Evolving memory cell structures
for sequence learning

Justin Bayer, Daan Wierstra, Julian Togelius and Jiirgen Schmidhuber

IDSTA, Galleria 2, 6928 Manno-Lugano, Switzerland
{justin, daan, julian, juergen}@idsia.ch

Abstract. Long Short-Term Memory (LSTM) is one of the best recent
supervised sequence learning methods. Using gradient descent, it trains
memory cells represented as differentiable computational graph struc-
tures. Interestingly, LSTM’s cell structure seems somewhat arbitrary.
In this paper we optimize its computational structure using a multi-
objective evolutionary algorithm. The fitness function reflects the struc-
ture’s usefulness for learning various formal languages. The evolved cells
help to understand crucial features that aid sequence learning.

1 Introduction

The problem of sequence learning is to learn the underlying function of a dynamic
system, so as to be able either to produce the next step in a sequence produced by
the system (sequence prediction), or correctly classify a sequence produced by the
system (sequence classification). Sequence learning is tremendously important in
various applications, e.g. stock market prediction and speech and handwriting
recognition.

Neural networks are among the best tools available for general sequence learn-
ing. Most often, the sliding time window approach is used, where a finite subse-
quence is presented to a feedforward neural network. This approach is ultimately
limited by the size of the time window. In the last decade, sequence prediction
using recurrent neural networks has attracted some attention because of their
simplicity and potential power. Here, the whole sequence is presented to the
network, which is then trained by backpropagation through time (BPTT) [15].
However, there are some serious practical limitations of most types of RNNs due
to their inability to capture long-term time dependencies. They suffer from the
problem of vanishing gradient [7], the fact that the gradient signal vanishes as
the error signal is propagated back through time. Because of this, events more
than 10 time steps apart can typically not be related.

1.1 Dealing with vanishing gradient: LSTM

One method purposely designed to avoid this problem is Long Short-Term Mem-
ory (LSTM [8]), which is a special RNN architecture capable of capturing long



Inputs

Fig. 1. Three versions of the LSTM cell. Input units are in teal, output units in yellow.
The gate units are shown as a half circle with as the output part and two different
squares as inputs. The time delayed connection is dashed, and the red circle is the state
unit. The second version of the LSTM cell adds a forget gate, and the third version
adds peepholes.

term time dependencies. The defining feature of this architecture is that it con-
sists of a number of memory cells, which can be used to store activations arbi-
trarily long. Access to the memory cell is gated by units that learn to open or
close depending on the context. The memory cell’s internal structure consists of
a number of connected computational units, including the sigmoid function, the
tanh function, and the gating function, which are connected in a graph struc-
ture. The fact that these units are differentiable ensures the memory cell as a
whole can be used in conjunction with BPTT using the chain rule as a connect-
ing principle. LSTM networks have been shown to outperform other RNNs on
numerous time series requiring the use of deep memory [13].

LSTM, unlike conventional RNNs, has been shown to be able to capture long-
term time dependencies, learn precise timing, and generalize well on examples
of both context-free and context-sensitive languages such as a"b" and a"b"c",
respectively, whereas normal RNNs completely failed to capture the underlying
structure of the problem [12].

Interestingly, the development of LSTM was incremental (see figure 1). First,
the concept of an internal state was introduced, guarded by input and output
gates [8]. A time delay connection from the state to itself with weight one ensured
that the state retained its value, unless the input gate was opened. Then, the con-
cept of a forget gate was introduced, which modulates the state’s self-connection
and enables precise timing abilities [3]. Finally, peepholes were devised, which are
direct connections from the state to all gates [4]. This final step enabled LSTM
to learn the underlying structure of the context-sensitive language a™b"c™ up to
hundreds of time steps using just 10 sample sequences for training [2]. LSTM
has recently been shown to perform excellently on many tasks, including speech
processing and handwriting recognition (e.g. see [10]).



The incremental design evolution of the LSTM cell outlined above, taken
together with its seemingly somewhat arbitrary structure, suggests that the de-
velopment of LSTM could be retraced with artificial evolution, and that the
LSTM design could even be bettered using the same means. In particular, we
propose to use techniques introduced to evolve neural network topologies to
evolve the internal structure of LSTM-like memory cells, using the sequence
learning capability of networks of such cells as fitness functions.

1.2 Evolving neural topologies

A large body of work exists where evolutionary algorithms are used to create
and optimize topologies of neural networks. Topologies have been evolved for a
number of different purposes, including direct function approximation (without
subsequent learning), reinforcement learning, and capacity to be trained through
gradient descent methods.

A core distinction can be made between indirect or generative approaches to
topology evolution, and direct approaches. The former try to replicate nature’s
ability to encode complex phenotypes (e.g. human brains) with vastly simpler
genotypes (e.g. human DNA), using graph rewriting systems or models of bio-
logical processes [9,6]. Apparently, the promise of scalability motivating these
approaches have so far not been realized. The latter category, which includes
the empirically successful NEAT algorithm [14], instead encodes the structure
directly into the genome. A central concept of NEAT is complexification; a net-
work starts out small, but the mutation operators can add new connections as
well as split existing connections to insert new neurons. The algorithm used in
this paper has similarities to NEAT, but is simplified in order to fit our needs.

Usually, the weights of the neural connections are evolved at the same time
as the topology. However, Whiteson [16] evolved network topologies without
weights, with a fitness function based on their ability to be used as function ap-
proximators for TD-learning. Similarly, in this paper we do not evolve connection
weights, but use fitness functions based on capacity for sequence learning.

1.3 This paper: Evolving cell structures

The purpose of this paper is to investigate the space of architectural alternatives
to LSTM and understand the structural features promoting successful sequence
learning through evolving structures of memory cells so as to optimize their
sequence learning capability. We view each memory cell as a miniature neural
network, consisting of a graph of connected computational units such as the
sigmoid, the tanh and the gating unit. For every run, the structure of the cell
is replicated a number of times to form a complete recurrent neural network.
We then use a NEAT-inspired direct topology evolution algorithm to evolve this
structure.

The fitness functions for structures are based on how well networks of cells
with the tested structure can learn different sequences using gradient descent.
(Note that connection weights are reset between fitness evaluations; evolution is



Outputs

Inputs

Fig. 2. A network constructed with hidden layer of three LSTM cells. The recurrent
connections from the hidden layer to itself, necessary for the cells to communicate with
each other, are shown as dashed.

thus not “Lamarckian”). As it is crucial that all cell structures can be trained by
gradient descent, we constrain the structures to be direct acyclic graphs (DAGS)
of differentiable units, plus recurrent connections: time-delay connections which
break the DAG property but only propagate activations between time steps.
We start with evolving cells capable of learning simple versions of the prob-
lems; once these problems can be learnt satisfactorily, we increase the complexity
of the problem, a practice known as incremental evolution [5]. So as not to over-
specialize and develop cell structures only capable of learning solutions to one
type of problem, we test each cell on two problems. Using the learning capability
on each problem as a separate fitness measure means that we pose cell struc-
ture evolution as a multiobjective optimization problem, requiring the use of a
multiobjective evolutionary algorithm (MOFEA) in our case the NSGA-II [1].

2 Methods

2.1 Memory cell representation

A memory cell structure is a set of computational units and a graph connecting
them to each other. Connections between units possess a flag indicating whether
the connection is time delayed and another flag indicating whether the connec-
tion is parameterized (i.e. has a trainable weight) or has a fixed parameter of 1.0.
The former case is called a linear connection while the latter is called an identity



connection. There are several types of computational nodes: linear, sigmoid, the
hyperbolic tangent and the ‘gate’ unit, each having its own transfer function.

— The linear node takes input = and produces output id(x) = .

— The sigmoid node takes input z, and produces output o(x) =1/(1 + e~ %).

— The tanh node is the familiar hyperbolic tangent.

— The most interesting type of node used in this paper, however, is the gat-
ing unit that was first introduced in the LSTM cell. Its structure could
be thought of as a continuous version of the if ... then ... statement,
and has two inputs: one condition and one signal. Its transfer function is
g(x1,x2) = o(x1)x2. It is this unit type that enables LSTM’s internal state
to open and close to incoming signals, depending on the context.

All units have two additional flags: one indicating whether a unit is an input unit
to the cell, i.e. receives input from outside the cell, and one indicating whether
the unit is an output unit, connecting to other cells and network outputs.

2.2 Evolutionary algorithm

We used the NSGA-II multiobjective evolutionary algorithm (MOEA), as it is
one of the most widely used MOEAs and known for robust performance under
diverse conditions [1]. A population size of 100 was used. For simplicity, no
recombination was used; mutation was the only variation operator.

A cell structure is mutated by applying mutations from the list below a
geometrically distributed number of times. The expected amount of mutations
is given by Enp =, cus #[m], where 7w[m)] is the probability of each mutation
type. The probabilities used in our experiments are given in parentheses in the
following list of available mutations; these probabilities were chosen carefully
in order to prevent bloating of the structure. If any mutation breaks the DAG
property by making the structure cyclic, that mutation is simply rolled back.

— Add unit A random connection is split into two parts with a new linear unit
in between. (7[] = 0.1)

— Add gate unit A unit is added as in Add unit but also assigned the gate
transfer function. Its second input is connected to a random unit. (7[-] = 0.2)

— Add connection Two units are randomly chosen and connected by an identity
connection which is not time delayed. (7[-] = 0.15)

— Add time delay connection Two units are connected by an identity connection
which is time delayed. This connection is allowed to break the DAG property.
(w[] = 0.15)

— Change transfer function The transfer function of a randomly chosen unit is
set to another transfer function. In the case of the gate transfer function, a

new connection to the second input of the unit is made. (7[-] = 0.3)
— Change connection The type of a randomly chosen connection is switched
from identity to linear or vice versa. (7[-] = 0.25)

— Flip time delay The time delay flag of a connection is flipped. (7[-] = 0.25)
— Flip input The input flag of a random unit is flipped. ((7[-] = 0.15)



— Flip output The output flag of a random unit is flipped. (7[-] = 0.15)
— Tidy up If a random unit is not reachable from the input, or the output is
not reachable from that unit, it is removed. (7[-] = 0.5)

2.3 Fitness function

At every fitness evaluation, a cell structure was used to create a recurrent network
with 5 hidden memory cells connected to all inputs and all outputs. (Similar to
the LSTM network in figure 2, except for the nature and number of the cells.)
To calculate the fitness of the structure, three separate BPTT training runs were
performed using different weight initializations. (Since each unit is differentiable,
we can apply standard BPTT to learn the parameters of the network.) The
negative of the highest error was taken to be the actual fitness value. Weights
were initialized between -0.1 and 0.1, and learning rate 0.001 with momentum
0.99 was used. Training went on for 500 epochs.

The training was repeated and a new fitness was assigned for each objective.
The objectives were to recognize context-free or context-sensitive languages. In
each case, the fitness calculation proceeded incrementally: only when structures
had been evolved that could learn to recognize short strings of a language, longer
strings were tried.

Context-free and Context-sensitive Languages Context-free languages are
languages that can be recognized by a non-deterministic push-down automaton.
In general, determining whether a string of symbols belongs to a context-free
language requires remembering some symbols in the string seen so far, which
rules out the use of non-recurrent architectures. In order to evolve memory cells,
we chose the context-free language a™b™, which requires memory of up to n time
steps. The task was implemented using networks with 3 input units, one for each
symbol (a, b) plus the start symbol S, and three output units, one for each symbol
plus the termination symbol T. Symbol strings were presented sequentially to
the network, with each symbol’s corresponding input unit set to 1, and the other
three set to -1. At each time step, the network must predict the possible symbols
that could come next in a legal string. Legal strings in a™b™ are those in which
the number of as and bs is equal, e.g. ST, SabT, SaabbT, SaaabbbT .

This language is very hard for conventional RNNs to learn, and the best
reported results generalize only up to n = 18 given training sequences ranging
from n = 1...10 [17], while LSTM have been shown to generalize up to over
n = 100 [2].

Context-sensitive languages constitute a more complex class of languages.
These are languages that cannot be recognized by deterministic finite-state au-
tomata, and are therefore more complex in some respects than regular languages.
We chose the language a™b™c" as a benchmark, and in this case the set of input
and target values would be:

’Input:\ S \ a \ a \ a \b\b\b\c\c\c‘
[Target:[a/T[a/bla/bla/b[b[b|clc[c[T]




Benchmark
Cell a"b",ny =1..5 | a"b",n = 1..10
Ana 23.2 29.0
Cathy 36.75 36.2
Mary 55.3 40.0
Charlotte 30.4 19.0
LSTM 9.6 27.5

a"b"c",ny = 1..5|a"b"c", ny = 1..10
Ana 7.4 2.0
Cathy 11.8 16.1
Mary 18.1 13.7
Charlotte 9.8 0.2
LSTM 8.9 20.0
a"b™c"n,ny = my = 1..4

Ana 8.0 <,80<
Cathy 8.0 <,80<L
Mary 8.0 <,80<K
Charlotte 8.0 <,80<
LSTM 7.7, 0.7

Fig. 3. Results of four evolved cells, named Ana, Cathy, Mary and Charlotte, on gram-
mar benchmarks compared to LSTM. The table reports the longest strings to which a
network constructed out of the indicated cells could generalize after training, averaged
over ten runs. n: and m; give the ranges of the training sets. Remarkably, some cells
learn better with less training data.

The a™b"c™ is too hard for regular RNNs but LSTM achieves decent to superb
performance on this task. To ensure that the evolved cells were not limited
to being able to learn a single language, we used the related but significantly
different language a"b™a™ as a second benchmark.

3 Results

A typical evolutionary run required roughly one hour per objective per gen-
eration on a 3 Ghz processor. Cell structures capable of learning the desired
languages were typically found within 10 generations. An overview of their per-
formance on the selected languages is given in figure 6.

In one configuration, the context-free language a™bc" was used as one ob-
jective and the context-free language a™b™ as the other. n was increased incre-
mentally as learning capacity increased; when structures had evolved that could
learn to recognize string of lengths 1-5, maximum length was increased to 10.
During runs with this configuration, the cells shown in figure 4 were evolved.

In a second configuration, evolution started out with a context-free language
(a™b™,n € [1,5]) and moved on to a multiobjective setting with one context-free
and one context-sensitive language (a™b™c™ and a'b'ct, (m,n) € [1,4] x [1,4],t €



Fig. 4. An evolved cell, named Mary that can reliably learn the a™b"¢™ grammar (left),
and two others (Cathy and Ana) that can learn the ab" grammar (right and middle).
Standard RNNs cannot learn these languages. Note the absence of any substantial
similarity in their structure.

[1,5]). In most runs with this configuration, a cell capable of learning both
languages was found.

3.1 Genealogical analysis

Figure 5 depicts the evolution of a cell capable of learning the a™b"c" language.
It is interesting to note that the very first step is just a simple recurrent network,
which cannot even learn the a™b™ language to more than a rudimentary level. The
second step increased its performance through a recurrent connection from the
output back to the input, which lowered the learning error on a”b"™ somewhat.
The third stage added a new node, with a time-delay connection in and a linear
connection back to the input, essentially creating three types of recurrence to
the input node. At this stage, the node was able to learn a™b" satisfactorily, but
nothing more complex. The final mutation turned the linear connection back
from the new unit into a time-delay connection, and added a new recurrent
connection on the output. This suddenly enabled several steps of recurrence,
which seems to be necessary to handle more complex languages. The final cell
can successfully learn both a™b"c™ and a™b™a™. Note that it differs significantly
from the LSTM in that it contains neither gates nor peepholes.

3.2 Validation: T-Maze

In order to validate the cells found, we tested them on the deep memory T-Maze
task as described in Bakker et al. The T-maze task was designed to test rein-
forcement learning algorithms’s capability to relate events far apart in history.
Applying the recurrent policy gradient algorithm (Wierstra et al), we found that



Fig. 5. The evolution of cell Charlotte. Although happening over the course of nine
generations, only four mutations were needed in order to evolve a cell capable of the
context sensitive language a"b"c" and the context free language a™b™a".

Cell Success ratio|Average reward
Ana 0.45 -3.895
LSTM 0.35 -7.545
Mary 0.25 -8.915
Cathy 0.0 -54.485
Charlotte 0.0 -57.74

Fig. 6. The found cells tested on the T-Maze task. Each cell was evaluated 20 times.

the cell structure outperforms LSTM. A learning rate of 0.01 and a momentum
of 0.99 was used in conjunction with a batch size of 100 and a discount of 0.99.
A corridor length of 15 was chosen.

Note that we use RL instead of supervised learning. This is significant, since
although we evolved the structure to perform well on sequence prediction, it
actually peforms well on an unrelated reinforcement learning task. This suggests
the evolved cell structures are general and capable of performing wildly different
tasks.

4 Conclusion and discussion

Using an algorithm similar to neural network topology evolution algorithms, we
evolved structures for memory cells capable of learning context-sensitive formal
languages through gradient descent. The fitness functions were based on the
learning capacity of networks of the cells. The end products of evolution were
cells that in many ways were comparable in performance to LSTM, the current
state-of-the-art in gradient-based sequence learning.

Analysis of the (very diverse) evolved cell structures and their genealogies
provided interesting insights into what features contribute to the power of LSTM.
The essential ingredients of LSTM’s success seem to be (1) linear units with fixed
self-connections and (2) nonlinear units (both of which are biologically plausible



10

[11]) while the precise connection structure seems less important. Some of our
evolved structures even lack gates (what used to be our main explanation for
LSTM’s advantage over traditional RNNs) yet retain similar learning ability;
however, other sequence learning problems might still require such gates.

An open question is how big the tradeoff between performance and generality
of a specific cell is. Since LSTM is used in a wide range of applications, we believe
that evolving general cells is actually quite possible. In order to evaluate the
generality of our approach, it is crucial to try our methods on more benchmark
problems from other domains, combining unrelated objectives in one single run.
These could include learning to predict continuous functions (e.g. superimposed
sines), real-world sequence learning problems (e.g. speech processing), and even
reinforcement learning problems. It could also mean using non-gradient-based
training algorithms, such as evolutionary algorithms, for some objectives.

References

1. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,
6:182-197, 2002.

2. F. A. Gers and J. Schmidhuber. LSTM recurrent networks learn simple context
free and context sensitive languages. [EEE Transactions on Neural Networks,
12:1333-1340, 2001.

3. F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual
prediction with LSTM. Neural Computation, 12:2451-2471, 2000.

4. F. A. Gers and N. Schraudolph. Learning precise timing with LSTM recurrent
networks. Journal of Machine Learning Research, 3:2002, 2002.

5. F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior.
Adaptive Behavior, 5:317-342, 1997.

6. F. Gruau. Genetic synthesis of modular neural networks. In Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 318-325. Morgan Kauf-
mann, 1993.

7. S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in re-
current nets: the difficulty of learning long-term dependencies. In S. C. Kremer
and J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks.
IEEE Press, 2001.

8. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, 1997.

9. H. Kitano. Designing neural networks using genetic algorithms with graph gener-
ation system. Complex Systems, 4:461-476, 1990.

10. M. Liwicki, A. Graves, H. Bunke, and J. Schmidhuber. A novel approach to on-line
handwriting recognition based on bidirectional long short-term memory networks.
In Proc. 9th Int. Conf. on Document Analysis and Recognition, volume 1, pages
367-371, 2007.

11. R. C. O'Reilly, T. S. Braver, and J. D. Cohen. A biologically based computational
model of working memory. In A. Miyake and P. Shah, editors, Models of Working
Memory: Mechanisms of Active Maintenance and Executive Control. Cambridge
University Press, New York, 1998.



12.

13.
14.

15.

16.

17.

11

P. Rodriguez and J. Wiles. Recurrent neural networks can learn to implement
symbol-sensitive counting. In NIPS ’97: Proceedings of the 1997 conference on
Advances in neural information processing systems 10, pages 8793, Cambridge,
MA, USA, 1998. MIT Press.

J. Schmidhuber. RNN overview, 2004. http://www.idsia.ch/”juergen/rnn.html.
K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting
topologies. Fvolutionary Computation, 10(2):99-127, 2002.

P. Werbos. Backpropagation through time: What it does and how to do it. In
Proceedings of the IEEE, volume 78, pages 1550—-1560, 1990.

S. Whiteson, M. E. Taylor, and P. Stone. Empirical studies in action selection with
reinforcement learning. Adaptive Behavior, 15:33-50, 2007.

J. Wiles and J. Elman. Learning to count without a counter: A case study of
dynamics and activation landscapes in recurrent networks. In Proceedings of the
Seventeenth Annual Conference of the Cognitive Science Society, pages 482-487,
1995.



