Skip to main content

How Genetics Can Help Education

  • Chapter

Abstract

The vast individual differences observed in all educationally relevant psychological traits, such as academic achievement and cognitive, motivational and emotional characteristics, develop through complex processes of gene-environment co-action. Research suggests that educational environment interacts with unique genetic profiles of students, leading to great variability among students (see Kovas, Haworth, Dale, & Plomin, 2007).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alferink, L. A., & Farmer-Dougan, V. (2010). Brain-(not) based education: dangers of misunderstanding and misapplication of neuroscience research. Exceptionality, 18 (1), 42–52.

    Article  Google Scholar 

  • Babad, E. (1993). Teachers’ differential behavior. Educational Psychology Review, 5 (4), 347–376.

    Article  Google Scholar 

  • Baron-Cohen, S., Murphy, L., Chakrabarti, B., Craig, I., Mallya, U., Lakatošová, S., … & Warrier, V. (2014). A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: a preliminary study. PloS One, 5, e96374.

    Article  Google Scholar 

  • Bartels, M., Rietveld, M. J., Van Baal, G. C. M., & Boomsma, D. I. (2002). Heritability of educational achievement in 12-year-olds and the overlap with cognitive ability. Twin Research, 5 (06), 544–553.

    Article  Google Scholar 

  • Boivin, M., Brendgen, M., Dionne, G., Dubois, L., Pérusse, D., Robaey, P., … & Vitaro, F. (2013). The Quebec newborn twin study into adolescence: 15 years later. Twin Research and Human Genetics, 16 (01), 64–69.

    Article  Google Scholar 

  • Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles, Trends in Cognitive Sciences, 14 (6), 277–290.

    Article  Google Scholar 

  • Butterworth, B., & Kovas, Y. (2013). Understanding neurocognitive developmental disorders can improve education for all. Science, 340 (6130), 300–305.

    Article  Google Scholar 

  • Byrne, B., Coventry, W. L., Olson, R. K., Wadsworth, S. J., Samuelsson, S., Petrill, S. A., … & Corley, R. (2010). “Teacher effects” in early literacy development: evidence from a study of twins. Journal of educational psychology, 102 (1), 32.

    Article  Google Scholar 

  • Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLOS Biology, 4 (5).

    Google Scholar 

  • Collins, F. (2010). Has the revolution arrived? Nature, 464 (7289), 674–675.

    Article  Google Scholar 

  • Coventry, W. L., Byrne, B., Coleman, M., Olson, R. K., Corley, R., Willcutt, E., & Samuelsson, S. (2009). Does classroom separation affect twins’ reading ability in the early years of school? Twin Research and Human Genetics, 12 (05), 455–461.

    Article  Google Scholar 

  • Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., … & Deary, I. J. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular psychiatry, 16 (10), 996–1005.

    Article  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20 (3–6), 487–506.

    Article  Google Scholar 

  • Docherty, S. J., Davis, O. S. P., Kovas, Y., Meaburn, E. L., Dale, P. S., Petrill, S. A., … & Plomin, R. (2010). A genome-wide association study identifies multiple loci associated with mathematics ability and disability. Genes, Brain and Behavior, 9 (2), 234–247.

    Article  Google Scholar 

  • Docherty, S. J., Kovas, Y., Petrill, S. A., & Plomin, R. (2010). Generalist genes analysis of DNA markers associated with mathematical ability and disability reveals shared influence across ages and abilities. BMC genetics, 11 (1), 61.

    Article  Google Scholar 

  • Docherty, S. J., Kovas, Y., & Plomin, R. (2011). Gene-environment interaction in the etiology of mathematical ability using SNP sets. Behavior genetics, 41 (1), 141–154.

    Article  Google Scholar 

  • Gabrieli, J. D. (2009). Dyslexia: a new synergy between education and cognitive neuroscience. Science, 325 (5938), 280–283.

    Article  Google Scholar 

  • Greven, C. U., Harlaar, N., Kovas, Y., Chamorro-Premuzic, T., & Plomin, R. (2009). More than just IQ school achievement is predicted by self-perceived abilities.-but for genetic rather than environmental reasons. Psychological Science, 20 (6), 753–762.

    Article  Google Scholar 

  • Hahn, E., Gottschling, J., & Spinath, F. M. (2013). Current twin studies in Germany: report on CoSMoS, SOEP, and ChronoS. Twin Research and Human Genetics, 16 (01), 173–178.

    Article  Google Scholar 

  • Harris, K. M., & Morgan, S. P. (1991). Fathers, sons, and daughters: differential paternal involvement in parenting. Journal of Marriage and the Family, 531–544.

    Google Scholar 

  • Haworth, C. M. A., Wright, M. J., Luciano, M., Martin, N. G., De Geus, E. J. C., Van Beijsterveldt, C. E. M., … & Plomin, R. (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15 (11), 1112–1120.

    Article  Google Scholar 

  • Haworth, C., Davis, O. S., & Plomin, R. (2013). Twins Early Development Study (TEDS): a genetically sensitive investigation of cognitive and behavioral development from childhood to young adulthood. Twin Research and Human Genetics, 16 (01), 117–125.

    Article  Google Scholar 

  • Hindorff, L. A., Junkins, H. A., Hall, P. N., Mehta, J. P., & Manolio, T. A. (2010). A catalog of published genome-wide association studies. National Human Genome Research Institute.

    Google Scholar 

  • Hirschhorn, J. N., & Daly, M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics, 6 (2), 95–108.

    Article  Google Scholar 

  • Hur, Y. M., Jeong, H. U., Chung, K. W., Shin, J. S., & Song, T. B. (2013). The South Korean twin registry: an update. Twin Research and Human Genetics, 16 (01), 237–240.

    Article  Google Scholar 

  • Inlow, J. K., & Restifo, L. L. (2004). Molecular and comparative genetics of mental retardation. Genetics, 166 (2), 835–881.

    Article  Google Scholar 

  • Kovas, Y., Galajinsky, E. V., Boivin, M., Harold, G. T., Jones, A., Lemelin, J. P., … & Malykh, S. (2013). The Russian School Twin Registry (RSTR): project progress. Twin Research and Human Genetics, 16 (01), 126–133.

    Article  Google Scholar 

  • Kovas, Y., Garon-Carrier, G., Boivin, M., Petrill, S. A., Plomin, R., Malykh, S. B., … & Vitaro, F. (2015). Why children differ in motivation to learn: insights from over 13,000 twins from 6 countries. Personality and Individual Differences, 80, 51–63.

    Article  Google Scholar 

  • Kovas, Y., Harlaar, N., Petrill, S. A., & Plomin, R. (2005). “Generalist genes” and mathematics in 7-year-old twins. Intelligence, 33 (5), 473–489.

    Article  Google Scholar 

  • Kovas, Y., Haworth, C. M., Dale, P. S., Plomin, R., Weinberg, R. A., Thomson, J. M., & Fischer, K. W. (2007). The genetic and environmental origins of learning abilities and disabilities in the early school years. Monographs of the Society for Research in Child Development, i–156.

    Google Scholar 

  • Kovas, Y., & Plomin, R. (2006). Generalist genes: implications for the cognitive sciences. Trends in cognitive sciences, 10 (5), 198–203.

    Article  Google Scholar 

  • Kovas, Y., & Plomin, R. (2007). Learning abilities and disabilities generalist genes, specialist environments. Current Directions in Psychological Science, 16 (5), 284–288.

    Article  Google Scholar 

  • Kovas, Y., & Plomin, R. (2012). Genetics and genomics: good, bad and ugly. In S. Della Salla & M. Anderson (Eds), Neuroscience in Education: The Good, The Bad and The Ugly (pp. 155–173). Oxford University Press.

    Chapter  Google Scholar 

  • Kovas, Y., Tikhomirova, T. N., & Malykh, S. B. (2011). Problema stabil’nosti i izmen-chivosti obshchih sposobnostej v psihogenetike [The problem of stability and variability of general abilities in behavioural genetics]. Voprosy psihologii, 6, 44–54.

    Google Scholar 

  • Kovas, Y., Voronin, I., Kaydalov, A., Malykh, S. B., Dale, P. S., & Plomin, R. (2013). Literacy and numeracy are more heritable than intelligence in primary school. Psychological science, 24 (10), 2048–2056.

    Article  Google Scholar 

  • Krasa, N., & Shunkwiler, S. (2009). Number Sense and Number Nonsense: Understanding the Challenges of Learning Math. Brookes Publishing Company.

    Google Scholar 

  • Light, J. G., Defries, J. C., & Olson, R. K. (1998). Multivariate behavioral genetic analysis of achievement and cognitive measures in reading-disabled and control twin pairs. Human Biology, 215–237.

    Google Scholar 

  • Ligthart, L., & Boomsma, D. I. (2012). Causes of comorbidity: pleiotropy or causality? Shared genetic and environmental influences on migraine and neuroticism. Twin Research and Human Genetics, 15 (02), 158–165.

    Article  Google Scholar 

  • Loehlin, J. C., & Nichols, R. C. (1976). Heredity, Environment, and Personality: A Study of 850 Sets of Twins. University of Texas Press.

    Google Scholar 

  • Luo, Y. L., Kovas, Y., Haworth, C. M., & Plomin, R. (2011). The etiology of mathematical self-evaluation and mathematicS achievement: understanding the relationship using a cross-lagged twin study from ages 9 to 12. Learning and Individual Differences, 21 (6), 710–718.

    Article  Google Scholar 

  • Malykh, S. B. (2009). Problema razvitiya intellekta v psihogenetike [The problem of intelligence development in behaviour genetics]. Kognitivnye issledovaniya: Problema razvitiya. Sbornik nauchnyh trudov, 3, 287–302.

    Google Scholar 

  • Malykh, S. B., Egorova, M. S., & Meshkova, T. A. (1998). Osnovy psihogenetiki [The basics of behavior genetics] . Moscow: Epidavr.

    Google Scholar 

  • Malykh, S. B., Tikhomirova, T. N., & Kovas, Y. V. (2012). Individual’nye razlichiya v sposobnostyah k obucheniyu: vozmozhnosti i perspektivy psihogeneticheskih issledovanij [Individual differences in learning abilities: opportunities and perspectives of behaviour genetic studies]. Voprosy obrazovaniya, 4, 186–199.

    Article  Google Scholar 

  • Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., … & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461 (7265), 747–753.

    Article  Google Scholar 

  • Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS one, 6 (9), e23749.

    Article  Google Scholar 

  • McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P., & Hirschhorn, J. N. (2008). Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews Genetics, 9 (5), 356–369.

    Article  Google Scholar 

  • Meaburn, E. L., Harlaar, N., Craig, I. W., Schalkwyk, L. C., & Plomin, R. (2008). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100K SNP microarrays in a sample of 5760 children. Molecular psychiatry, 13 (7), 729–740.

    Article  Google Scholar 

  • Meta-Analysis of twin correlations and heritability; http://match.ctglab.nl/#/home

  • Neale, M. C. (1997). Mx: Statistical Modeling (Version 1.1) (4th ed.). Richmond (VA): Department of Psychiatry, University of Virginia.

    Google Scholar 

  • Neale, M. C., & Maes, H. H. M. (2003). Methodology for Genetic Studies of Twins and Families. Dordrecht, NL: Kluwer Academic Publishers.

    Google Scholar 

  • Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53 (2), 293–305.

    Article  Google Scholar 

  • Pinker, S. (2002). The Blank Slate: The Modern Denial of Human Nature. New York: Viking.

    Google Scholar 

  • Plomin, R. (2003). Genetics, genes, genomics and g. Molecular Psychiatry, 8, 1–5.

    Article  Google Scholar 

  • Plomin, R., Asbury, K., & Dunn, J. F. (2001). Why are children in the same family so different? Nonshared environment a decade later. Canadian Journal of Psychiatry, 46, 225–233.

    Google Scholar 

  • Plomin, R., & Daniels, D. (1987). Why are children in the same family so different from one another? Behavioral and Brain Sciences, 10 (01), 1–16.

    Article  Google Scholar 

  • Plomin, R., & Deary, I. J. (2014). Genetics and intelligence differences: five special findings. Molecular psychiatry.

    Google Scholar 

  • Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological bulletin, 84 (2), 309.

    Article  Google Scholar 

  • Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2012). Behavioral Genetics (6th edition). New York: Worth.

    Google Scholar 

  • Plomin, R., Haworth, C. M., & Davis, O. S. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10 (12), 872–878.

    Article  Google Scholar 

  • Plomin, R., & Kovas, Y. (2005). Generalist genes and learning disabilities. Psychological bulletin, 131 (4), 592–617.

    Article  Google Scholar 

  • Plomin, R., & Schalkwyk, L. C. (2007). Microarrays. Developmental Science, 10 (1), 19–23.

    Article  Google Scholar 

  • Polderman, T. J., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702–709.

    Article  Google Scholar 

  • Raymond, F. L., & Tarpey, P. (2006). The genetics of mental retardation. Human Molecular Genetics, 15 (suppl 2), 110–116.

    Article  Google Scholar 

  • Rhea, S. A., Gross, A. A., Haberstick, B. C., & Corley, R. P. (2013). Colorado twin registry: an update. Twin Research and Human Genetics, 16 (01), 351–357.

    Article  Google Scholar 

  • Rimfeld, K., Kovas, Y., Dale, P. S., & Plomin, R. (2015). Pleiotropy across academic subjects at the end of compulsory education. Scientific Reports, 5, 11713.

    Article  Google Scholar 

  • Skytthe, A., Christiansen, L., Kyvik, K. O., Bødker, F. L., Hvidberg, L., Petersen, I., … & Christensen, K. (2013). The Danish Twin Registry: linking surveys, national registers, and biological information. Twin Research and Human Genetics, 16 (01), 104–111.

    Article  Google Scholar 

  • Stanescu-Cosson, R., Pinel, P., van de Moortele, P. F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia. Brain, 123 (11), 2240–2255.

    Article  Google Scholar 

  • Stromswold, K. (2001). The heritability of language: a review and metaanalysis of twin, adoption, and linkage studies. Language, 77 (4), 647–723.

    Article  Google Scholar 

  • The National Human Genome Research Institute: http://www.genome.gov/gwastudies/.

  • Thompson, L. A., Detterman, D. K., & Plomin, R. (1991). Associations between cognitive abilities and scholastic achievement: genetic overlap but environmental differences. Psychological Science, 2 (3), 158–165.

    Article  Google Scholar 

  • Tikhomirova, T. N., & Kovas, Y. V. (2013). Vzaimosvyaz’ kognitivnyh harakteristik uchashchihsya i uspeshnosti resheniya matematicheskih zadanij (na primere starshego shkol’nogo vozrasta) [The association of cognitive characteristics and successful mathematical performance (in high school students)]. Psihologicheskij zhurnal, 34 (1), 35–45.

    Google Scholar 

  • Tommerdahl, J. (2010). A model for bridging the gap between neuroscience and education. Oxford Review of Education, 36 (1), 97–109.

    Article  Google Scholar 

  • Van Beijsterveldt, C. E., Groen-Blokhuis, M., Hottenga, J. J., Franić, S., Hudziak, J. J., Lamb, D., … & Boomsma, D. I. (2013). The Young Netherlands Twin Register (YNTR): longitudinal twin and family studies in over 70,000 children. Twin Research and Human Genetics, 16 (01), 252–267.

    Article  Google Scholar 

  • Venkatraman, V., Ansari, D., & Chee, M. W. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43 (5), 744–753.

    Article  Google Scholar 

  • Wainwright, M. A., Wright, M. J., Luciano, M., Geffen, G. M., & Martin, N. G. (2005). Multivariate genetic analysis of academic skills of the Queensland core skills test and IQ highlight the importance of genetic g. Twin Research and Human Genetics, 8 (06), 602–608.

    Article  Google Scholar 

  • Wetterstrand, K. A. (2013). DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute, www.genome.gov/sequencingcosts.

  • Wetterstrand, K. A. (2015). DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). www.genome.gov/sequencingcosts.

    Google Scholar 

  • Zhou, N., Lam, S. F., & Chan, K. C. (2012). The chinese classroom paradox: a cross-cultural comparison of teacher controlling behaviors. Journal of Educational Psychology, 104 (4), 1162–1174.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2016 Yulia Kovas, Tatiana Tikhomirova, Fatos Selita, Maria G. Tosto, and Sergey Malykh

About this chapter

Cite this chapter

Kovas, Y., Tikhomirova, T., Selita, F., Tosto, M.G., Malykh, S. (2016). How Genetics Can Help Education. In: Kovas, Y., Malykh, S., Gaysina, D. (eds) Behavioural Genetics for Education. Palgrave Macmillan, London. https://doi.org/10.1057/9781137437327_1

Download citation

Publish with us

Policies and ethics