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Abstract

The language K' generated by a grammar is said to represent the set
K of all true statements in a given number-theoretic statement-form if
there is an isomorphism of a special type between K and K'. 1In this
paper two kinds of representation and several classes of languages are
distinguished on the basis of (1) differing definitions of language gene-
rated by a grammar and (2) differing conditions on the form of the rules
in the grammars. The grammars presented generate languages representing
some of the standard number-theoretic forms; the associated functions

and predicates are all primitive recursive.
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Foreword

During the summer of 1963 a group of linguists, logicians, and mathe-
maticians joined the Information Sciences Subdepartment of D-15, System
Sciences, to work on a number of well-defined tasks for Project 702,
Language Processing Techniques. This paper, the result of one of these
special studies, is in the area of mathematical formalizations. In our
development of a program to establish natural language as an operational
language for command and control, 1ogicoémathematical formalism is basic
to: (1) defining the complex aspects of linguistic structure in generative
grammars; (2) developing translation algorithms that relate structural
descriptions of sentences to representations of data; and (3) solving
mathematical problems of translatability between formal languages of
differing complexity.

The material presented in this paper is part of a broad investiga-
tion of the generative capacity of various kinds of grammars. The objective
of investigating the sets represented by context-sensitive languages is to
shed some light on the question of the equivalence of deterministic and
nondeterministic linear-bounded automata (Kuroda, 1963; Myhill, 1960).

The author is indebted to Joyce Friedman for her suggestions and

for her correction of an early draft of this paper.
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GRAMMARS OF NUMBER THEORY: SOME EXAMPLES

I. Representation

Consider a statement-form of formalized elementary number theory

--e.g,,'§1 +7§2 ='§3—— where for any positive integer M,.ﬁ is the numeral

111...1, and where?ci is the ith occurrence, in the statement—fornbof a
M

variable over numerals. A set K' of strings of symbols from the alphabet

R = {#, a;s 8ys s, ...} strongly represents the set K of all true state-

ments in a given statement-form F (with variables'%l,'iz, ...,'§n) if the
strings inK' are just those strings
M M M

#a. la 2...an D4 (i.e., #a

W Al ")
M
1

n

MZ
for which Fi is true}where Fi is the statement obtained from F by sub-
stituting-}—lli for'iifbr each i, 1 =i < n.

For any string @ of symbols of R let N'i(a) be the number of occur-
rences of a; in @; for any statement B in a statement-form F let Ni(B) be
the number of occurrences of the numeral 1 in B in the place of"}‘ci in F.
Then K' represents K if there is an isomorphism between K' and K such
that if o€K' is associated with BeK, then N'i(a) = Ni(B) for all i.
Clearly, if K' strongly represents K, then K' represents K. If K' rep-

resents K, but not strongly, then K' weakly represents K.

The particular sets K' that we shall consider are languages generated
by phrase structure grammars (Chomsky, 1963). Let us distinguish two
definitions of the language generated by such a grammar: In a blocking
grammar the generated language is the set of all #S#-derivatives that

cannot be rewritten by the rules of the grammar; in an oxrdinary grammayr
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the generated language is the set of all #S#-derivatives which contain
only ferminal symbols and which cannot be rewritten by the rules of
the grammar. An ordinary grammar is unfortunate if there is a #S#-
derivative which cannot be rewritten by the rules but which contains a
nonterminal symbol; otherwise, the grammar is fortunate.

If a grammar G generates a language K that represents the set K'
associated with a form F, then G (as well as K) can be said to represent
K', and both G and K can be said to represent F.

In the examples given in Section II all grammars are ordinary and
fortunate; in the examples given in Section III blocking grammars for
K are presented first (since they are, in general, simpler than ordinary
grammars); fortunate (ordinary) grammars, second. To avoid extensive use
of subscripts, x,y,z,a,b, and c are used throughout in place of X5 Xo»
X3, a5 a,» and 33, respectively. Capital Latin letters are nonterminal
symbols in ordinary grammars (Section II); in blocking grammars (Section

III) all letters are capitalized. Examples of grammars generating some

of the sets K are also provided in Section II.

II. Linear and Finite State Languages

A linear grammar is a context-free grammar in which no rule contains

more than one nonterminal symbol in its right-hand side. A finite state

grammar is a linear grammar in which nonterminal symbols in the right-
hand side of rules are either all leftmost or all rightmost.
X +y =z is strongly represented by the linear grammar (la)

S—————aafSZC
&y

T——b(T)c
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X+y =2z is weakly represented by the following finite state (1b)

grammar, where K' = {(ac)X (bc)y ' x21.y =1}:

)
s ——acjy,
T ——bce(T)
x+y=2z | x21.y21.x+y =2z} is generated by the (1c)
linear grammar
s—t Sl
Z+T

T.;_>1% 31

X <y is strongly represented by the linear grammar (2a)

x <7y is weakly represented by the following finite state (2b)

grammar, where K' = {(ab)X b” l x=1.2z21};:

T

]

S-———lpabgsl

T

b (T)
{x <Yy x21.y21.x <y} is generated by the linear grammar (2c¢)

S
S————%l{cril
T—3(D)1
The forms x Sy, X>7, and X 2y can be represented by grammars differ-
ing only slightly from the ones above,

- X+1n =y (mand n fixed and = 1) is strongly represented (3a)

by the linear grammar

S

If n = 0, the form ism. X =y and the grammar reduces to

S—a(s)b"
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m-x +n =-§ is weakly represented by the following finite (3b)
state grammar, where K' = {(abm)X b l x 2z 1}:
(s
s b
——>a Z n)
b g
fm-X+n=y| x21.y21-y =mx +n} is generated by the (3c)

linear grammar

III. Context-Sensitive Lar;guages1

Rules in this section are all of the form P, = 9y where the length
of @2 is no less than the length of @1. Hence, for each grammar, there
is an equivalent context-sensitive grammar (Chomsky, 1959).
§2 =7y is represented by the blocking grammar (4a)

S———(P)AB
P———D(P)

oA ___?( AEED / ____AB%

zAAEEB /
EA ———AE

E

>B / B
Explanation: The strings D"AB (for n=0) are generated. As each D moves
right, two E's are produced for each A. When a D reaches the rightmost

A, two E's and an extra A are produced, and the D becomes a B. E's

lIn this section only strong representations are given. It is easy, for
most of the forms, to show that no weak representation by context-free
grammars is possible. See R. J. Parikh (1961) for a discussion of semi-
linear sets of integers and their relation to context-free grammars.
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become B's before B's, so that to a string with m A's, one A and 2mtl
B's are added. That is,

kB

S

T~p"aB (n21)
pPaB==> p" ‘aanp’s = p™ la?s*

n-m+lAm m

—_— D B

N Dn-mAmABBZmBm2 _ Dn—mAm+1B(m+1)2
_— DA“B“2
— An+1B(n+1)2

The preceding grammar can be made into a fortunate grammar by (4b)

the addition of the rules

(*) a—a /{1
(%) B— b / 5;’;‘}

Without the contexts in the rules (¥*) and (**%), the grammar would be

unfortunate.
Square (X) is represented by the blocking grammar (5a)
S— (B(P))A
P—C(P)
CA—ADDC BA———35AAB
CD——DC BD ——AB
C——A / # B—A / #

Explanation: The strings A and BC"A (n=0) are generated. C's move to
the right through A's and D's, producing two D's for each A but leaving

D's as they are. The single B moves right, tripling each A and changing
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D's to A's, but not moving through C's. The B and the C's both become

A's when they reach the right-hand end of the string. Then

A
S BA . 7A3B ) A[‘L

BC A (n=1)

BC'A ===BA(DDC)"
——a>p(pDC) "
==x3pp%"c"

3A3'A2nBC n- 1A=A2n+3(BCn- 1A)

2r1+3A2 (n-1)+3

— (™" 2a)

8

i§=i (2i43) n2+4n
=DA BC = A BC

2 . 2
s n #mAAL _ A(n+2)

The addition of rule (*) makes the above grammar fortunate.

n l X (n fixed) is represented by the blocking grammar

A) n1
s ——d (A"

c
CA —3BAC
CB SBC
C —)%:gg}/ #
BE ———>EA BD DB
AE——FA AD ———DA
E—A / #__ D

(5b)

(6a)

5C [ #
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Explanation: The strings A" and CAn-1 are generated. C moves to the
right through the A's, adding a B for each A. At the right-hand end
of the string, one B is added, and C becomes either E or D. E moves
back to the left, changing B's and C's into A's and finally becoming
an A itself. D moves back to the left without changing any symbols,
becoming a C when it reaches the left-hand end; then C moves right
again, passing through B's and adding a B for each A. That is,

n

S "
\CA”' 1

car! =" e ——@a™ e {g%

(BA)n- lBE :>EA2n—l ___%AZn
&)Y 18D —=p(BA) ' B——c(Ba)™ B
n-1 n-1 E
———83A) " LBC—— (8BA)™ ‘BB gD}
(8BA)™ 1eRE ——Ea®" 1 30

(84) " 1BBD ==c(8BA)" !B’
etc.

The preceding grammar can be made into a fortunate grammar by {5b)}

adding the rule (*).

X | v is represented by the blocking grammar (72a)
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s Ao
CB ———DBC
CD —DC
C —eg)E}/ #
DF) /| ————
DE———EB DF ——FD
ﬁE———ﬁEB BF ——> FB
E——B / A F——>C / A

Explanation: The strings AB and AnCBn_1 (n=1) are generated, and CBn"l

is treated exactly as CAnn1 was in (6a).
The preceding grammar can be made into a fortunate grammar (7b)
if the last two rules are replaced by

E

>b / a F——=C / a

and if the rules (*) and (%) are added.

e =75 (n fixed) is represented by the blocking grammar (8a)

S———3AB" (P)
P—(P)A

BA ———AB"
Explanation: The strings AB"A" (m20) are generated. Each of A’s on the

left moves to the right, producing n B's for each B in the string. That is,

AB"
S <
AB"A™ (n=1)

ABPA" ==ap" Lapta™
2

AA(B?)nAmnl _ Aan Am—l

. i .
’Aan Am-1+~l
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i o ot P mei ittt el
==A"A(B" ) A = A8 A"

m
::}AmBn A

The preceding grammar can be made into a fortunate grammar by (8b)

the addition of rule (%) and the rule

S

X+ y =z is represented by the blocking grammar (9a)

B

S —#FQ

P —B(P)

Q —AQA

BA ——>ABC

CA ——AC

CB —7BC
Explanation: The strings BmAn (m>1l, n>1) are generated. The A's move
left through the B's, generating a C for each B. The nm C's then move
to the right-hand end of the string.

The grammar above cannot be adjusted in the simple way to make (9b)
it fortunate. The following grammar, based on (9a), accomplishes this by
the use of a number of extra marker symbols; the rules will be given in
groups, with an explanation of their operation for each group.

S ——PQ
P——D(M) Q—3(N)E
M—— B(M) N —=(N)A
The strings DBy-lAX_lE(le, y=1) are produced. The next group of rules

cannot apply until this production is completed.
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BA——YABC
DA ——3ADC
BE ——EBC
CA———3AC
CE——EC

CB

>BC

D is simply the leftmost B in (8a), and E the rightmost A. Each B moves
right through the A's and through E, producing a C as it does so; D moves
right through the A's, also producing a C each time. C's can move right
through A's, B's, or E. When none of the first five rules in this group

y-1AX-1E has been transformed into AxmlDEX, where

applies, the string DB
X contains the original (y-1) B's and the newly created (xy-1) C's, al-

though not necessarily in that order. The next set of rules canmot apply

until this point is reached.

DE ———ab¥F

A >a / a
FB >bF CGB SGBC
FC———CG bGB SbbG
GC 2CG

G—H / i

CH——HC

H—3C / b

The first rule in this group changes A 1DEX into ¥ labFX. All A's
to the left of this a becomes a's themselves. F moves to the right

through B's, changing them into b's. When F first comes across a C., F
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moves through it and becomes a G. G then moves through any further C's
and changes into an H at the end of the string (in which case all the
B's and C's were in the right order to start with). If G comes across

a B, however, this B is out of order, and the G moves back to the left
(carrying the B with it) until it meets the rightmost b --at which point
the B that has been carried along becomes the new rightmost b. G is
then in position to move to the right again. When all the errant B's
have been put in their places (and turned into b's), G can move to the
right end of the string and become an H. H moves back to the left
through C's, changing them into c's as it goes and finally becoming the
(xy)th ¢ when it meets the rightmost b. The result is the string a’bre™Y,
Fibonacci number (X) is represented by the blocking grammar (10a)

«

A
AA

S =9 AAA
CAEE

CA—>EC

CE —~EC

BE ——AEB
BA ———EB
D
B —-{F}/ #
AD————DA AF —>FA
ED~———~7DA EF ———=TFE
D—sA / # F——>CE / #

Explanation: The strings A, AA, AAA, and CAEE are generated. The C
moves to the right, changing A's to E's. When C reaches the first E,

it changes the E to an A and becomes a B. This B then moves through
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the rest of the E's, producing an A for each E; B_(like C) also changes
A's to E's as it moves to the right through them. Suppose we consider

B as representing an E. Then at this point in the derivation there are
as many E's as there were A's and E's together, and as many A's as there
were E's., Given an initial string in which there are FnA's (where Fn is
the nth Fibonacci number) and Fn E's, we have converted it into a string

+1

. ; ' s - i .o
with Fn+1A s and Fn+2E s. At this point, B becomes either D or F. D
moves back to the left, changing all symbols to A's and becoming an A
itself at the left-hand end of the string; there are Fn+3 A's in the

resultant string. F simply moves back to the left-hand end, changing

nothing and finally becoming CE, so that the C is ready to run through

the F A's and F _E's.
n+ n

1 +2

The addition of the rule (#*) makes the above grammar fortunate. (10b)

x! =7y is represented by the fortunate grammar (11)
ab
* S'————%;abb g
DBBAE
BA ———ARC
* BE ——EBC
CA ——AC
CE ——EC
CB ————>BC

* DA ——AD

- aa
DE FGH%

B ;
AF ——FG H {C % —IR

F——K / # H——3 / _____#
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GI—IG
KI ——3 IK
GJ ——>JG
E / # D/ #
G—s I—>
A /_______gi} B /gg
KJ——>BA / B A
A— sya / a

B a

(e 163
Explanation: The first two strings, ab and aabb, are generated directly.
DBBAE will be used to generate all other strings. The D is a marker, and

the E is a representative of an A. A's and the E move left through the

B's, multiplying as in (9a). A's move through D without any change. Be-

1 - -
ginning with DB™ A" 'E we have obtained A" 'DEX, where X contains n! B's

and n-n! C's, in some order. If DE becomes aa, the initial A's become
a's, and the B's and C's all become b's, so that there are n+l a's and
n'4+n.n! = (n+l)n! = (n+l)! b's. Otherwise, DE becomes FGH, in which

case F moves left, changing A's to G's and H moves right, changing B's

(n+1)!

and C's to I's. The result of this is the string FG'I H. F then

becomes K, and H becomes J. All the I's move to the far left, the G's

(n+1)!

to the far right, producing I "KIG". The leftmost I becomes D,

the others become A's; the rightmost G becomes E, the others become A's,

L. -
(nl)! 1KJAn 1E. Only when all the I's and G's have

(n+1)!

so that we have DB
been rewritten can KJ become BA, at which point we have DB A"E and

the multiplication can begin again.
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Power (x) =7y (i.e., y is a positive power of x) is repre~- (12)
sented by the fortunate grammar obtained from the one in (11) by

replacing the starred rules by

S DTE

a(M) b}
M———>a(Mb
T—B(T)A

DA ———3 ADC

BE ——SEB
DE—~——¢§$}
KJ——3BA / B gi%

. L . n. n ) i
Explanation: The terminal strings a b are generated separately from

-1 n-
the strings DBn A" 1

E, which will be rewritten. Multiplication pro-

ceeds as in (11), except that this time the E passes through B's without

multiplying, whereas A's multiply when passing the D. Starting with a
nt-1 n-1 n-1 i

string DB A E (izl), we obtain A DEX, where X contains n -1 B's

and (n-~1)n1'=nl+l-n1 C's. 1f DE becomes ab, the A's become a's, and

n-1 ni-l
a

both the B's and the C's become b's, so that the result is a bb

b = a"p" . ILf DE becomes FH, the productions proceed as in

1 : - - nl+1- L n=2 ‘ n1+1-1 n-1
(11), so that the result is DB KJA  "E —3DbB A" E.

Exp (%, ¥) =2 (i.e., y‘x = z) is represented by the following (13)
fortunate grammar, which is obtained from (12) by: substituting new
rules for the initial rules, the rule expanding DE, and the termination
rules; changing nonterminal symbols; and slightly altering the contexts

of some rules,
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a(M)bc
S~———+éach
aDTE
M—(Ma

N—b(N)C

T-——C(T)3B
CB —BCX

DB = BB X -

XB ——=4BX

BF —FG Hg:(g—alﬁ

F——3K / a H ——>J/ #
GI —IG
KI—IK

GJ ——JG
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E / # D/ a

B/ 4§ ¢ /if—
KJ B/ C ______g}

Explanation: The strings a"bc and ab'c” (n=>1) are generated separately
~-1_n-: - -1

from the strings anc” an 1E, in which DC" 1Bn E is treated similarly

to PR A 'E in (12), except that DE becomes Ybc or ZFH after each

maltiplication. The Y or Z then becomes an a to indicate that another

power has been taken.

Dymald . Fichy .

A. M. Zwicky, Jr¢

AMZ ;mmc
Attachments: References
Distribution List
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