ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery

  • Sara S. Nogueira
    Sara S. Nogueira
    BioNTech RNA Pharmaceuticals GmbH, 55131 Mainz, Germany
  • Anne Schlegel
    Anne Schlegel
    BioNTech RNA Pharmaceuticals GmbH, 55131 Mainz, Germany
    More by Anne Schlegel
  • Konrad Maxeiner
    Konrad Maxeiner
    BioNTech RNA Pharmaceuticals GmbH, 55131 Mainz, Germany
    More by Konrad Maxeiner
  • Benjamin Weber
    Benjamin Weber
    Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
    More by Benjamin Weber
  • Matthias Barz
    Matthias Barz
    Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, Netherlands
    More by Matthias Barz
  • Martin A. Schroer
    Martin A. Schroer
    European Molecular Biology Laboratory (EMBL) Hamburg c/o DESY, 22607 Hamburg, Germany
  • Clement E. Blanchet
    Clement E. Blanchet
    European Molecular Biology Laboratory (EMBL) Hamburg c/o DESY, 22607 Hamburg, Germany
  • Dmitri I. Svergun
    Dmitri I. Svergun
    European Molecular Biology Laboratory (EMBL) Hamburg c/o DESY, 22607 Hamburg, Germany
  • Srinivas Ramishetti
    Srinivas Ramishetti
    Laboratory of Precision NanoMedicine, The Shmunis School of Biomedicine and Cancer Research and Dept. of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv 69978, Israel
  • Dan Peer
    Dan Peer
    Laboratory of Precision NanoMedicine, The Shmunis School of Biomedicine and Cancer Research and Dept. of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv 69978, Israel
    More by Dan Peer
  • Peter Langguth
    Peter Langguth
    Department of Pharmaceutics and Biopharmaceutics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
    More by Peter Langguth
  • Ugur Sahin
    Ugur Sahin
    BioNTech RNA Pharmaceuticals GmbH, 55131 Mainz, Germany
    TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, 55099 Mainz, Germany
    Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University Mainz, 55099 Mainz, Germany
    More by Ugur Sahin
  • , and 
  • Heinrich Haas*
    Heinrich Haas
    BioNTech RNA Pharmaceuticals GmbH, 55131 Mainz, Germany
    *Email: [email protected]
    More by Heinrich Haas
Cite this: ACS Appl. Nano Mater. 2020, 3, 11, 10634–10645
Publication Date (Web):September 25, 2020
https://doi.org/10.1021/acsanm.0c01834
Copyright © 2020 American Chemical Society

    Article Views

    8642

    Altmetric

    -

    Citations

    112
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Polysarcosine (pSar) is a polypeptoid based on the endogenous amino acid sarcosine (N-methylated glycine), which has previously shown potent stealth properties. Here, lipid nanoparticles (LNPs) for therapeutic application of messenger RNA were assembled using pSarcosinylated lipids as a tool for particle engineering. Using pSar lipids with different polymeric chain lengths and molar fractions enabled the control of the physicochemical characteristics of the LNPs, such as particle size, morphology, and internal structure. In combination with a suited ionizable lipid, LNPs were assembled, which displayed high RNA transfection potency with an improved safety profile after intravenous injection. Notably, a higher protein secretion with a reduced immunostimulatory response was observed when compared to systems based on polyethylene glycol (PEG) lipids. pSarcosinylated nanocarriers showed a lower proinflammatory cytokine secretion and reduced complement activation compared to PEGylated LNPs. In summary, the described pSar-based LNPs enable safe and potent delivery of mRNA, thus signifying an excellent basis for the development of PEG-free RNA therapeutics.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsanm.0c01834.

    • (Supporting Figure 1) General overview of SAXS data from all systems, (Supporting Figure 2) simulation and experimental data in a linear scale, (Supporting Figure 3) luciferase expression upon IV injection of PEG LNPs, (Supporting Figure 4) effect of pSar chain length on the liver enzyme release profile, (Supporting Figure 5) effect of pSar molar faction on the liver enzyme release profile, (Supporting Figure 6) concentrations of C3a post-incubation of pSar23 and PEG LNPs with human serum, (Supporting Figure 7) luciferase expression of pSar23 and PEG formulations containing DPL14 as the ionizable lipid, (Supporting Table 1) quantitative analysis of the peak as a function of pSar and PEG-DMG molar fraction, (Supporting Table 2) quantitative analysis of the peak as a function of pSar and PEG-DMG molar fraction, (Supporting Table 3) physicochemical characterization of pSar23-LNPs comprising DODMA, Dlin-MC3-DMA, and DPL14 ionizable cationic lipids, and (Supporting Table 4) physicochemical characterization of pSar23 and PEG-DMG LNP containing DPL14 ionizable cationic lipids (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 112 publications.

    1. Tobias Unruh, Klaus Götz, Carola Vogel, Erik Fröhlich, Andreas Scheurer, Lionel Porcar, Frank Steiniger. Mesoscopic Structure of Lipid Nanoparticle Formulations for mRNA Drug Delivery: Comirnaty and Drug-Free Dispersions. ACS Nano 2024, 18 (13) , 9746-9764. https://doi.org/10.1021/acsnano.4c02610
    2. Shuo Wang, Ming-Yuan Lu, Si-Kang Wan, Chun-Yan Lyu, Zi-You Tian, Kai Liu, Hua Lu. Precision Synthesis of Polysarcosine via Controlled Ring-Opening Polymerization of N-Carboxyanhydride: Fast Kinetics, Ultrahigh Molecular Weight, and Mechanistic Insights. Journal of the American Chemical Society 2024, 146 (8) , 5678-5692. https://doi.org/10.1021/jacs.3c14740
    3. Jacob L. Thelen, Wellington Leite, Volker S. Urban, Hugh M. O’Neill, Alexander V. Grishaev, Joseph E. Curtis, Susan Krueger, Maria Monica Castellanos. Morphological Characterization of Self-Amplifying mRNA Lipid Nanoparticles. ACS Nano 2024, 18 (2) , 1464-1476. https://doi.org/10.1021/acsnano.3c08014
    4. Phim-on Khunsuk, Chitsuda Pongma, Tanapat Palaga, Voravee P. Hoven. Zwitterionic Polymer-Decorated Lipid Nanoparticles for mRNA Delivery in Mammalian Cells. Biomacromolecules 2023, 24 (12) , 5654-5665. https://doi.org/10.1021/acs.biomac.3c00649
    5. Tobias A. Bauer, Irina Alberg, Lydia A. Zengerling, Pol Besenius, Kaloian Koynov, Bram Slütter, Rudolf Zentel, Ivo Que, Heyang Zhang, Matthias Barz. Tuning the Cross-Linking Density and Cross-Linker in Core Cross-Linked Polymeric Micelles and Its Effects on the Particle Stability in Human Blood Plasma and Mice. Biomacromolecules 2023, 24 (8) , 3545-3556. https://doi.org/10.1021/acs.biomac.3c00308
    6. Meng Zhang, Yun Liu, Xiaobing Zuo, Shuo Qian, Sai Venkatesh Pingali, Richard E. Gillilan, Qingqiu Huang, Donghui Zhang. pH-Dependent Solution Micellar Structure of Amphoteric Polypeptoid Block Copolymers with Positionally Controlled Ionizable Sites. Biomacromolecules 2023, 24 (8) , 3700-3715. https://doi.org/10.1021/acs.biomac.3c00407
    7. Michal Hammel, Yuchen Fan, Apoorva Sarode, Amy E. Byrnes, Nanzhi Zang, Ponien Kou, Karthik Nagapudi, Dennis Leung, Casper C. Hoogenraad, Tao Chen, Chun-Wan Yen, Greg L. Hura. Correlating the Structure and Gene Silencing Activity of Oligonucleotide-Loaded Lipid Nanoparticles Using Small-Angle X-ray Scattering. ACS Nano 2023, 17 (12) , 11454-11465. https://doi.org/10.1021/acsnano.3c01186
    8. Alex Golubovic, Shannon Tsai, Bowen Li. Bioinspired Lipid Nanocarriers for RNA Delivery. ACS Bio & Med Chem Au 2023, 3 (2) , 114-136. https://doi.org/10.1021/acsbiomedchemau.2c00073
    9. Isaac Benavides, Timothy J. Deming. Controlled Synthesis and Properties of Poly(l-homoserine). ACS Macro Letters 2023, 12 (4) , 518-522. https://doi.org/10.1021/acsmacrolett.3c00122
    10. Zachary S. Clauss, Jessica R. Kramer. Polypeptoids and Peptoid–Peptide Hybrids by Transition Metal Catalysis. ACS Applied Materials & Interfaces 2022, 14 (20) , 22781-22789. https://doi.org/10.1021/acsami.1c19692
    11. Peng Zhou, Tianlun Shen, Wanli Chen, Jihong Sun, Jun Ling. Biodegradable Polysarcosine with Inserted Alanine Residues: Synthesis and Enzymolysis. Biomacromolecules 2022, 23 (4) , 1757-1764. https://doi.org/10.1021/acs.biomac.2c00001
    12. Wen Yang, Lin Wang, Mulin Fang, Vinit Sheth, Yushan Zhang, Alyssa M. Holden, Nathan D. Donahue, Dixy E. Green, Alex N. Frickenstein, Evan M. Mettenbrink, Tyler A. Schwemley, Emmy R. Francek, Majood Haddad, Md Nazir Hossen, Shirsha Mukherjee, Si Wu, Paul L. DeAngelis, Stefan Wilhelm. Nanoparticle Surface Engineering with Heparosan Polysaccharide Reduces Serum Protein Adsorption and Enhances Cellular Uptake. Nano Letters 2022, 22 (5) , 2103-2111. https://doi.org/10.1021/acs.nanolett.2c00349
    13. Qing Yu, Richard M. England, Anders Gunnarsson, Robert Luxenhofer, Kevin Treacher, Marianne B. Ashford. Designing Highly Stable Poly(sarcosine)-Based Telodendrimer Micelles with High Drug Content Exemplified with Fulvestrant. Macromolecules 2022, 55 (2) , 401-412. https://doi.org/10.1021/acs.macromol.1c02086
    14. Svenja Siemer, Tobias A. Bauer, Paul Scholz, Christina Breder, Federico Fenaroli, Gregory Harms, Dimo Dietrich, Jörn Dietrich, Christine Rosenauer, Matthias Barz, Sven Becker, Sebastian Strieth, Christoph Reinhardt, Torsten Fauth, Jan Hagemann, Roland H. Stauber. Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin. ACS Nano 2021, 15 (11) , 18541-18556. https://doi.org/10.1021/acsnano.1c08632
    15. Yuebao Zhang, Changzhen Sun, Chang Wang, Katarina E. Jankovic, Yizhou Dong. Lipids and Lipid Derivatives for RNA Delivery. Chemical Reviews 2021, 121 (20) , 12181-12277. https://doi.org/10.1021/acs.chemrev.1c00244
    16. Tobias A. Bauer, Jan Imschweiler, Christian Muhl, Benjamin Weber, Matthias Barz. Secondary Structure-Driven Self-Assembly of Thiol-Reactive Polypept(o)ides. Biomacromolecules 2021, 22 (5) , 2171-2180. https://doi.org/10.1021/acs.biomac.1c00253
    17. Lukas Uebbing, Antje Ziller, Christian Siewert, Martin A. Schroer, Clement E. Blanchet, Dmitri I. Svergun, Srinivas Ramishetti, Dan Peer, Ugur Sahin, Heinrich Haas, Peter Langguth. Investigation of pH-Responsiveness inside Lipid Nanoparticles for Parenteral mRNA Application Using Small-Angle X-ray Scattering. Langmuir 2020, 36 (44) , 13331-13341. https://doi.org/10.1021/acs.langmuir.0c02446
    18. Diana D. Kang, Xucheng Hou, Leiming Wang, Yonger Xue, Haoyuan Li, Yichen Zhong, Siyu Wang, Binbin Deng, David W. McComb, Yizhou Dong. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioactive Materials 2024, 37 , 86-93. https://doi.org/10.1016/j.bioactmat.2024.03.017
    19. Leon Capelôa, Rafael Miravet Martí, Aroa Duro‐Castaño, Vicent J. Nebot, Matthias Barz. Utility of Triethyloxonium Tetrafluoroborate for Chloride Removal during Sarcosine N ‐Carboxyanhydride Synthesis: Improving NCA Purity. Chemistry – A European Journal 2024, 30 (31) https://doi.org/10.1002/chem.202304375
    20. Jens B. Simonsen. Lipid nanoparticle-based strategies for extrahepatic delivery of nucleic acid therapies – challenges and opportunities. Journal of Controlled Release 2024, 370 , 763-772. https://doi.org/10.1016/j.jconrel.2024.04.022
    21. Hulya Bayraktutan, Rafał J. Kopiasz, Amr Elsherbeny, Magda Martinez Espuga, Nurcan Gumus, Umut Can Oz, Krunal Polra, Paul F. McKay, Robin J. Shattock, Paloma Ordóñez-Morán, Alvaro Mata, Cameron Alexander, Pratik Gurnani. Polysarcosine functionalised cationic polyesters efficiently deliver self-amplifying mRNA. Polymer Chemistry 2024, 15 (18) , 1862-1876. https://doi.org/10.1039/D4PY00064A
    22. Runcheng Tan, Guangqi Huang, Cong Wei, Zepeng He, Tianyu Zhao, Yi Shi, Zhijia Liu, Yongming Chen. Influence of structural variations in polysarcosine functionalized lipids on lipid nanoparticle‐mediated mRNA delivery. Journal of Polymer Science 2024, 20 https://doi.org/10.1002/pol.20240154
    23. Sara S. Nogueira, Eleni Samaridou, Johanna Simon, Simon Frank, Moritz Beck-Broichsitter, Aditi Mehta. Analytical techniques for the characterization of nanoparticles for mRNA delivery. European Journal of Pharmaceutics and Biopharmaceutics 2024, 198 , 114235. https://doi.org/10.1016/j.ejpb.2024.114235
    24. Sizhen Wang, Beibei Guo, Huan Wang, Feng Yang. The optimization strategies of LNP-mRNA formulations: Development and challenges for further application. Journal of Drug Delivery Science and Technology 2024, 95 , 105547. https://doi.org/10.1016/j.jddst.2024.105547
    25. Smita Pawar, Prashant Pingale, Atul Garkal, Riyaz Ali M. Osmani, Kavita Gajbhiye, Madhur Kulkarni, Krutika Pardeshi, Tejal Mehta, Amarjitsing Rajput. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. International Journal of Biological Macromolecules 2024, 267 , 131139. https://doi.org/10.1016/j.ijbiomac.2024.131139
    26. Sora Son, Minsa Park, Jin Kim, Kyuri Lee. ACE mRNA (Additional Chimeric Element incorporated IVT mRNA) for Enhancing Protein Expression by Modulating Immunogenicity. Advanced Science 2024, 11 (18) https://doi.org/10.1002/advs.202307541
    27. Mingdi Hu, Xiaoyan Li, Zhen You, Rong Cai, Chunying Chen. Physiological Barriers and Strategies of Lipid‐Based Nanoparticles for Nucleic Acid Drug Delivery. Advanced Materials 2024, 36 (22) https://doi.org/10.1002/adma.202303266
    28. Dwain George van Zyl, Livia Palmerston Mendes, Raphaela Patricia Semper, Christine Rueckert, Patrick Baumhof. Poly(2-methyl-2-oxazoline) as a polyethylene glycol alternative for lipid nanoparticle formulation. Frontiers in Drug Delivery 2024, 4 https://doi.org/10.3389/fddev.2024.1383038
    29. Anna H. Morrell, Nicholas J. Warren, Paul D. Thornton. The Production of Polysarcosine‐Containing Nanoparticles by Ring‐Opening Polymerization‐Induced Self‐Assembly. Macromolecular Rapid Communications 2024, 136 https://doi.org/10.1002/marc.202400103
    30. Yeung Wu, Sinuo Yu, Irene de Lázaro. Advances in lipid nanoparticle mRNA therapeutics beyond COVID-19 vaccines. Nanoscale 2024, 16 (14) , 6820-6836. https://doi.org/10.1039/D4NR00019F
    31. Rong Jiao, Xia Lin, Qian Zhang, Yan Zhang, Wen Qin, Qiaoling Yang, Chuan Xu, Fubo Chen, Kun Zhang. Anti-tumor immune potentiation targets-engineered nanobiotechnologies: Design principles and applications. Progress in Materials Science 2024, 142 , 101230. https://doi.org/10.1016/j.pmatsci.2023.101230
    32. Dimitrios Bitounis, Eric Jacquinet, Maximillian A. Rogers, Mansoor M. Amiji. Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nature Reviews Drug Discovery 2024, 23 (4) , 281-300. https://doi.org/10.1038/s41573-023-00859-3
    33. Ana María López‐Estévez, Philipp Lapuhs, Laura Pineiro‐Alonso, María José Alonso. Personalized Cancer Nanomedicine: Overcoming Biological Barriers for Intracellular Delivery of Biopharmaceuticals. Advanced Materials 2024, 36 (14) https://doi.org/10.1002/adma.202309355
    34. Lee Joon Kim, David Shin, Wellington C. Leite, Hugh O’Neill, Oliver Ruebel, Andrew Tritt, Greg L. Hura. Simple Scattering: Lipid nanoparticle structural data repository. Frontiers in Molecular Biosciences 2024, 11 https://doi.org/10.3389/fmolb.2024.1321364
    35. Mariona Estapé Senti, Lucía García del Valle, Raymond M. Schiffelers. mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Advanced Drug Delivery Reviews 2024, 206 , 115190. https://doi.org/10.1016/j.addr.2024.115190
    36. Pei Huang, Hongzhang Deng, Changrong Wang, Yongfeng Zhou, Xiaoyuan Chen. Cellular Trafficking of Nanotechnology‐Mediated mRNA Delivery. Advanced Materials 2024, 36 (13) https://doi.org/10.1002/adma.202307822
    37. Mohamed Fawzi Kabil, Hassan Mohamed El-Said Azzazy, Maha Nasr. Recent progress on polySarcosine as an alternative to PEGylation: Synthesis and biomedical applications. International Journal of Pharmaceutics 2024, 653 , 123871. https://doi.org/10.1016/j.ijpharm.2024.123871
    38. Alejandro J. Da Silva Sanchez, David Loughrey, Elisa Schrader Echeverri, Sebastian G. Huayamares, Afsane Radmand, Kalina Paunovska, Marine Hatit, Karen E. Tiegreen, Philip J. Santangelo, James E. Dahlman. Substituting Poly(Ethylene Glycol) Lipids with Poly(2‐Ethyl‐2‐Oxazoline) Lipids Improves Lipid Nanoparticle Repeat Dosing. Advanced Healthcare Materials 2024, https://doi.org/10.1002/adhm.202304033
    39. Jialing Sun, Junyi Chen, Yiming Sun, Yingqin Hou, Zhibo Liu, Hua Lu. On the origin of the low immunogenicity and biosafety of a neutral α-helical polypeptide as an alternative to polyethylene glycol. Bioactive Materials 2024, 32 , 333-343. https://doi.org/10.1016/j.bioactmat.2023.10.011
    40. Lin Wang, Skyler Quine, Alex N. Frickenstein, Michael Lee, Wen Yang, Vinit M. Sheth, Margaret D. Bourlon, Yuxin He, Shanxin Lyu, Lucila Garcia‐Contreras, Yan D. Zhao, Stefan Wilhelm. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. Advanced Functional Materials 2024, 34 (8) https://doi.org/10.1002/adfm.202308446
    41. Katharina Leer, Liên S. Reichel, Julian Kimmig, Friederike Richter, Stephanie Hoeppener, Johannes C. Brendel, Stefan Zechel, Ulrich S. Schubert, Anja Traeger. Optimization of Mixed Micelles Based on Oppositely Charged Block Copolymers by Machine Learning for Application in Gene Delivery. Small 2024, 20 (6) https://doi.org/10.1002/smll.202306116
    42. Soraia Fernandes, Marco Cassani, Francesca Cavalieri, Giancarlo Forte, Frank Caruso. Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid‐Based Nanoparticles. Advanced Science 2024, 11 (8) https://doi.org/10.1002/advs.202305769
    43. Huali Chen, Qianyu Zhang. Polypeptides as alternatives to PEGylation of therapeutic agents. Expert Opinion on Drug Delivery 2024, 21 (1) , 1-12. https://doi.org/10.1080/17425247.2023.2297937
    44. Yangqi Qu, Jingjing Xu, Tong Zhang, Qinjun Chen, Tao Sun, Chen Jiang. Advanced nano-based strategies for mRNA tumor vaccine. Acta Pharmaceutica Sinica B 2024, 14 (1) , 170-189. https://doi.org/10.1016/j.apsb.2023.07.025
    45. Clement E. Blanchet, Adam Round, Haydyn D. T. Mertens, Kartik Ayyer, Melissa Graewert, Salah Awel, Daniel Franke, Katerina Dörner, Saša Bajt, Richard Bean, Tânia F. Custódio, Raphael de Wijn, E. Juncheng, Alessandra Henkel, Andrey Gruzinov, Cy M. Jeffries, Yoonhee Kim, Henry Kirkwood, Marco Kloos, Juraj Knoška, Jayanath Koliyadu, Romain Letrun, Christian Löw, Jana Makroczyova, Abhishek Mall, Rob Meijers, Gisel Esperanza Pena Murillo, Dominik Oberthür, Ekaterina Round, Carolin Seuring, Marcin Sikorski, Patrik Vagovic, Joana Valerio, Tamme Wollweber, Yulong Zhuang, Joachim Schulz, Heinrich Haas, Henry N. Chapman, Adrian P. Mancuso, Dmitri Svergun. Form factor determination of biological molecules with X-ray free electron laser small-angle scattering (XFEL-SAS). Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-05416-7
    46. Melissa A. Graewert, Christoph Wilhelmy, Tijana Bacic, Jens Schumacher, Clement Blanchet, Florian Meier, Roland Drexel, Roland Welz, Bastian Kolb, Kim Bartels, Thomas Nawroth, Thorsten Klein, Dmitri Svergun, Peter Langguth, Heinrich Haas. Quantitative size-resolved characterization of mRNA nanoparticles by in-line coupling of asymmetrical-flow field-flow fractionation with small angle X-ray scattering. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-42274-z
    47. Niamh Bayliss, Bernhard V.K.J. Schmidt. Hydrophilic polymers: Current trends and visions for the future. Progress in Polymer Science 2023, 147 , 101753. https://doi.org/10.1016/j.progpolymsci.2023.101753
    48. Yan Zong, Yi Lin, Tuo Wei, Qiang Cheng. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. Advanced Materials 2023, 35 (51) https://doi.org/10.1002/adma.202303261
    49. Mingxin Hu, Kazuaki Taguchi, Kazuaki Matsumoto, Eiry Kobatake, Yoshihiro Ito, Motoki Ueda. Polysarcosine-Coated liposomes attenuating immune response induction and prolonging blood circulation. Journal of Colloid and Interface Science 2023, 651 , 273-283. https://doi.org/10.1016/j.jcis.2023.07.149
    50. Edo Kon, Nitay Ad-El, Inbal Hazan-Halevy, Lior Stotsky-Oterin, Dan Peer. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nature Reviews Clinical Oncology 2023, 20 (11) , 739-754. https://doi.org/10.1038/s41571-023-00811-9
    51. Mariia Stepanova, Alexey Nikiforov, Tatiana Tennikova, Evgenia Korzhikova-Vlakh. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023, 15 (11) , 2641. https://doi.org/10.3390/pharmaceutics15112641
    52. Mohamed S. Elafify, Toru Itagaki, Nermeen A. Elkasabgy, Sinar Sayed, Yoshihiro Ito, Motoki Ueda. Reversible transformation of peptide assembly between densified-polysarcosine-driven kinetically and helix-orientation-driven thermodynamically stable morphologies. Biomaterials Science 2023, 11 (18) , 6280-6286. https://doi.org/10.1039/D3BM00714F
    53. Michaela Jeong, Yeji Lee, Jeongeun Park, Hyein Jung, Hyukjin Lee. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Advanced Drug Delivery Reviews 2023, 200 , 114990. https://doi.org/10.1016/j.addr.2023.114990
    54. Bing Sun, Weixi Wu, Eshan A. Narasipura, Yutian Ma, Chengzhong Yu, Owen S. Fenton, Hao Song. Engineering nanoparticle toolkits for mRNA delivery. Advanced Drug Delivery Reviews 2023, 200 , 115042. https://doi.org/10.1016/j.addr.2023.115042
    55. Ling Yu, Shengmao Liu, Shengnan Jia, Feng Xu. Emerging frontiers in drug delivery with special focus on novel techniques for targeted therapies. Biomedicine & Pharmacotherapy 2023, 165 , 115049. https://doi.org/10.1016/j.biopha.2023.115049
    56. Xuefeng Tang, Ying Zhang, Xiaojun Han. Ionizable Lipid Nanoparticles for mRNA Delivery. Advanced NanoBiomed Research 2023, 3 (8) https://doi.org/10.1002/anbr.202300006
    57. Yota Okuno, Yasuhiko Iwasaki. Well‐Defined Anisotropic Self‐Assembly from Peptoids and Their Biomedical Applications. ChemMedChem 2023, 18 (15) https://doi.org/10.1002/cmdc.202300217
    58. Christoph Wilhelmy, Isabell Sofia Keil, Lukas Uebbing, Martin A. Schroer, Daniel Franke, Thomas Nawroth, Matthias Barz, Ugur Sahin, Heinrich Haas, Mustafa Diken, Peter Langguth. Polysarcosine-Functionalized mRNA Lipid Nanoparticles Tailored for Immunotherapy. Pharmaceutics 2023, 15 (8) , 2068. https://doi.org/10.3390/pharmaceutics15082068
    59. Marité Cárdenas, Richard A. Campbell, Marianna Yanez Arteta, M. Jayne Lawrence, Federica Sebastiani. Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery. Current Opinion in Colloid & Interface Science 2023, 66 , 101705. https://doi.org/10.1016/j.cocis.2023.101705
    60. Ting Wang, Tzu-Cheng Sung, Tao Yu, Hui-Yu Lin, Yen-Hung Chen, Zhe-Wei Zhu, Jian Gong, Jiandong Pan, Akon Higuchi. Next-generation materials for RNA–lipid nanoparticles: lyophilization and targeted transfection. Journal of Materials Chemistry B 2023, 11 (23) , 5083-5093. https://doi.org/10.1039/D3TB00308F
    61. Bianka Golba, Matthieu Soete, Zifu Zhong, Niek Sanders, Filip E. Du Prez, Hannes A. Houck, Bruno G. De Geest. Visible Light Conjugation with Triazolinediones as a Route to Degradable Poly(ethylene glycol)–Lipids for mRNA Lipid Nanoparticle Formulation. Angewandte Chemie 2023, 135 (23) https://doi.org/10.1002/ange.202301102
    62. Bianka Golba, Matthieu Soete, Zifu Zhong, Niek Sanders, Filip E. Du Prez, Hannes A. Houck, Bruno G. De Geest. Visible Light Conjugation with Triazolinediones as a Route to Degradable Poly(ethylene glycol)–Lipids for mRNA Lipid Nanoparticle Formulation. Angewandte Chemie International Edition 2023, 62 (23) https://doi.org/10.1002/anie.202301102
    63. E. Alperay Tarim, Muge Anil Inevi, Ilayda Ozkan, Seren Kecili, Eyup Bilgi, M. Semih Baslar, Engin Ozcivici, Ceyda Oksel Karakus, H. Cumhur Tekin. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions. Biomedical Microdevices 2023, 25 (2) https://doi.org/10.1007/s10544-023-00649-z
    64. Parinaz Aliahmad, Shigeki J. Miyake-Stoner, Andrew J. Geall, Nathaniel S. Wang. Next generation self-replicating RNA vectors for vaccines and immunotherapies. Cancer Gene Therapy 2023, 30 (6) , 785-793. https://doi.org/10.1038/s41417-022-00435-8
    65. Hanjin Seo, Leekang Jeon, Jaeyeong Kwon, Hyomin Lee. High‐Precision Synthesis of RNA‐Loaded Lipid Nanoparticles for Biomedical Applications. Advanced Healthcare Materials 2023, 12 (13) https://doi.org/10.1002/adhm.202203033
    66. Tobias A. Bauer, Jonas Schramm, Federico Fenaroli, Svenja Siemer, Christine I. Seidl, Christine Rosenauer, Regina Bleul, Roland H. Stauber, Kaloian Koynov, Michael Maskos, Matthias Barz. Complex Structures Made Simple – Continuous Flow Production of Core Cross‐Linked Polymeric Micelles for Paclitaxel Pro‐Drug‐Delivery. Advanced Materials 2023, 35 (21) https://doi.org/10.1002/adma.202210704
    67. Camille Malburet, Laurent Leclercq, Jean-François Cotte, Jérôme Thiebaud, Emilie Bazin, Marie Garinot, Hervé Cottet. Taylor Dispersion Analysis to support lipid-nanoparticle formulations for mRNA vaccines. Gene Therapy 2023, 30 (5) , 421-428. https://doi.org/10.1038/s41434-022-00370-1
    68. Sarfaraz K. Niazi. RNA Therapeutics: A Healthcare Paradigm Shift. Biomedicines 2023, 11 (5) , 1275. https://doi.org/10.3390/biomedicines11051275
    69. Da-Wei Zhou, Ke Wang, Ying-Ao Zhang, Ke Ma, Xiao-Chun Yang, Zhen-Yi Li, Shou-Shan Yu, Ke-Zheng Chen, Sheng-Lin Qiao. mRNA therapeutics for disease therapy: principles, delivery, and clinical translation. Journal of Materials Chemistry B 2023, 11 (16) , 3484-3510. https://doi.org/10.1039/D2TB02782H
    70. Akon Higuchi, Tzu-Cheng Sung, Ting Wang, Qing-Dong Ling, S. Suresh Kumar, Shih-Tien Hsu, Akihiro Umezawa. Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. Polymer Reviews 2023, 63 (2) , 394-436. https://doi.org/10.1080/15583724.2022.2106490
    71. Dongdong Bi, Dennis Mark Unthan, Lili Hu, Jeroen Bussmann, Katrien Remaut, Matthias Barz, Heyang Zhang. Polysarcosine-based lipid formulations for intracranial delivery of mRNA. Journal of Controlled Release 2023, 356 , 1-13. https://doi.org/10.1016/j.jconrel.2023.02.021
    72. Sean A. Dilliard, Daniel J. Siegwart. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials 2023, 8 (4) , 282-300. https://doi.org/10.1038/s41578-022-00529-7
    73. Alicia Vogelaar, Samantha Marcotte, Jiaqi Cheng, Benazir Oluoch, Jennica Zaro. Use of Microfluidics to Prepare Lipid-Based Nanocarriers. Pharmaceutics 2023, 15 (4) , 1053. https://doi.org/10.3390/pharmaceutics15041053
    74. Mona Sadat Mirtaleb, Reza Falak, Jalal Heshmatnia, Behnaz Bakhshandeh, Ramezan Ali Taheri, Hoorieh Soleimanjahi, Reza Zolfaghari Emameh. An insight overview on COVID-19 mRNA vaccines: Advantageous, pharmacology, mechanism of action, and prospective considerations. International Immunopharmacology 2023, 117 , 109934. https://doi.org/10.1016/j.intimp.2023.109934
    75. Xingcai Zhang, Luo Hai, Yibo Gao, Guocan Yu, Yingli Sun. Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharmaceutica Sinica B 2023, 13 (3) , 903-915. https://doi.org/10.1016/j.apsb.2022.10.004
    76. Monique C.P. Mendonça, Ayse Kont, Piotr S. Kowalski, Caitriona M. O'Driscoll. Design of lipid-based nanoparticles for delivery of therapeutic nucleic acids. Drug Discovery Today 2023, 28 (3) , 103505. https://doi.org/10.1016/j.drudis.2023.103505
    77. Min Li, Yixuan Huang, Jiacai Wu, Sanpeng Li, Miao Mei, Haixia Chen, Ning Wang, Weigang Wu, Boping Zhou, Xu Tan, Bin Li. A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice. Materials Horizons 2023, 10 (2) , 466-472. https://doi.org/10.1039/D2MH01260J
    78. Nils-Jørgen K. Dal, Gabriela Schäfer, Andrew M. Thompson, Sascha Schmitt, Natalja Redinger, Noelia Alonso-Rodriguez, Kerstin Johann, Jessica Ojong, Jens Wohlmann, Andreas Best, Kaloian Koynov, Rudolf Zentel, Ulrich E. Schaible, Gareth Griffiths, Matthias Barz, Federico Fenaroli. Π-Π interactions stabilize PeptoMicelle-based formulations of Pretomanid derivatives leading to promising therapy against tuberculosis in zebrafish and mouse models. Journal of Controlled Release 2023, 354 , 851-868. https://doi.org/10.1016/j.jconrel.2023.01.037
    79. Xikuang Yao, Chao Qi, Changrui Sun, Fengwei Huo, Xiqun Jiang. Poly(ethylene glycol) alternatives in biomedical applications. Nano Today 2023, 48 , 101738. https://doi.org/10.1016/j.nantod.2022.101738
    80. Erik Oude Blenke, Eivor Örnskov, Christian Schöneich, Gunilla A. Nilsson, David B. Volkin, Enrico Mastrobattista, Örn Almarsson, Daan J.A. Crommelin. The Storage and In-Use Stability of mRNA Vaccines and Therapeutics: Not A Cold Case. Journal of Pharmaceutical Sciences 2023, 112 (2) , 386-403. https://doi.org/10.1016/j.xphs.2022.11.001
    81. Diana D. Kang, Yizhou Dong. Lipid nanoparticles for delivery of gene editing components. 2023, 622-633. https://doi.org/10.1016/B978-0-12-822425-0.00096-8
    82. Jacques Demongeot, Cécile Fougère. mRNA COVID-19 Vaccines—Facts and Hypotheses on Fragmentation and Encapsulation. Vaccines 2023, 11 (1) , 40. https://doi.org/10.3390/vaccines11010040
    83. Yi Lin, Qiang Cheng, Tuo Wei. Surface engineering of lipid nanoparticles: targeted nucleic acid delivery and beyond. Biophysics Reports 2023, 9 (5) , 255. https://doi.org/10.52601/bpr.2023.230022
    84. Mira Behnke, Caroline T. Holick, Antje Vollrath, Stephanie Schubert, Ulrich S. Schubert. Knowledge-Based Design of Multifunctional Polymeric Nanoparticles. 2023, 3-26. https://doi.org/10.1007/164_2023_649
    85. Daniel Braatz, Mariam Cherri, Michael Tully, Mathias Dimde, Guoxin Ma, Ehsan Mohammadifar, Felix Reisbeck, Vahid Ahmadi, Michael Schirner, Rainer Haag. Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angewandte Chemie International Edition 2022, 61 (49) https://doi.org/10.1002/anie.202203942
    86. Daniel Braatz, Mariam Cherri, Michael Tully, Mathias Dimde, Guoxin Ma, Ehsan Mohammadifar, Felix Reisbeck, Vahid Ahmadi, Michael Schirner, Rainer Haag. Chemische Ansätze für synthetische Wirkstofftransportsysteme für systemische Anwendungen. Angewandte Chemie 2022, 134 (49) https://doi.org/10.1002/ange.202203942
    87. Christian G. Schroer, Hans-Christian Wille, Oliver H. Seeck, Kai Bagschik, Horst Schulte-Schrepping, Markus Tischer, Heinz Graafsma, Wiebke Laasch, Karolin Baev, Stephan Klumpp, Riccardo Bartolini, Harald Reichert, Wim Leemans, Edgar Weckert. The synchrotron radiation source PETRA III and its future ultra-low-emittance upgrade PETRA IV. The European Physical Journal Plus 2022, 137 (12) https://doi.org/10.1140/epjp/s13360-022-03517-6
    88. Seyed Hossein Kiaie, Naime Majidi Zolbanin, Armin Ahmadi, Rafieh Bagherifar, Hadi Valizadeh, Fatah Kashanchi, Reza Jafari. Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01478-7
    89. Skylar T. Chuang, Brandon Conklin, Joshua B. Stein, George Pan, Ki-Bum Lee. Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. Nano Convergence 2022, 9 (1) https://doi.org/10.1186/s40580-022-00310-0
    90. Lei Yang, Liming Gong, Ping Wang, Xinghui Zhao, Feng Zhao, Zhijie Zhang, Yunfei Li, Wei Huang. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. Pharmaceutics 2022, 14 (12) , 2682. https://doi.org/10.3390/pharmaceutics14122682
    91. Barbara Sartori, Benedetta Marmiroli. Tailoring Lipid-Based Drug Delivery Nanosystems by Synchrotron Small Angle X-ray Scattering. Pharmaceutics 2022, 14 (12) , 2704. https://doi.org/10.3390/pharmaceutics14122704
    92. Eduarde Rohner, Ran Yang, Kylie S. Foo, Alexander Goedel, Kenneth R. Chien. Unlocking the promise of mRNA therapeutics. Nature Biotechnology 2022, 40 (11) , 1586-1600. https://doi.org/10.1038/s41587-022-01491-z
    93. Rein Verbeke, Michael J. Hogan, Karin Loré, Norbert Pardi. Innate immune mechanisms of mRNA vaccines. Immunity 2022, 55 (11) , 1993-2005. https://doi.org/10.1016/j.immuni.2022.10.014
    94. Rik Oude Egberink, Helen M. Zegelaar, Najoua El Boujnouni, Elly M. M. Versteeg, Willeke F. Daamen, Roland Brock. Biomaterial-Mediated Protein Expression Induced by Peptide-mRNA Nanoparticles Embedded in Lyophilized Collagen Scaffolds. Pharmaceutics 2022, 14 (8) , 1619. https://doi.org/10.3390/pharmaceutics14081619
    95. Rocío García‐Vázquez, Umberto Maria Battisti, Vladimir Shalgunov, Gabriela Schäfer, Matthias Barz, Matthias Manfred Herth. [ 11 C]Carboxylated Tetrazines for Facile Labeling of Trans‐Cyclooctene‐Functionalized PeptoBrushes. Macromolecular Rapid Communications 2022, 43 (12) https://doi.org/10.1002/marc.202100655
    96. Leon Capelôa, Mina Yazdi, Heyang Zhang, Xiaobing Chen, Yu Nie, Ernst Wagner, Ulrich Lächelt, Matthias Barz. Cross‐Linkable Polyion Complex Micelles from Polypept(o)ide‐Based ABC‐Triblock Copolymers for siRNA Delivery. Macromolecular Rapid Communications 2022, 43 (12) https://doi.org/10.1002/marc.202100698
    97. Matthias Barz, Lutz Nuhn, Gerhard Hörpel, Rudolf Zentel. From Self‐Organization to Tumor‐Immune Therapy: How Things Started and How They Evolved. Macromolecular Rapid Communications 2022, 43 (12) https://doi.org/10.1002/marc.202100829
    98. Bruno Costa, Beatriz Boueri, Claudia Oliveira, Isabel Silveira, Antonio J. Ribeiro. Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations. Expert Opinion on Drug Delivery 2022, 19 (5) , 577-594. https://doi.org/10.1080/17425247.2022.2075846
    99. Amanda-Lee Ezra Manicum, Saman Sargazi, Sobia Razzaq, Govindarajan Venkat Kumar, Abbas Rahdar, Simge Er, Qurrat Ul Ain, Muhammad Bilal, M. Ali Aboudzadeh. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. Journal of Drug Delivery Science and Technology 2022, 71 , 103288. https://doi.org/10.1016/j.jddst.2022.103288
    100. László Dézsi, Tamás Mészáros, Gergely Kozma, Mária H-Velkei, Csaba Zs. Oláh, Miklós Szabó, Zsófia Patkó, Tamás Fülöp, Mark Hennies, Miklós Szebeni, Bálint András Barta, Béla Merkely, Tamás Radovits, János Szebeni. A naturally hypersensitive porcine model may help understand the mechanism of COVID-19 mRNA vaccine-induced rare (pseudo) allergic reactions: complement activation as a possible contributing factor. GeroScience 2022, 44 (2) , 597-618. https://doi.org/10.1007/s11357-021-00495-y
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect