For N >> L, this update is O(N*) which is the
same as a linear network. This could seriously prohibit the size of the recurrent net if it

remains fully interconnected.

3.3 Presentation of Training Samples

The training data consists of a series of stimulus-response pairs, where the stimulus
is a string over {0,1}*, and the response is either “1” for positive examples or “0” for
negative examples. The positive and negative strings, Z, and Z_, are generated by a source
grammar prior to training. Recall that at each discrete time step, one symbol from the
string is presented to the neural network. There was no total error accumulation as occurs
in batch learning; training occurred after each string presentation.

The sequence of strings during training may be very important. In order to avoid too
much bias (such as short versus long, positive versus negative), we randomly chose the
initial training set of 1024 strings, including Tomita’s original set, from the set of all strings
of length less than 16 (65,535 strings). As the network starts training, the network only
gets to see some small randomly-selected fraction of the training data, about 30 strings.
The remaining portion of the data is called “pre-test” training data, which the network gets
to see only after it either classifies all 30 examples correctly (i.e., for all strings |F| < €), or
reaches a maximum number of epochs (one epoch = the period during which the network
processes each string once). This total maximum number of epochs is 5000 and is set before
training. When either of these conditions is met, the network checks the pre-test data.
The network may add up to 10 misclassified strings in the pre-test data. This prevents

the training procedure from driving the network too far towards any local minima that



the misclassified strings may represent. Another cycle of epoch training begins with the
augmented training set. If the net correctly classifies all the training data, the net is said
to converge. This is a rather strict sense of convergence. The total number of cycles that
the network is permitted to run is also limited, usually to about 20.

An extra end symbol is added to the string alphabet to give the network more power in
deciding the best final state S configuration. For encoding purposes this symbol is simply
considered as another character and requires another input neuron. Not that this does not
increase the complexity of the FSA! In the training data, the end symbol appears only at

the end of each string.

3.4 Extracting State Machines

As the network is training (or after training), we apply a procedure for extracting what
the network has learned — i.e., the network’s current conception of the FSA it is learning
(or has learned). The FSA extraction process includes the following steps: 1) clustering of
F'SA states, 2) constructing a transition diagram by connecting these states together with
the alphabet labelled arcs, 3) putting these transitions together to make the full digraph -
forming loops, and 4) reducing the digraph to a minimal representation. The hypothesis
is that during training, the network begins to partition (or quantize) its state space into
fairly well-separated, distinct regions or clusters, which represent corresponding states in
some finite state automaton (see Figure 1). See [Cleeremans 89] for another clustering
method. One simple way of finding these clusters is to divide each neuron’s range [0,1] into
¢ partitions of equal width. Thus for N hidden neurons, there exist ¢" possible partition
states. The FSA is constructed by generating a state transition diagram, i.e. associating

an input symbol with the partition state it just left and the partition state it activates.



The initial partition state, or start state of the FSA, is determined from the initial value of
S(t=0)If the next input symbol maps to the same partition state value, we assume that a
loop is formed. Otherwise, a new state in the F'SA is formed. The FSA thus constructed
may contain a maximum of ¢V states; in practice it is usually much less, since not all
partition states are reached by S(Y). Eventually this process must terminate since there are
only a finite number of partitions available; and, in practice, many of the partitions are
never reached. The derived FSA can then be reduced to its minimal FSA using standard
minimization algorithms [Hopfcroft 79]. [This minimization process does not change the
performance of the FSA; the unminimized FSA has same time complexity as the minimized
FSA. The process just rids the FSA of redundant, unnecessary states and reduces the space
complexity.] The initial value of the partition parameter is ¢ = 2 and is increased only if the
extracted F'SA fails to correctly classify the 1024 training set. It should be noted that this
FSA extraction method may be applied to any discrete-time recurrent net, irregardless of
order or hidden layers. Of course this simple partitioning or clustering method could prove

difficult for large numbers of neurons.

4 RESULTS - SIMULATIONS

At the beginning of each run, the network is initialized with a set of random weights,
each weight chosen between [-1.0,1.0]. Unless otherwise noted, each training session has

its own unique initial weight conditions. The initial value of the neurons SZ»(tZO) = d0;
though simulations with these values chosen randomly on the interval [0.0,1.0] showed little
significant difference in convergence times. For on-line training the initial hidden neuron

values are never reset. The hidden neuron values update as new inputs are seen and when
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weights change due to string misclassification.

The simulations shown in Table 1 focus on Tomita’s grammar #4. However, our studies
of Tomita’s other grammars suggest that the results presented are quite general and apply
to any grammar of comparable complexity. Column 1 is a run identification number. The
only variables were the number of hidden neurons (3,4,5), in column 2, and the unique
random initial weights. In column 3 the initial training set size is 32. Column 4 contains
the initial training set size plus all later errors made on the training set. The number of
epochs for training is shown in Column 5. If the network doesn’t converge in 5000 epochs,
we say the network has failed to converge on a grammar. The number of errors in the
test set (both positive and negative) consisting of the original universe of all strings up to
length 15 (65,535-1024 strings) is shown in columns 6, 6a and 6b, and is a measure of the
generalization capacity of the trained net. For columns 6 and 6a the error tolerance e is
respectively < 0.2 and < 0.5. As expected if the error tolerance is relaxed, the trained
network correctly classifies significantly more of the 65K test set. In column 6b are the
number of errors for a randomly chosen set of 850,000 strings of length 16 to 99 with an
error tolerance < 0.5. The information related to the extraction of FSA from the trained
neural network is in columns 7-9. The number of neuron partitions (or quantizations)
necessary to obtain the FSA which correctly recognizes the original training set is shown in
column 7. The partition parameter ¢ is not unique and all or many values of q will actually
produce the same minimal FSA if the grammar is well-learned. The number of states of the
unminimized eztracted FSA is shown in column 8. The extracted FSA is minimized and in
column 9 the number of states of the minimal extracted FSA is shown.

The minimal FSA for the grammar Tomita #4 is 4 states [see figure 1c| if the empty

11



string is accepted and 5 states if the empty string is rejected. The empty string was not
used in the training set; consequently, the neural net did not always learn to accept the
empty string. However, it is straightforward to include the empty string in the training
set. In Figures la and 1b are the extracted FSA for two different successful training trial
Runs [#104 and #104b in Table 1.] for a 4-neuron neural network. The only difference
between the two trials is the initial weight values. The minimized FSA [Hopfcroft 79] for
Figures 1a and 1b is shown in Figure 1c. All states in the minimized FSA are final states
with the exception of state 0, which is a garbage state. For both cases and in all trials in
Table 1 which converged, the minimized extracted FSA is the same as the minimal FSA of
Tomita #4. What is interesting is that some extracted F'SA, for example trial Runs #60
and #104e, will correctly classify all unseen strings whereas the trained neural networks,

from which the FSA were extracted, will not.

5 CONCLUSIONS

Second-order recurrent neural networks are capable of learning small regular grammars
rather easily and generalizing very well on unseen grammatical strings. The training results
of these neural networks for small simple grammars is fairly independent of the initial values
of the weight space and usually converges using an incremental on-line, forward-propagation,
training algorithm. For a well-trained neural net, the generalization performance on long
(string lengths < 100) unseen strings can be perfect. A heuristic method was used to
extract finite state automata (FSA) from the neural network, both during and after training.
(It would be interesting if a neural network could also learn to extract the proper FSA.)

Using a standard FSA minimization algorithm, the extracted FSA can be reduced to an
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it equivalent minimal-state FSA. Note that the minimization procedure only reduces the
space complexity of the F'SA; the time complexity of the minimized and unminimized FSA
remains the same. From the extracted FSA, minimal or not, the production rules of the
learned grammar are evident.

There are some interesting aspects to the extracted FSA. Surprisingly, each of the un-
minimized FSA shown in the table is unique, even those with the same number of states
(i.e., see Runs #105b,d,i,j). For the simple grammar Tomita#t4, nearly all networks con-
verged during training (learned the complete training set). For all cases that converged, it
is possible to extract state machines that are perfect, i.e. the FFSA of the unknown source
grammar. For these cases the minimized, extracted FSA with the same number of states
constitute a large equivalence class of neural-net-generated FSA, i.e. all unminimized FSA
are equivalent and have the same performance on string classification. This equivalence
class extends across neural networks which vary both in size (number of neurons) and ini-
tial conditions. Thus, the extracted FSA give some indication of how well the neural network
learns the grammar.

In fact, for some of the well-trained neural nets, for example Run #104, all extracted,
minimized FSA for a large range of partition parameters (2-50) are the same as the ideal
FSA of the source grammar. We speculate that for these well-trained neural nets, the
extracted, minimal FSA will be independent of the choice of the partition parameter. These
perfect FSA outperform some of the trained neural networks in correct classification of
unseen strings. (By definition, a perfect FSA will correctly classify all unseen strings).
This is not surprising due to the possibility of error accumulation as the neural network

classifies long unseen strings [Pollack 90]. However, when the neural network has learned the
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grammar well, its generalization performance is also perfect (for all strings tested). Thus,
the neural network can be considered as a tool for extracting a FSA that is representative
of the unknown grammar. Once the FSA is extracted, it can be used independently of the
trained neural network.

Can we make any arguments regarding neural net capacity and scalability? In our
simulations the number of states of the minimal FSA that was extracted was comparable
to the number of neurons in the network; but the actual eztracted, unminimized FSA had
many more states than neurons. However, for Runs #105e and #104h the neural network
actually learned an elegant solution, the perfect FSA of the grammar (no minimization
was necessary). The question of FSA state capacity and scalability is unresolved. Further
work must show how well these approaches can model grammars with large numbers of
states and what F'SA state capacity of the neural net is theoretically and experimentally
reasonable. How a complete-gradient calculation approach using second-order recurrent
networks compares to other gradient-truncation, first-order methods [Cleeremans 89] and
[Elman 90] is another open question. Surprisingly, a simple clustering approach derives

useful and representative FSA from a trained or training neural network.
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