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1 General Introduction

Following the acceptance of the Copernican Solar System, in which the plan-
ets adopt coplanar orbits around the Sun, and the formulation of Kepler’s
laws, astrophysical discs have been a prominent aspect of astronomy. Since
the first proposals of the nebular hypothesis in the 18th century, it has been
widely believed that our Solar System is the result of a cooled accretion
disc, a disc of condensed gas formed by surrounding material accreting onto
a central object. In the case of our Solar System, the central object was
the closest star to planet Earth, the Sun. Recent developments in x-ray
technology and space telescopy have provided observations of such accretion
discs surrounding celestial objects further afield, such as neutron stars and
active galactic nuclei (AGN). There is strong evidence that the high ener-
gies released from such objects, often x-ray and gamma radiation, can be
attributed to the dissipative processes of the orbiting discs. The detailed
mechanics of this, however, is still an active area of research.

Massive objects attract surrounding material through gravitational forces.
In the absence of angular momentum, such material can accrete directly
onto the object, increasing its mass and subsequently its size or density.
The potential energy associated with the surrounding mass is consequently
released, primarily as electromagnetic radiation. If angular momentum is
present in the system however, which is common in the vast majority of
accretion flows, centrifugal forces counterbalance gravity causing the forma-
tion of an accretion disc. In this case, the mass towards the centre of the
disc must redistribute almost the entirety of its angular momentum to the
outer regions in order to accrete and release the high energies observed. It
is the mechanics behind this redistribution that is of high interest to astro-
physicists today.

This project begins by analysing the motion of particles in a gravitational
field and discusses how the orbits of such particles are changed in a mini-
mum energy state. We then allow for a transport of angular momentum and
mass between particles, based upon the works of Lynden-Bell and Pringle
(1974), to highlight some important conditions for further energy dissipation
within the system. In search of a mechanism allowing this, we progress in to
the subject of fluid dynamics where we expand upon the results of Pringle
(1981) and Frank et al. (1992) regarding an accretion disc under shear stress.
The discussion of these results influences us to introduce an electrically con-
ducting accretion disc. In line with Balbus and Hawley (1998), we highlight
an e↵ective instability within magnetohydrodynamics which could induce
the needed transport of angular momentum to result in the observed energy
dissipation of accretion discs.
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2 Physical Preliminaries

We begin by reminding ourselves of some results from classical mechanics
regarding the kinematics, forces and energies associated with particles in
space. From our perspective, the size and structure of the particles is ir-
relevant; we therefore consider them to have mass but no spatial extension.
Taylor (2004, p. 13) defines such a particle as a point particle. We will
later explore the dynamics of accretion discs using the mathematics of a
fluid, that is, a continuous medium of particles as opposed to discrete. The
results of the following sections, however, provide a useful insight into these
dynamics and most are directly applicable.

2.1 Position, Velocity and Acceleration

Consider a particle in three-dimensional space with position vector r(t) rel-
ative to an arbitrary origin in an inertial frame. The velocity of the particle,
v(r, t), is defined as the rate of change of it’s position with time, given by

v =
dr

dt
= ṙ. (2.1)

The particles acceleration, a(r, t), is the rate of change of its velocity such
that

a =
@v

@t
=

@2r

@t2
= r̈. (2.2)

As above, we will commonly use the notation ẋ and ẍ to represent first
and second derivatives of a vector x with respect to time. In the case of
cartesian coordinates, the position is given by r = (x, y, z) and the velocity
and acceleration by

v = (vx, vy, vz) =
d

dt
(x, y, z) = (

dx

dt
,
dy

dt
,
dz

dt
),

a = (ax, ay, az) =
@

@t
(vx, vy, vz) = (

@vx
@t

,
@vy
@t

,
@vz
@t

).

The distance of the particle from the origin is defined as the length of its
position vector, krk, where

krk =
p
r · r =

p
r2. (2.3)

Similarly, the speed of the particle is given by kvk. Our standard units
of length, time and mass are metres (m), seconds (s) and kilograms (kg)
respectively. Velocity is therefore measured in m · s�1 and acceleration in
m · s�2.
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2.2 Cylindrical Polar Coordinates

We will commonly adopt cylindrical polar coordinates due to the circular
nature of orbital motion. The cylindrical polar coordinate system is an
alternative to the three-dimensional Cartesian coordinates. It consists of
the values (r, ✓, z) where r is the radial distance from the origin, ✓ is the
azimuthal angle measured from an arbitrary reference line, which we take to
be the x-axis, and z is the signed height from an arbitrary reference plane
as shown in figure 1. The cylindrical coordinates are therefore related to
Cartesian coordinates in the following way:

x = r cos ✓; y = r sin ✓; z = z.

We also define the unit vectors

e
r

= cos(✓)e
x

+ sin(✓)e
y

, e✓ = � sin(✓)e
x

+ cos(✓)e
y

, e
z

= e
z

,

where e
x

, e
y

and e
z

are the standard unit vectors given in Cartesian coor-
dinates.

Figure 1: Cylindrical coordinates (r, ✓, z) with associated unit vectors e
r

, e✓
and e

z

. Adapted from Taylor (2004, p. 136).

The position of a particle with cylindrical coordinates (r, ✓, z) is given by
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r = re
r

+ ze
z

and we find the velocity v = (vr, v✓, vz) to be

v =
d

dt
(re

r

+ ze
z

)

=
d

dt
{r[cos(✓)e

x

+ sin(✓)e
y

] + ze
z

}

=
dr

dt
[cos(✓)e

x

+ sin(✓)e
y

]

+ r
d✓

dt
[� sin(✓)e

x

+ cos(✓)e
y

] +
dz

dt
e
z

,

therefore,
v = ṙe

r

+ r⌦e✓ + że
z

(2.4)

where ⌦ = d✓
dt is defined as the angular velocity (radians · s�1). We highlight

that the angular velocity is related to the azimuthal velocity, v✓, by

v✓ = r⌦. (2.5)

2.3 Newton’s Laws of Motion

At the foundations of classical mechanics lies the laws of motion according
to Newton, which we will use to establish some key concepts of orbiting
objects. Although we are still considering point particles, Newton’s laws
are also applicable to bodies of mass with spatial components. The laws of
motion can be summarised as follows:

1. Newton’s First Law: The velocity of a particle will remain constant
unless the particle is acted on by an external net force F.

2. Newton’s Second Law: The acceleration of a particle is inversely
proportional to its mass, m, and directly proportional to the net force
acting upon it, specifically,

F = ma. (2.6)

We therefore measure force using the standard unit of newtons (N)
where N = kg ·m · s�2.

3. Newton’s Third Law: For every force, F
1

, that a particle exerts
on a second particle, the second particle simultaneously exerts a force,
F
2

, on the first such that F
2

= �F
1

, that is, an equal and opposite
force.

These laws are extensively used in the derivation of the governing formulae
for the motion of particles and fluids.
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2.4 Linear and Angular Momentum

We define the linear momentum of a particle with mass m as the vector L
such that

L = mv,

while the angular momentum, H, is given by

H = r⇥ L,

where both quantities are measured in newton metre seconds (N ·m · s). If
m is constant, equation (2.6) can therefore be written in the form

F =
@L

@t
. (2.7)

As a direct consequence of Newton’s laws of motion, they are both conserved
quantities, meaning that there totals within a closed system can not change
unless acted on by external forces.

2.5 Newton’s Law of Gravity and Gravitational Fields

Newton’s law of gravity states that the gravitational force, F
g

(r), that a
particle with mass m

1

exerts on a second particle with mass m
2

is given by

F
g

= �Gm
1

m
2

krk2 r̂ (2.8)

whereG is the universal gravitational constant (approximately 6.67⇥10�11 m3·
kg�1 ·s�2), r is the position vector of m

2

relative to m
1

and r̂ is a unit vector
pointing in the direction from m

1

to m
2

as shown in figure 2.

Figure 2: The gravitational force, F
g

, of m
1

on m
2

.

This notion can be extended by the introduction of a gravitational field,
g(r), a vector field that describes the gravitational force exerted by a mass
m on a particle in space per unit mass. From here on, we use the word
‘specific’ in place of ‘per unit mass’. This vector field is given by

g = �Gm

krk2 r̂, (2.9)

which is also equal to the gravitational acceleration of a particle at the point
r due to the mass m by equation (2.6).
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2.6 Equations of Energy

In the forthcoming sections, we will analyse the energy associated with or-
biting particles. The two types we will focus on are kinetic energy arising
from motion and potential energy arising from gravity. The kinetic energy,
Ek, of a particle with mass m and velocity v is given by

Ek =
mv2

2
. (2.10)

measured in joules (J) where J = N · m. Given a gravitational field g(r),
there exists a gravitational potential field, '(r), such that

g = �r'. (2.11)

At each point in the field, ' is equal to the specific gravitational potential
energy (J · kg�1) a particle at that point would have.

3 The Motion of Particles in Space

Given the preliminary laws of section 2, we can introduce the concept of
motion in space by considering the position of one mass with respect to
another due to gravitational forces. We then continue by analysing how this
position changes when the mass assumes a least energy state.

3.1 Two Body Problem

Let us introduce two masses, m
1

and m
2

, with position vectors r
1

and r
2

relative to an originO in a fixed inertial frame as shown in figure 3. We follow
the works of Murray and Dermott (1999, pp. 22-24) to analyse the position
of the mass m

2

with respect to m
1

, denoted by the vector r = r
2

� r
1

. A
unit vector in the direction of r is thus given by r̂ = r/krk.
Masses m

1

and m
2

are attracted to each other by gravitational forces F
g1

and F
g2 ; they therefore have gravitational accelerations r̈

1

and r̈
2

respec-
tively, in accordance with equation (2.9), given by

r̈
1

=
Gm

2

krk2 r̂ =
Gm

2

krk3 r,

r̈
2

= �Gm
1

krk2 r̂ = �Gm
1

krk3 r.

Relative to m
1

, m
2

has acceleration

r̈ = r̈
2

� r̈
1

= �Gm
1

krk3 r�
Gm

2

krk3 r
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Figure 3: The gravitational forces associated with two masses, m
1

and m
2

,
in space. Adapted from Murray and Dermott (1999, p. 22).

which can be rearranged to obtain the second order di↵erential equation

r̈+
µ

krk3 r = 0, (3.1)

where µ = G(m
1

+ m
2

) is the standard gravitational parameter. Equation
(3.1) is known as the equation of relative motion; it can be solved to obtain
the position of m

2

with respect to m
1

(e.g. see Taylor (2004, chapter 8) or
Knudsen and Hjorth (2000, chapter 14)). The solution of this di↵erential
equation, however, will currently be of little use to us and we will obtain
similar properties in due course when considering minimum energy states.
More importantly, it does give us an extraordinary consequence of motion
due to gravity. Taking the cross product of r with equation (3.1), we find

r⇥ r̈+
µ

krk3 (r⇥ r) = 0

) r⇥ r̈ = 0 (3.2)

and, since
@

@t
(r⇥ ṙ) = (ṙ⇥ ṙ) + (r⇥ r̈),

integrating (3.2) with respect to time gives

r⇥ ṙ = h (3.3)

for some constant vector h perpendicular to both r and ṙ, defined as the
specific relative angular momentum vector (m2 · s�1). This implies that the
position and velocity vectors of an orbiting particle always lie in the same
plane, defined as the orbit plane. Such a particle is said to be in Keplerian
orbit after the German mathematician Johannes Kepler (1571-1630) who
initially published the laws of planetary motion highlighting this coplanar
property. The set up of our problem can therefore be revised.
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3.2 Reduction to a One Body Problem

We continue by defining the origin of a cylindrical coordinate system as
the position of the particle m

2

and restrict the orbit plane to z = 0. Our
three-dimensional, two body problem has therefore been reduced to a two-
dimensional, one body problem for m

1

in the presence of a central, axisym-
metrical gravitational field due to the mass m

2

. The position of m
1

satisfies
equation (3.1) and is given by r = re

r

. We will commonly take the central
mass to be much larger than the orbiting mass; to highlight this, we rename
the central mass as M and the orbiting mass as m. In this case, the specific
relative angular momentum is given by

h = r⇥ ṙ

= r⇥ (ṙe
r

+ r⌦e✓)

= re
r

⇥ r⌦e✓

= r2⌦ sin(�)e
z

where � is the angle between e
r

and e✓, however, these two unit vectors are
perpendicular so

h = r2⌦e
z

.

The system of an orbiting point particle in a gravitational field therefore has
specific relative angular momentum perpendicular to its plane of orbit with
magnitude h = r2⌦.

3.3 Minimum Energy State

By the principle of minimum energy, the internal energy of a closed system
will decrease and approach a minimum value at equilibrium. We apply this
principle to our system by minimising the total energy and analyse how this
a↵ects the orbiting particles motion. The gravitational potential field of a
central mass M satisfies

r'(r) =
GM

krk3 r

=
GM

(r2 + z2)3/2
r.

We see

r

� GM

(r2 + z2)1/2

�
=

2rGM

2(r2 + z2)3/2
r̂+

2zGM

2(r2 + z2)3/2
ẑ

=
GM

(r2 + z2)3/2
(rr̂+ zẑ)

=
GM

(r2 + z2)3/2
r

10



thus we conclude that the gravitational potential field is given in cylindrical
coordinates by

'(r, z) = � GM

(r2 + z2)1/2
. (3.4)

The total specific energy, ✏, of the mass m as described in section 3.2 is
therefore given by

✏ =
Ek

m
+ '(r, z)

=
v2

2
� GM

(r2 + z2)1/2

=
1

2

�
ṙ2 + r2⌦2 + ż2

�
� GM

(r2 + z2)1/2

=
1

2

�
ṙ2 + ż2

�
+

h2

2r2
� GM

(r2 + z2)1/2
.

Our coordinates, however, were defined such that the particle orbits on the
plane z = 0, and consequently ż = 0, thus

✏ =
ṙ2

2
+

h2

2r2
� GM

r
.

The minimum energy state of the system is therefore achieved when ṙ = 0
and the value of h2

2r2
� GM

r is minimised. We note that h is constant as a
consequence of equation (3.3) leaving only r to minimise, giving

✏
min

=
h2

2r2
min

� GM

r
min

(3.5)

where r
min

satisfies

@

@r

����
r=rmin

✓
h2

2r2
� GM

r

◆
= 0

) � h2

r3
min

+
GM

r2
min

= 0

) r
min

=
h2

GM
. (3.6)

Therefore, an orbiting particle in equilibrium around a central point particle
has a circular, Keplerian orbit in the plane z = 0 with radius r = r

min

= h2

GM .
We note that in this case,

h = h(r) = (GMr)
1
2 , (3.7)

✏
min

= ✏
min

(h) = �1

2

✓
GM

h

◆
2

, (3.8)

⌦ = ⌦(r) =

✓
GM

r3

◆ 1
2

. (3.9)
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4 Further Dissipation of Energy

We now turn our attention to how further energy can be dissipated from a
system of orbiting particles in equilibrium within the gravitational field of
a central mass. A simple scale analysis given by Frank et al. (1992, p. 1)
shows that the gravitational potential energy released during accretion has
the capability of being twenty times that of nuclear fusion. In this section,
we follow a similar approach to Lynden-Bell and Pringle (1974) in order to
gain an insight into how such an e�cient dissipation can be achieved by
considering the transportation of angular momentum and mass. This will
highlight some important conditions that must be met in order for high levels
of energy to be released that we can later apply to a continuous accretion
disc.

4.1 Angular Momentum Transportation

Let us introduce two particles, m
1

and m
2

, in the presence of a fixed gravi-
tational field due to a central mass M . We assume that M � m

1

,m
2

so the
orbits of the particles are only influenced by the gravitational field of the
central mass. In equilibrium, the particles m

1

and m
2

have circular orbits
with radii r

1

and r
2

respectively, in accordance with equation (3.6). Con-
sequently, they also have angular velocities ⌦

1

(r
1

) and ⌦
2

(r
2

) and specific
relative angular momenta h

1

(r
1

) and h
2

(r
2

). We assume that r
1

< r
2

as
shown below.

Figure 4: Two masses, m
1

and m
2

, in the fixed gravitational potential field
of a central mass M .

To establish conditions on how the system can achieve an e�cient dissipa-
tion of energy, we analyse how the total energy of the two particles can be
reduced by allowing them to exchange angular momentum. In accordance
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with conservation laws discussed in section 2.4 however, we keep the total
angular momentum, H, to be constant. The total energy, E, of the two
particles is given by

E = m
1

✏
min

(h
1

) +m
2

✏
min

(h
2

) (4.1)

where ✏
min

(h) is defined as the energy of the particle in equilibrium given by
equation (3.8). The total angular momentum of the two particles, defining
H

1

and H
2

as the angular momenta for m
1

and m
2

respectively, is

H = H
1

+H
2

= m
1

h
1

+m
2

h
2

.

We now consider a small change in the specific angular momenta h
1

and h
2

.
This gives a change in the total energy equal to

dE = m
1

dh
1

d✏
min

dh

����
h=h1

+m
2

dh
2

d✏
min

dh

����
h=h2

.

From equation (3.5) we find

d✏
min

dh
=

h

r2
= ⌦,

therefore,

dE = m
1

dh
1

⌦
1

+m
2

dh
2

⌦
2

= dH
1

⌦
1

+ dH
2

⌦
2

and imposing the constraint that H is constant, which consequently implies
that dH

1

+ dH
2

= 0, we see

dE = dH
1

(⌦
1

� ⌦
2

).

As we defined r
1

< r
2

it must follow that ⌦
1

> ⌦
2

. It is therefore the case
that dE < 0 if and only if dH

1

< 0 and consequently dH
2

> 0. We conclude
that the system of two particles can dissipate energy if and only if angular
momentum is transported outwards from m

1

to m
2

.

4.2 Mass Transportation

As a continuation, we now consider the possibility of further energy dissipa-
tion when allowing an exchange of mass between the two particles, keeping
the total mass, M = m

1

+m
2

, to be constant. In this case, our constraints
are

dM = dm
1

+ dm
2

= 0,

dH = dH
1

+ dH
2

= 0

13



where dH
1

and dH
2

are now given by

dHi = midhi + hidmi

for i = 1, 2. From the expression for the total energy of the two particles
given in equation (4.1) we see

dE = dm
1

✏
min

(h
1

) +m
1

dh
1

⌦
1

+ dm
2

✏
min

(h
2

) +m
2

dh
2

⌦
2

= dm
1

[✏
min

(h
1

)� h
1

⌦
1

] + dm
2

[✏
min

(h
2

)� h
2

⌦
2

] + dH
1

⌦
1

+ dH
2

⌦
2

and imposing our constraints we find

dE = dm
1

{[✏
min

(h
1

)� h
1

⌦
1

]� [✏
min

(h
2

)� h
2

⌦
2

]}+ dH
1

(⌦
1

� ⌦
2

).

The second term in this expression is in agreement with our analysis in
section 4.1. For the first term, we see

d

dr
[✏
min

(h)� h⌦] =
dh

dr

d✏
min

dh
� dh

dr
⌦� h

d⌦

dr

=
GM

2r2
� GM

2r2
� h

d⌦

dr

= �h
d⌦

dr
> 0

since d⌦
dr < 0, hence [✏

min

(h
1

)� h
1

⌦
1

]� [✏
min

(h
2

)� h
2

⌦
2

] < 0 and it follows
that dm

1

{[✏
min

(h
1

)� h
1

⌦
1

]� [✏
min

(h
2

)� h
2

⌦
2

]} < 0 if and only if dm
1

> 0
and subsequently dm

2

< 0. Energy is therefore dissipated further if mass is
transported inwards to smaller radii.

4.3 Summary of Discrete Particle Analysis

In the previous sections, we have established some incredible results regard-
ing motion around a central, massive point particle. Gravitational forces
influence surrounding particles to take coplanar orbits and a minimum en-
ergy configuration has shown further that the orbits are circular in a state of
equilibrium. To further extract energy from an equilibrium state, there must
be a process that redistributes angular momentum radially away from the
central mass, while the mass of the particles must be transported inwards.
In this case, a minimum energy configuration would see the entire mass of
the system accumulated at the centre, while a particle with infinitesimal
mass at infinity carries the entire angular momentum.

Of course, this result is based on the existence of a mechanism that will allow
angular momentum and mass to be freely transported, while energy can
dissipate at will, which is not the case unless we introduce a mechanism that
will allow this. As a physical example, consider the orbit of the Moon around
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the Earth. Loosely speaking, angular momentum can only be exchanged to
the Moon from the Earth as the tides of the sea create a torque allowing it
to do so. Without this torque, angular momentum would not be exchanged
as it currently is. To conclude, dissipation of energy can only exist in an
accretion disc if there is in fact a process transporting mass inwards and
angular momentum outwards. It is the formulation of this process that has
taken centre stage in accretion disc research over the past forty years. In
order to discuss the developments of this research, we must turn to the
subject of fluid dynamics which will allow us to model the mathematics of
accretion discs using continuum mechanics.

5 Astrophysical Fluid Dynamics Equations

The subject of fluid dynamics concerns the flow of liquids and gases in space,
which can be modelled mathematically using a small number of fundamental
equations and assumptions, which we will derive in the following section. In
order to make the transition from the dynamics of particles to that of a fluid
however, we must introduce the notion of a fluid element.

5.1 Introduction to a Fluid Element

Due to the large-scale molecular structure of a fluid, it is clearly impracti-
cal, and most likely impossible, to accurately calculate the motion of each
particle, especially on the scale of astrophysical fluids. As an alternative to
this discrete, molecular classification, we consider a fluid to be a continuous
structure of small volumes, �V , known as fluid elements in which physical
properties, such as velocity and pressure, are considered well-defined. These
volumes can be considered as points.

The motion of a fluid is defined by the velocity field v(r, t). Here, v can be
thought of as the average velocity of all molecules in the fluid element �V
centered at a fixed point P with position vector r. We define the density, ⇢,
of the fluid element as

⇢(r, t) =
mass in �V

�V
(5.1)

with standard units kg ·m�3. The mass, therefore, of a fluid contained in a
volume V is given by the volume integral

M =

Z

V
⇢ dV. (5.2)
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5.2 Lagrangian Description of Fluids

In introducing the concept of a fluid element, we have altered the definition
of the vector r, and subsequently v, from the position of a moving particle
at time t to a fixed point within a fluid, and v as the velocity of the fluid
at this point. The rate of change of a scalar f or vector F can also be
calculated at this fixed point using the definitions of time derivatives we are
accustomed to,

@f

@t
and

@F

@t
,

known as the Eulerian time derivatives. To calculate the rate of change of
a scalar or vector at a point moving with the fluid, however, the Lagrangian
time derivatives, D

Dt , are used, where

Df

Dt
=

@f

@t
+ (v ·r)f and

DF

Dt
=

@F

@t
+ (v ·r)F. (5.3)

Appendix A gives expressions for this operator in cylindrical coordinates.
As a consequence of this definition, the acceleration of a fluid is given by
the Lagrangian derivative

a =
Dv

Dt
=

@v

@t
+ (v ·r)v. (5.4)

These expressions can be derived from first principles using the chain rule
(e.g. see Acheson (1990, p. 4)).

5.3 Conservation of Mass

One important property of a fluid, and indeed any closed system, is that the
total mass it holds is conserved. Following the formalisation of this concept
by Paterson (1983, chapter 4), we consider a volume of fluid V , fixed in
space, enclosed by a permeable surface S with outward pointing normal n.
Let M be the total mass of the volume of fluid in accordance with equation
(5.2). The only way M can change is if mass is transported in or out of the
volume V , that is, if mass passes through the surface S. The rate at which
this happens is given by the mass flux

�
Z

S
⇢v · n dS,

measured in kg · s�1, therefore,

dM

dt
= �

Z

S
⇢v · n dS. (5.5)

We emphasise here the use of the Eulerian time derivate since V is fixed.
The negative sign is due to the outward pointing normal. In an attempt
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to clarify this, consider a situation where fluid flows only out of the volume
in the direction of the normal n giving v · n > 0. Then equation (5.5)
implies that dM

dt < 0, i.e, the mass decreases, which seems intuitive. By the
definition of M , equation (5.5) becomes

d

dt

Z

V
⇢ dV = �

Z

S
⇢v · n dS )

Z

V

@⇢

@t
dV = �

Z

S
⇢v · n dS

since the volume V is fixed. Applying the divergence theorem given in
appendix B we find

�
Z

V
r · (⇢v) dV =

Z

V

@⇢

@t
dV ,

Z

V


@⇢

@t
+r · (⇢v)

�
= 0.

As V is chosen arbitrarily, this must hold for all volumes V , therefore

@⇢

@t
+r · (⇢v) = 0, (5.6)

which we define as the equation of mass conservation. Alternatively, using
r · (⇢v) = ⇢r · v + v ·r⇢, it can be expressed in the Lagrangian form

D⇢

Dt
+ ⇢r · v = 0. (5.7)

This is our first fundamental equation of fluid dynamics. In order to derive
the second, we must discuss the forces which can act upon a fluid.

5.4 Forces on a Fluid

There are two types of forces that can act upon a volume of fluid. The first
are forces which act upon the entire volume, such as gravity, known as body
forces. We shall denote these forces per unit mass as F(x, t), so the total
body forces acting upon a volume of fluid V is

Z

V
F⇢ dV.

The second type are forces acting upon the surface of the volume of fluid,
known as surface forces. These can be described in the form of a stress
tensor �, where �ij is defined by Batchelor (1967, p. 10) as

“the ith-component of the force per unit area exerted

across a plane surface element normal to the j-direction 00. (5.8)

We will informally derive an expression for the stress tensor in the Navier-
Stokes context, however, an in-depth proof can be obtained (e.g. see Batch-
elor (1967, pp. 137-147)).
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Figure 5: Tetrahedral volume of fluid in orthogonal coordinate system.
Adapted from Paterson (1983, p. 97).

Consider the tetrahedral fluid element, �V , shown in figure 5 in an orthog-
onal coordinate system {e

1

, e
2

, e
3

}. Let �A be the area of the large face
opposite the origin with outward normal n = (n

1

, n
2

, n
3

), and the other
faces have areas �A

1

, �A
2

and �A
3

as labelled, each with outward normals
�e

1

, �e
2

and �e
3

respectively. We define the instantaneous ith-component
of the force per unit area on the surface �A as ⌧i, so the surface force on �A
is �A⌧i. The ith-component of the surface force on �A

1

is ��i1�A1

by the
definition given in (5.8), and similarly ��i2�A2

and ��i3�A3

on �A
2

and
�A

3

respectively. By the orthogonality of the coordinate system,

�Ai = e
i

· n�A = ni�A

so the sum of the ith-components of surface force on the volume �V can be
written

⌧i�A� (�A
1

�i1 + �A
2

�i2 + �A
2

�i2) = [⌧i � (�i1n1

+ �i2n2

+ �i3n3

)]�A

= (⌧i �
3X

j=1

�ijni)�A.

At any fixed point in time, by Newton’s Second Law, this surface force plus
any body force must be equal to the acceleration times the mass of the fluid
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element such that

mai = (⌧i �
3X

j=1

�ijni)�A+ Fi.

Letting l be a typical side length of the fluid element, we know m ⇠ �V ⇠ l3

and �A ⇠ l2, so as l ! 0, the surface force term dominates while the other
terms tend towards zero. Therefore, the ith-component of the surface force
on a volume of fluid with outward normal vector n is given by

⌧i =
3X

j=1

�ijni = �i · n (5.9)

where �i = (�i1,�i2,�i3). A similar argument can show that the stress
tensor is symmetric, that is, �ij = �ji for all i, j. The tensor can therefore
be represented in the form of the 3x3 matrix

0

@
�
11

�
12

�
13

�
21

�
22

�
23

�
31

�
32

�
33

1

A =

0

@
�
11

�
12

�
13

�
12

�
22

�
23

�
13

�
23

�
33

1

A .

The components along the diagonal are normal stresses and those o↵-diagonal
shear stresses since they only arise due to a shearing motion between adja-
cent fluid elements moving relative to each other. In a fluid at rest, therefore,
the only surface forces present are normal forces contracting the fluid ele-
ment. The amount of force is dependent on the steady conditions outside
of the fluid element, which we can assume to be identical in each direction
since we have taken the fluid element to be analogous to a point in space.
Therefore at rest, the stress tensor becomes

0

@
�p 0 0
0 �p 0
0 0 �p

1

A

where p is defined as the pressure on the fluid element measured in pascals
(Pa = N ·m�2). The derivation of the stress tensor for a fluid in motion is
dependent upon pressure remaining as the negative mean of normal stresses,
while introducing a molecular shear stress due to motion. To highlight the
source of this stress, consider a surface within a fluid where the horizontal
velocities above the surface are faster than those below as depicted in figure
6.

Although we consider a fluid to be a continuous medium with a bulk velocity,
the motion of molecules within the medium is close to random. Therefore,
molecules with horizontal velocities U are free to permeate through the
surface S into the region of higher horizontal velocities, causing the average
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Figure 6: The principle of molecular viscosity. Adapted from Paterson
(1983, p. 129).

velocity in this region to reduce slightly. Similarly, those from the region of
higher velocites can move through S and increase the average velocity of the
slower region. For single molecules this e↵ect is extremely negligible, but
on the scale of a fluid consisting of millions of freely moving molecules, its
e↵ects must be taken into account by treating them as a surface force. This
is the basis of shear stress due to molecular viscosity.

Introducing viscosity into our expression for the stress tensor �, we will
assume that in cartesian coordinates it takes the form

�ij =

8
<

:
µ
⇣

@ui
@xj

+ @uj

@xi

⌘
if i 6= j;

p+ 2µ
h
@ui
@xi

� 1

3

⇣
@u1
@x1

+ @u2
@x2

+ @u3
@x3

⌘i
if i = j,

(5.10)

where µ is defined as the dynamic viscosity (Pa · s�1) which takes di↵erent
values dependent on physical properties of the fluid itself. For example,
Paterson (1983) gives the dynamic viscosity of air at 288 kelvin to be 1.8⇥
10�5 while for olive oil it is given as 0.10. The dynamic viscosity is related
to the kinematic viscosity, ⌫, with units m2 · s�1, by

µ = ⇢⌫. (5.11)

Frank et al. (1992, p. 59) states that ⌫ ⇠ �v
mol

where � is the mean distance
that a free molecule travels before colliding in the fluid and v

mol

is the mean
speed of a free molecule in the fluid.

Our expression for the stress tensor in cartesian coordinates can be extended
to other coordinate systems by defining the tensor in the form

� = pI+T

where I is the 3x3 identity matrix and T is defined as the deviatoric stress
tensor given by

T = 2µ


1

2
(rv) +

1

2
(rv)T � 1

3
(r · v)I

�
. (5.12)
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where rv is defined as the tensor gradient. An expression for this operator
in cylindrical coordinates is given in appendix A.

5.5 Equation of Motion

We now turn our attention to the momentum of a volume of fluid given by
Z

V
v⇢ dV.

Paterson (1983, p. 127) describes three ways in which the momentum of a
volume of fluid can be changed in accordance with Newton’s second law:

1. By an inflow of momentum through the surface S;

2. By body forces acting on the volume V ;

3. By surface forces acting on S.

Imposing this, we therefore find that the rate of change of the ith-component
of momentum must satisfy

d

dt

Z

V
⇢vi dV = �

Z

S
⇢viv · n dS +

Z

V
Fi⇢ dV +

Z

S
�i · n dS

and applying the divergence theorem to the surface integrals gives
Z

V

@

@t
(⇢vi) dV = �

Z

V
r · (⇢viv) dV +

Z

V
Fi⇢ dV +

Z

V
r · �i dV

)
Z

V


@

@t
(⇢vi) +r · (⇢viv)� Fi⇢�r · �i

�
dV.

Since V is arbitrary, and expanding the stress component into pressure and
deviatoric parts, we must have

0 =
@

@t
(⇢vi) +r · (⇢viv)� Fi⇢+

@p

@xi
�r ·T

i

. (5.13)

Now, expanding the first two terms using the product rule, we see

@

@t
(⇢vi) +r(⇢viv) =


⇢
@vi
@t

+ vi
@⇢

@t

�
+ [vir · (⇢v) + ⇢(v ·r)vi]

= ⇢


@vi
@t

+ (v ·r)vi

�
+ vi


@⇢

@t
+r · (⇢v)

�

= ⇢
Dvi
Dt
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by equating the second term to zero using the equation of mass conservation
equation. Substituting this into equation (5.13) we therefore find

⇢
Dvi
Dt

= Fi⇢�
@p

@xi
+r ·T

i

or

⇢
Dv

Dt
= F⇢�rp+r ·T (5.14)

which is the Navier-Stokes equation of motion. If we take T to be defined
as a shear stress by equation (5.12), this equation can be written

⇢
Dv

Dt
= F⇢�rp+ µ


r2v +

1

3
r(r · v)

�
. (5.15)

It is important to note that although we have taken shear stress as a result
of molecular viscosity, its terms within the equation of motion may be used
to parameterise other origins of surface stress. The Navier-Stokes equation
is our second fundamental equation of fluid dynamics. We are now in a
position where we can analyse the mechanics of accretion discs.

6 Accretion Discs with Shear Stress

Let us consider a central mass at the origin r = z = 0 in a cylindrical
coordinate system surrounded by a continuous disc of matter which we treat
as a fluid. Our analysis in section 3 leads us to suspect that gravity will force
the matter within the disc into a coplanar orbit. In the case of a continuous
fluid where pressure is present, it can not be assumed that a perfectly flat
disc will be formed. We will, however, make the reasonable assumption
that the disc is thin within a central plane given by z = 0. We have also
shown that in equilibrium, without any mechanism for angular momentum
or mass transportation, orbiting particles move in circles. Pringle (1981)
applies similar reasoning to a continuous mass distribution to show that a
disc of fluid will also remain in circular orbit in equilibrium. The mass and
angular momentum distributions, however, may be changed if a process is
in place that will allow so which may indeed alter the orbital motion of fluid
volumes.

When defining shear stress, the reader may have been contemplating how
this could aid our search for such a process to redistribute angular momen-
tum within accretion discs. Indeed, a disc in equilibrium has di↵erential
rotation, that is, its angular velocity decreases as its radius increases. Molec-
ular viscous stress therefore has the potential to cause inner parts of the disc
to shear against the outer parts and redistribute their angular momentum
outwards. We would then expect the decrease in angular momentum of the
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inner parts to force the mass within them to move to a smaller orbit in
order to conserve the overall angular momentum and return to a minimum
energy state; this allows for accretion. Shear stress, therefore, seems to fit
our conditions perfectly.

Through the use of the equation of mass conservation and the Navier-Stokes
equation of motion, we can directly model the mechanics of this process.
Our method is based upon that of Frank et al. (1992, chapter 5) and Pringle
(1981). For a less formal derivation, the reader should be directed to the
works of Choudhuri (1998, pp. 94-102). We allow for the transport of mass
by introducing an axisymmetric radial mass inflow with velocity vr. Let us
also impose the boundary condition that all velocity components of the fluid
vanish in the limit z ! ±1 since the gravitational forces due to the central
mass will be negligible at extreme distances.

6.1 Conservation of Mass Analysis

We begin our analysis by considering the equation of mass conservation,
which in cylindrical coordinates is given by

@⇢

@t
+

1

r

@

@r
(r⇢vr) +

1

r

@

@✓
(⇢v✓) +

@

@z
(⇢vz) = 0

using expressions for vector calculus operators given in appendix A. In-
tegrating this over the entirety of the z and ✓-coordinates to obtain an
expression in r, we find

0 =

Z
2⇡

0

Z
+1

�1

@⇢

@t
dz d✓ +

Z
2⇡

0

Z
+1

�1

1

r

@

@r
(r⇢vr) dz d✓

+

Z
2⇡

0

Z
+1

�1

1

r

@

@✓
(⇢v✓) dz d✓ +

Z
2⇡

0

Z
+1

�1

@

@z
(⇢vz) dz d✓

=
@

@t

Z
2⇡

0

Z
+1

�1
⇢ dz d✓ +

1

r

@

@r

Z
2⇡

0

Z
+1

�1
r⇢vr dz d✓

+
1

r

Z
+1

�1

Z
2⇡

0

@

@✓
(⇢v✓) d✓ dz +

Z
2⇡

0

Z
+1

�1

@

@z
(⇢vz) dz d✓.

(6.1)

We define the surface density of the disc, ⌃(r, t), as the mass per unit surface
area given by

⌃ =
1

2⇡

Z
2⇡

0

Z
+1

�1
⇢ dz d✓

measured in kg ·m�2. The mass of an annulus between two radii, r
1

and r
2

,
is therefore given by Z r2

r1

2⇡⌃r dr. (6.2)
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Introducing this notation, equation 6.1 becomes

0 = 2⇡
@⌃

@t
+

1

r

@

@r

Z
2⇡

0

Z
+1

�1
r⇢vr dz d✓

+
1

r

Z
+1

�1

⇥
⇢v✓

⇤✓=2⇡

✓=0

dz +

Z
2⇡

0

⇥
⇢vz

⇤
+1
�1 d✓.

Since the disc is 2⇡ periodic in the ✓-coordinate by definition, ⇢(2⇡)v✓(2⇡) =
⇢(0)v✓(0), and by imposing the boundary condition that vz ! 0 as z ! ±1,
we see

0 = 2⇡
@⌃

@t
+

1

r

@F
@r

(6.3)

where F(r, t) is the radial mass flux given by

F =

Z
2⇡

0

Z
+1

�1
r⇢vr dz d✓. (6.4)

Let us also define a mean radial inflow, v̄r(r, t), averaged and density over
the z and ✓ components of the disc such that

F = 2⇡rv̄r⌃. (6.5)

F is a measure of how much mass passes through an annulus at radius r at
some time t given in kg · s�1. This allows equation (6.3) to be written as

0 = 2⇡
@⌃

@t
+

2⇡

r

@

@r
(rv̄r⌃)

) 0 =
@⌃

@t
+

1

r

@

@r
(rv̄r⌃), (6.6)

which expresses the conservation of mass of the accretion disc.

6.2 Equation of Motion Analysis

Our attention is now turned towards the Navier Stokes equation of motion,
for which we choose the body forces, F, to be gravitational forces due to the
central mass, written F = r' where ' is the gravitational potential defined
in equation (2.11). The equation of motion therefore becomes

⇢
Dv

Dt
= �⇢r'�rp+r ·T. (6.7)

For now, we will focus on the ✓-component of this equation as this is where
the shear stress will make the greatest influence. In cylindrical coordinates,
the ✓-component is given by

⇢

✓
r
Dv✓
Dt

+ vrv✓

◆
= �@p

@✓
+

@

@r
(rT✓r) +

@

@✓
(T✓✓) +

@

@z
(rT✓z)
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where we have multiplied through by r and grouped the derivatives with
respect to ✓. Now, expanding the Lagrangian derivative using appendix A,
we see

r
Dv✓
Dt

+ vrv✓ = r

✓
@v✓
@t

+ vr
@v✓
@r

+
v✓
r

@v✓
@✓

+ vz
@v✓
@z

◆
+ vrv✓

=
@

@t
(rv✓) +

✓
rvr

@v✓
@r

+ vrv✓

◆
+

v✓
r

@

@✓
(rv✓) + vz

@

@z
(rv✓)

=
@h

@t
+ vr

@h

@r
+

v✓
r

@h

@✓
+ vz

@h

@z

=
Dh

Dt

where we have reintroduced h = r2⌦ as the specific orbital angular momen-
tum. The ✓-component of the equation of motion therefore becomes

⇢
Dh

Dt
= �@p

@✓
+

@

@r
(rT✓r) +

@

@✓
(T✓✓) +

@

@z
(rT✓z). (6.8)

Let us now assume that ⌦ = ⌦(r) ) h = h(r). By our analysis in section
3, this does not seem unreasonable as we have shown this holds for particle
motion if we assume the gravitational field is fixed. We will discuss its valid-
ity in the case of a continuous disc in due course. Equation (6.8) therefore
becomes

⇢vr
dh

@r
=

@

@r
(rT✓r) +

@

@✓
(t✓✓ � p) +

@

@z
(rT✓z).

Integrating this with respect to ✓ and z across the whole disc gives
Z

2⇡

0

Z
+1

�1
⇢vr

dh

@r
dz d✓ =

Z
2⇡

0

Z
+1

�1

@

@r
(rT✓r) dz d✓

+

Z
2⇡

0

Z
+1

�1

@

@✓
(T✓✓ � p) dz d✓ +

Z
2⇡

0

Z
+1

�1

@

@z
(rT✓z) dz d✓

and, by imposing our boundary conditions and periodicity, this becomes

) dh

dr

F
r

=
@

@r

Z
2⇡

0

Z
+1

�1
(rT✓r) dz d✓

where F is the radial mass flux. Multiplying through by r gives us

dh

dr
F = �@G

@r
(6.9)

where G = �
R
2⇡
0

R
+1
�1 (r2T✓r) dz d✓. Given two thin annuli on either side of a

radius r, G is the viscous torque exerted on the outer annulus by the inner
annulus measured in newton metres (N · m). From our expression of the
deviatoric stress tensor in equation (5.12)

T✓r = µ

✓
@u✓
@r

+
1

r

@ur
@✓

� u✓
r

◆
= µ


d

dr
(r⌦)� ⌦

�
= µr

d⌦

dr
,
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since ur is an axisymmetric mass inflow. The viscous torque is therefore
given by

G = �r3
d⌦

dr

Z
2⇡

0

Z
+1

�1
µdz d✓ = �r3

d⌦

dr

Z
2⇡

0

Z
+1

�1
⇢⌫ dz d✓,

where ⌫ is the kinematic viscosity defined in equation (5.11). Let us define
⌫̄(r, t) as the mean kinematic viscosity averaged across the z and ✓ compo-
nents of the disc such that

G = �r3
d⌦

dr
⌫̄2⇡⌃ (6.10)

then equation (6.9) becomes,

dh

dr
F = � @

@r

✓
�r3

d⌦

dr
⌫̄2⇡⌃

◆

) dh

dr
v̄r⌃ =

1

r

@

@r

✓
r3

d⌦

dr
⌫̄⌃

◆
, (6.11)

by substituting our expression for F from equation (6.4). This describes
the conservation of angular momentum within the disc. We note that if ⌦
decreases with radius then the viscous torque is positive which suggests that
angular momentum is indeed transported radially outwards since torque is
a measure of how much a force causes rotation.

6.3 Derivation of the Surface Density Di↵usion Equation

We now combine the two equations from our analysis describing the be-
haviour of the accretion disc, the equations for conservation of mass and
angular momentum. In an attempt to eliminate v̄r, equation (6.6) tells us

@

@r
(r⌃v̄r) = �r

@⌃

@t

and through rearranging equation (6.11) and di↵erentiating with respect to
r we find

@

@r
(r⌃v̄r) =

@

@r

"✓
@h

@r

◆�1 @

@r

✓
⌫̄⌃r3

d⌦

dr

◆#
,

therefore, we obtain the di↵erential equation

@⌃

@t
= �1

r

@

@r

"✓
dh

dr

◆�1 @

@r

✓
⌫̄⌃r3

d⌦

dr

◆#
. (6.12)

At this stage, we simplify our problem by specifying the central mass to be a
point particle and assuming that the orbiting matter within the disc follows
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coplanar, Keplerian orbits. Again, we discuss the validity of this assumption
in a later section. We can therefore make use of the results from section 3,
specifically equations (3.7)-(3.9), to find

d⌦

dr
= �3

2

p
GMr�

5
2 ,

dh

dr
=

1

2

p
GMr�

1
2 .

Substituting these expressions into our di↵erential equation (6.12) and sim-
plifying gives the surface density di↵usion equation

@⌃

@t
=

3

r

@

@r


r

1
2
@

@r

⇣
⌫̄⌃r

1
2

⌘�
. (6.13)

which can be used to analyse the time evolution of a Keplerian accretion
disc. Given a solution for this di↵usion equation, (6.11) can be used to find
v̄r given by

v̄r = � 3

r1/2⌃

@

@r

⇣
r

1
2 ⌫̄⌃

⌘
(6.14)

which can in turn provide an insight into the accretion rates that arise due
to the transport of angular momentum from shear stress.

6.4 Analysis of the Di↵usion Equation

In order to obtain some qualitative results from this analysis, it becomes
imperative that we make some assumption on the quantity ⌫̄; we will discuss
the case where ⌫̄ is a constant. It is important to note that this is not likely
to be true, but our aim for now is to analyse the general mechanics of the
disc; for this purpose it will su�ce. The di↵usion equation can therefore be
written

@⌃

@t
=

3⌫̄

r

@

@r


r

1
2
@

@r

⇣
⌃r

1
2

⌘�

) r
1
2
@⌃

@t
=

3⌫̄

r


r

1
2
@

@r

⇣
r

1
2

⌘ @

@r

⇣
⌃r

1
2

⌘�

) @

@t

⇣
r

1
2⌃

⌘
=

3⌫̄

r

✓
r

1
2
@

@r

◆
2 ⇣

⌃r
1
2

⌘
,

which we continue to solve in detail. Defining s = 2r
1
2 such that @

@s = r
1
2 @
@r ,

a change of variables simplifies this equation to

@

@t

⇣
r

1
2⌃

⌘
=

12⌫̄

s2
@2

@s2

⇣
r

1
2⌃

⌘
(6.15)

which can be seen as a separable partial di↵erential equation for r
1
2⌃. We

seek functions T (t) and S(s) such that r
1
2⌃ = T (t)S(s), giving

S
dT

dt
=

12⌫̄

s2
T
d2S

ds2
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) 1

t

dT

dt
=

12⌫̄

s2
d2S

ds2
1

S
= c (6.16)

for some constant c. The partial di↵erential equation is reduced to two
ordinary di↵erential equations in t and s. In order to solve them, we must
first derive a further boundary condition on the disc.

Observations have shown that at some radius r = rin towards the inner
boundary where the disc meets the accreting object, there is a rapid tran-
sition from the angular velocity of the disc to that of the central mass at
a point where the viscous torque G vanishes. This seems logical since we
would not expect the accretion disc to draw angular momentum from the
accreting object itself. For a point particle central mass we can take rin ! 0
and therefore our boundary condition states that G ! 0 as r ! 0. Recalling
our assumption of Keplerian orbit in the disc, we see G = �r

1
2 (GM)

1
2 ⌫̄2⇡⌃,

therefore our boundary condition imposes that r
1
2⌃ ! 0 as r ! 0.

With this in mind, let us continue by focussing on the ODE for S and
attempt to obtain a solution in terms of r. Changing our variable to r at
this stage will result in a di↵erential equation in a common form that we
can solve. We see

d2S

ds2
=

d

ds

✓
dS

dr

dr

ds

◆
=

d

dr

✓
dS

dr
r

1
2

◆
r

1
2 =

d2S

dr2
r +

1

2

dS

dr
,

therefore, the equation for S can be written

12⌫̄

4r

✓
d2S

dr2
r +

1

2

dS

dr

◆
1

S
= c

) 12⌫̂
d2S

dr2
r + 6⌫̂

dS

dr
� 4rSc = 0. (6.17)

Let us now assume that S(r) = r↵P (r) for some arbitrary ↵. Substituting
this in to equation (6.17) and simplifying gives

0 = r2
d2P

dr2
+

dP

dr

✓
2↵+

1

2

◆
+

⇣
↵2 � ↵

2

⌘
P � c

r⌫̄
r2P.

Moreover, by choosing ↵ = 1

4

, this conveniently reduces to the fourth order
Bessel di↵erential equation

0 = r2
d2P

dr2
+

dP

dr
r +

✓
k2r2 � 1

16

◆
P

where k2 = � c
3⌫̂ . The general solution for P is therefore given by

P (r) = AJ1/4(kr) +BY1/4(kr)
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for some constants A and B and subsequently

S(r) = r
1
4
�
AJ1/4(kr) +BY1/4(kr)

�
.

Imposing our inner boundary condition, it must follow that S ! 0 as r ! 0
and since r

1
4Y1/4(kr) 9 0 we find B = 0. From our expression for the

constant k2, we can deduce that c = �3k2⌫̄. Our di↵erential equation for T
from equation (6.16) therefore becomes

1

T

dT

dt
= �k23⌫̄ ) T = Ce�k23⌫̄t

for a constant C. Therefore, ⌃(r, t) / r�
1
4J1/4(kr)e

�3⌫̄k2t and the general
solution for the surface density of the accretion disc is

⌃(r, t) =

Z 1

0

f(k)r�
1
4J1/4(kr)e

�3⌫̄k2t dk (6.18)

for some function f(k) satisfying

⌃(r, 0) =

Z 1

0

f(k)r�
1
4J1/4(kr) dk

) r
1
4⌃(r, 0) =

Z 1

0

✓
f(k)

k

◆
J1/4(kr)k dk. (6.19)

In order to find f(k), we make use of the Hankel transform of order 1

4

given
by Debnath and Bhatta (2006) as

H(k) =

Z 1

0

h(r)Jn(kr)r dr,

h(r) =

Z 1

0

H(k)Jn(kr)k dk,

for functions H(k) and h(r). Applying this transform to (6.19), it follows
that

f(k)

k
=

Z 1

0

r
1
4⌃(r, 0)J1/4(kr)r dr

) f(k) = k

Z 1

0

⌃(r, 0)J1/4(kr)r
5
4 dr,

and substituting this in to equation (6.18) gives

⌃(r, t) =

Z 1

0

k

Z 1

0

⌃(q, 0)J1/4(kq)q
5
4 dq

�
r�

1
4J1/4(kr)e

�3⌫̄k2t dk

where q is a dummy variable and ⌃(q, 0) is the initial surface density. The
integrals can be swapped and rearranged to give

⌃(r, q, t) =

Z 1

0

⌃(q, 0)�(r, q, t) dq

29



where �(r, q, t) is given by

�(r, q, t) = q
5
4 r�

1
4

Z 1

0

J1/4(kq)J1/4(kr)ke
�3⌫̄k2t dk, (6.20)

to which we now turn our attention to. From the results contained in the
handbook of Olver et al. (2010, equation 10.22.67) we see

Z 1

0

Jn(kq)Jn(kr)ke
�p2k2 dk =

1

2p2
exp

✓
�q2 + r2

4p2

◆
In

✓
qr

2p2

◆

for <(n) > �1 and <(p2) > 0 where In is the modified Bessel function of
order n. Applying this to equation (6.20) with p2 = 3⌫̄t > 0 and n = 1

4

gives

�(r, q, t) = q
5
4 r�

1
4 exp

✓
�q2 + r2

12⌫̄
t

◆
I1/4

⇣ qr

6⌫̄t

⌘

and therefore the solution to the surface density di↵usion equation is given
by

⌃(r, q, t) =

Z 1

0

⌃(q, 0)q
5
4 r�

1
4

1

6⌫̄t
exp

✓
�q2 + r2

12⌫̄t

◆
I1/4

⇣ qr

6⌫̄t

⌘
ds.

Following Frank et al. (1992, p. 69) we find the Green’s function, defined
as the solution for ⌃(r, q, t) taking the initial surface density distribution as
that of a ring of mass m

0

at some radius q = r
0

. Since the mass of a disc
between two radii satisfies equation (6.2), it follows that this initial surface
density is given by

⌃(q, 0) =
m

2⇡r
0

�(s� r
0

)

giving the Green’s function to be

⌃(⌧, x) =
m

⇡r2
0

⌧�1x�
1
4 exp

✓
�1 + x2

⌧

◆
I1/4

✓
2x

⌧

◆
(6.21)

where we have introduced the dimensionless parameters x = r
r0

and ⌧ = 12⌫̄t
r20

.

A plot of the solution at di↵erent scaled times ⌧ is shown in figure 7.

6.5 Discussion of Solution and Steady State Disc

We have shown that viscosity has the e↵ect of spreading out a thin disc
placed in Keplerian orbit. Initially, the surface density appears normally
distributed about r = r

0

. As time evolves, the majority of mass drifts
towards the centre, while a small amount of matter moves out to larger
radii. When ⌫̄ is constant, from equation (6.14) we see v̄r ⇠ ⌫̄

r . In fact, we
can write

v̄r = �3⌫̄
@

@r

h
ln

⇣
r

1
2⌃

⌘i
= �3⌫̄

r
0

@

@x

h
ln

⇣
x

1
2⌃

⌘i
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Figure 7: The spreading of a ring of mass m
1

placed in Keplerian orbit
at radius r

0

around a central mass due to viscosity. Adapted from Pringle
(1981).

and, substituting from (6.21), this gives

v̄r = �3⌫̄

r
0

@

@x


1

4
lnx� 1 + x2

⌧
+ ln I1/4

✓
2x

⌧

◆�

where we have dropped the constant terms as they will disappear due to the
di↵erential. For 2x � ⌧ , Frank et al. (1992, p. 70) states that I1/4

�
2x
⌧

�
/

�
⌧
2x

�1/2
exp

�
2x
⌧

�
and for 2x ⌧ ⌧ , I1/4

�
2x
⌧

�
/

�
2x
⌧

�1/4
. Thus, when 2x � ⌧

v̄r ⇠ �3⌫̄

r
0

@

@x


1

4
lnx� 1 + x2

⌧
+

1

2
ln

⇣ ⌧

2x

⌘
+

2x

⌧

�

=
3⌫̄

r
0

✓
1

4x
+

2x

⌧
� 2

⌧

◆
> 0,

and when 2x ⌧ ⌧

v̄r ⇠ �3⌫̄

r
0

@

@x


1

4
lnx� 1 + x2

⌧
+

1

4
ln(2x)� 1

4
ln ⌧

�

= �3⌫̄

r
0

✓
1

2x
� 2x

⌧

◆
< 0.

We therefore find that the outer parts of the disc move further outwards, car-
rying with them the angular momentum of the inner parts. The inner parts
are then forced to take a smaller orbit eventually accreting onto the central
mass. This is in direct agreement with our original hypothesis stated when
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introducing this section. Moreover, we see the radius at which vr changes
sign actually increases with time, meaning that mass that has originally ex-
tended to a further radius will at some point in the future be forced inwards
to accrete. The limit as ⌧ increases see’s a system with almost the entire
initial mass accreted, while the angular momentum is all carried by minimal
mass to extremely large radii.

From figure 7 we can estimate the timescale, t
visc

, on which viscosity initially
spreads the original ring out by, through analysing the di↵erent widths of
the annulus of mass, �, at di↵erent times given in table 1.

Table 1: Timescale Analysis

⇡ � ⌧ ⇡�2

⌧

0.4 0.002 80
0.8 0.008 80
1.5 0.032 70.3

We have named the width of the annulus � since it roughly corresponds
to the standard deviation of the distribution of mass at the time ⌧ . Our
observations seem to suggest that the radii of the disc increases such that
�2⌧�1 ⇠ 1. We can therefore deduce that the viscosity spreads mass on a
timescale ⌧

visc

where x2⌧�1

visc

⇠ 1, or equivalently r2

⌫̄tvisc
⇠ 1, giving

t
visc

⇠ r2

⌫̄
. (6.22)

Since this subsequently implies that t
visc

⇠ r
v̄r
, it is also known as the

radial drift timescale as it estimates the timescale on which a disc annulus
moves a radial distance r. In general, Frank et al. (1992) states that the
external conditions of an accretion disc change on timescales much longer
than t

visc

. Moreover, it is also common that the disc is fed by mass from
surrounding matter or a companion star in a binary system such that the
mass lost towards the inner boundary is replenished. The system will then
tend towards a state of equilibrium and can be modelled as a steady state
by equating any time derivatives to zero; this approach is commonly used
in accretion disc research.

6.6 Keplerian Assumption Validation

Following on from our conclusion that the disc can be considered steady,
we are now in a position where our assumption of Keplerian velocity can
be analysed. We firstly consider the vertical component of the equation of
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motion (6.7) given by

⇢
@uz
@t

+ ⇢(v ·r)vz = �⇢
@'

@z
� @P

@z
+

1

r

@

@r
(rTrz) +

1

r

@

@✓
(T✓z) +

@

@z
(Tzz),

however, we do not expect any vertical stresses and only minimal vertical
flow. The dominating terms therefore give

1

⇢

@p

@z
= �@'

@z
.

This situation, where gravity is balanced by pressure, is known as vertical
hydrostatic equilibrium. Through substituting our expression for the gravi-
tational potential given in equation (3.4), this becomes

1

⇢

@p

@z
= GM

@

@z

⇣
(r2 + z2)�

1
2

⌘
. (6.23)

For a thin disc we expect z ⌧ r, so expanding (r2+ z2)�
1
2 as a Taylor series

about z = 0 gives

(r2 + z2)�
1
2 =

1

r
� rz2

2r4
+ o(z2) (6.24)

) @

@z

⇣
(r2 + z2)�

1
2

⌘
⇡ � z

r3

and equation (6.23) becomes, to a first approximation,

1

⇢

@p

@z
= �GMz

r3
= �⌦2

kz (6.25)

where ⌦k is the Keplerian angular velocity. Let us defineH as a typical scale-
height for the discs in the z-direction giving @p

@z ⇠ p
H . So, by a comparison

of magnitudes, we find

1

⇢

p

H
⇡ GMH

r3
) csr ⇡

✓
GM

r

◆ 1
2

H

where c2s = p
⇢ is defined as the isothermal sound speed. Therefore, for our

thin assumption to hold, we must have

cs ⌧
✓
GM

r

◆ 1
2

. (6.26)

We now turn to the radial component of the equation of motion, given by

⇢

✓
@vr
@t

+ v ·rvr �
v2✓
r

◆
= �⇢

@'

@r
� @p

@r
+

1

r

@

@r
(rTrr)+

1

r

@Tr✓

@✓
+

@trz
@z

� T✓✓

r
.
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Again, we expect Trr, T✓✓ and Trz to be negligible and for there to be minimal
variation on vr and Tr✓ in the ✓ and z directions. Therefore, for a steady
disc, the dominating terms give

⇢

✓
vr

@vr
@r

�
v2✓
r

◆
= �⇢

@'

@r
� @p

@r
. (6.27)

In the thin disc approximation, we make the estimation @'
@r ⇡ GM

r2
using the

taylor expansion (6.24). Equation (6.27) therefore becomes

vr
@vr
@r

�
v2✓
r

+
1

⇢

@p

@r
+

GM

r2
= 0.

Let us firstly compare the scales of the pressure term with the gravity term.
We find

1

⇢

@p

@r
⇠ c2s

r

and by equation (6.26)
c2s
r

⌧ GM

r2

so the pressure term is negligible in comparison with the gravity term. We
now evaluate the scaling of vr

@vr
@r . We know vr ⇠ ⌫̄

r ⇠ µ̄
⇢r where we have

defined µ̄ as an averaged dynamic viscosity, and by the definition of µ,
[µ] = ML�1T�1. We also see


p

⌦k

�
=

ML�1T�2

T�1

= ML�1T�1

so we can write
µ̄ =

↵p

⌦k

for some dimensionless parameter ↵, which can be shown to be between zero
and approximately one. This relation is called the alpha viscosity prescrip-
tion and was first adopted in the work by Shakura and Sunyaev (1973) on
steady accretion discs. It has been extensively used to parameterise forms
of di↵erent stress that may occur in accretion discs. On this occasion, we
use it simply for a scaling analysis. From equation (6.25) we find ⌦k ⇠ cs

H ,
therefore,

µ̄ ⇠ ↵pH

cs
) vr ⇠

↵PH

cs⇢r
=

↵csH

r

and since H ⌧ r it must follow that vr ⌧ cs; the radial velocity must be
highly subsonic. As a side note, we state that the alpha parameterisation
leads to ⌫̄ ⇠ ↵csH. Therefore,

vr
@vr
@r

⇠ v2r
r

⌧ c2s
r
,
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so this term is even smaller than the pressure term. To a leading order of
magnitude, the radial component of the equation of motion becomes

�
v2✓
r

+
GM

r2
= 0

and, by defining the Mach number, M, according to Frank et al. (1992) such
that M = v✓

cs
, we see the azimuthal velocity satisfies

v✓ =

✓
GM

r

◆ 1
2 ⇥

1 +O(M�2)
⇤
.

We can therefore conclude that our assumption of Keplerian angular velocity
appears to be very reasonable. Furthermore, our thin disc assumption given
in (6.26) implies that the circular velocity must be highly supersonic.

6.7 Accretion Rates and Luminosities of a Steady Disc

In order to understand the e�ciency of our model and analyse whether it
fits observed or expected results, we now analyse the rate of accretion and
energy release for the disc. Under the steady conditions described in the
previous section, the equation of mass conservation (6.6) becomes

@

@r
(rv̄r⌃) = 0

which implies that rv̄r⌃ is constant at every radius r. Consequently, the
radial mass flux, F , defined in equation (6.3) must also be constant with
changing radius, so

Ṁ = �F = constant

where Ṁ is defined as the accretion rate with units kg · s�1. Since our
Keplerian assumption has now been validated, we are safe in assuming h =
h(r) and G = G(r) where G is the viscous torque given in equation (6.10).
Equation (6.9) can therefore be written

Ṁ
dh

dr
= �dG

dr

which we integrate with respect to r to give

Ṁh = �G + c ) G = Ṁ(h� hin),

where we have defined hin = h(rin) and found the constant c by imposing
the inner boundary condition that G(rin) = 0. For a Keplerian disc

G = 3⇡r
1
2 (GM)

1
2 ⌫̄⌃, hin = (GM)

1
2 r

1
2
in, h = (GM)

1
2 r

1
2 ,
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therefore,

3⇡r
1
2 ⌫̄⌃ = Ṁ

✓
r

1
2 � r

1
2
in

◆

) ⌫̄⌃ =
Ṁ

3⇡

✓
1�

⇣rin
r

⌘ 1
2

◆
. (6.28)

This highlights that for r � rin, ⌃ ⇡ ˙M
3⇡⌫̄ , while the mass inflow velocity, in

accordance with (6.14), satisfies

ūr ⇡ � 3⌫̄

r1/2

d

dr

⇣
r

1
2

⌘
= �3⌫̄

2r
. (6.29)

Pringle (1981) defines the standard dissipation rate per unit area per unit
time from fluid dynamics due to a kinematic viscosity as

D(r) =
1

2
⌫̄⌃

✓
r
d⌦

dr

◆
2

.

By substituting in equation (6.28), the dissipation rate for our steady Kep-
lerian disc is thus given by

D(r) =
3GMṀ

8⇡r3


1�

⇣rin
r

⌘ 1
2

�
.

We note that this expression does not explicitly contain ⌫̄, however, we
remind the reader that it is contained in the accretion rate. The total
amount of energy released due to the inflow of mass from viscosity within
the disc at time t is therefore found by integrating this over r. Such a
quantity is defined as the disc luminosity, denoted L

disc

, and is given by
Frank et al. (1992) as

L
disc

= 2

Z 1

rin

D(r)2⇡r dr

=
3GMṀ

2

Z 1

rin

1

r2

✓
1�

⇣r
in

r

⌘ 1
2

◆
dr.

Letting y = rin
r , this becomes

L
disc

= �3GMṀ

2r
in

Z
0

1

(1� y
1
2 ) dy =

GMṀ

2r
in

.

This is only half of the total potential energy associated with accretion,

L
acc

= GM ˙M
rin

. The remaining half is retained by matter towards the inner
boundary in the form of kinetic energy and is dissipated as it makes the
transition from this boundary on to the central mass.
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6.8 Confrontation with Observations

In order to analyse how our viscous model compares to observations, we must
estimate a typical value for the kinematic viscosity ⌫̄, which we have assumed
to be a molecular shear stress. From section 5.4, we remind ourselves that
⌫̄ ⇠ �v

mol

where v
mol

and � are the mean speed and distance that a free
molecule travels before colliding. We take v

mol

to be the typical isothermal
speed of sound, cs, in a gas of temperature T given by Frank et al. (1992,
p. 13) as

cs ⇡
✓

T

104

◆ 1
2

⇥ 10 km · s�1

where T is measured in kelvin (K). The mean free path is also given by

� ⇡ 7⇥ 105

ln⇤

T 2

N
cm

where ln⇤ is a constant no less than 10 for astrophysical fluids and N is the
gas density (cm�3). Taking ln⇤ = 10, T ⇡ 104K and N ⇡ 1015 cm�3 as
typical values of an accretion disc yields v

mol

⇡ 104m · s�1, � ⇡ 7⇥ 10�5m
which subsequently gives ⌫̄ ⇡ 0.7m2 ·s�1. At a typical distance of r ⇡ 108m
from the central mass, the viscous timescale from equation (6.22) is therefore
estimated by tvisc ⇡ 1016 s ⇡ 3⇥108 years. The mass inflow is approximated
using (6.29) as vr ⇡ �10�8m · s�1 ⇡ �30 cm · year�1. Since the current age
of the universe is approximately 1.3⇥ 1010 years, the viscous timescale and
mass inflow due to molecular viscosity does not seem feasible. Given a
typical central body of mass M = 1M�, the Reynolds number, Re, can be
used as a ratio of the inertial forces to the viscous forces, given by

Re =
u✓r

⌫̄
=

p
GMr

⌫̄
⇡ 1011,

therefore, the viscous terms associated with molecular shear stress are shown
to be entirely negligible.

In order to explain the observed luminosities of accretion discs, an extremely
larger viscosity must be present. This lead to research based on general
parameterisation of viscous stress using the alpha viscosity prescription by
the likes of Shakura and Sunyaev (1973) in order to deduce a mechanism
that would allow the extreme levels of stress to exist. It became accepted
that a turbulent process must be in place. A beta parameterisation was
also introduced by Piran (1978) where the kinematic viscosity was assumed
proportional to the gas pressure. It was concluded that the Rayleigh stability
criterion d

dr

�
r2⌦

�
> 0 must be broken in order for a linear instability to

exist and create turbulence, that is, the specific orbital angular momentum
must decrease with radius. Indeed, this goes against the foundations of a
Keplerian disc. An e�cient process for this could not be deduced within the
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subject of hydrodynamics, urging discussions around the introduction of an
electrically conducting accretion disc with a magnetic field. We therefore
continue this project by turning to the subject of magnetohydrodynamics
(MHD). This will allow us to give a brief insight into an e↵ective candidate
for the process attributable to the mechanics of accretion discs.

7 Magnetohydrodynamics Equations

7.1 Introduction to MHD

We begin our insight into the magnetohydrodynamical properties of elec-
trically conducting accretion discs by introducing some key concepts of the
subject. Consider a continuum of freely moving particles, that is, a fluid
with some velocity field v. If the fluid is electrically conducting, each parti-
cle has some electric charge, measured in coulombs (C) such that C = A · s
where A represents amps, the SI unit of electric current. Such a fluid is
called a plasma. In a similar approach to our definition of density in section
5, we define the charge density (C ·m�3) of a volume element �V centred at
the fixed point P in a plasma as

⇢⇤(r, t) =
electric charge in �V

�V
.

The total charge, therefore, of a plasma contained in a volume V is given by

Q =

Z

V
⇢⇤ dV.

The corresponding electric current, I, through a surface S is given by the
rate that charge passes through the surface, i.e. the flux of ⇢⇤ through S,
and the current density, j, is the value of I per unit area measured in A·m�2.
It therefore follows that

j = ⇢⇤v.

The force per unit mass upon a plasma due to this electric charge, F
e

, is a
function of both the charge and current density and is parameterised by the
vectors E(r, t) and B(r, t) such that

F
e

= ⇢⇤E+ j⇥B.

F
e

is defined by Priest (1984) as the Lorentz Force. The fields E and B
are defined as the electric field and the magnetic field respectively; they
are measured in the SI units of newtons per coulomb (N · c�1) and teslas
(T = N ·A�1 ·m�1). Here, we highlight that the electric field acts upon the
plasma even if it is at rest; ⇢⇤E can be thought of as an external electric
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force. We also see that electric charges give rise to a magnetic force j⇥E even
in the absence of an electric field. This is the principle of electromagnetics.

The reader may notice that this new force has introduced seven new vari-
ables into our equation of motion. We will later show how assuming non-
relativistic velocities and perfect conductivity allows us to neglect the electric
force, treating E as a secondary quantity, however, we still seek a further
relation for B in order to analyse MHD behaviour any further. For this, we
turn to the equations of Maxwell, Ohm and Ampère.

7.2 The Induction Equation

The Maxwell equations are a set of four principle equations describing and
relating the magnetic and electric fields. Priest (1984) gives the four equa-
tions, with eliminated electric displacement term, to be

r⇥B = �j+
1

c2
@E

@t
(7.1)

r ·B = 0 (7.2)

r⇥E = �@B

@t
(7.3)

r ·E =
⇢⇤

✏
(7.4)

where � is the magnetic permeability (N ·A�2), c is the speed of light and ✏ is
the permittivity of free space measured in F·m�1 where F = s4 ·A2 ·m�2 ·kg�1

is defined as a farad. We will approximate � and ✏ by their values in a
vacuum, �

0

= 4⇡⇥ 10�7N ·A�2 and ✏
0

⇡ 8.854⇥ 10�12 F ·m�1. It therefore
follows that c2 = (�

0

✏
0

)�1. The first equation describes how magnetic fields
can be produced either by the presence of electric charges or by a non-steady
electric field while the third and fourth dictate how time varying magnetic
fields and electric charges give rise to electric fields. An assumption that
there are no magnetic poles results in the second equation.

During this discussion, we will only consider non-relativistic velocities of
plasma such that v

0

⌧ c where v
0

= l0
t0

is a typical plasma speed. We also
define E

0

and B
0

as typical lengths of vectors E and B. Equation (7.3)
therefore implies

E
0

l
0

⇡ B
0

t
0

and by equation (7.1)

B
0

l
0

⇡ �
0

j+
1

c2
E

0

t
0

⇡ �
0

j+
l
0

B
0

c2t2
0

= �
0

j+
v2
0

c2
B

0

l
0

.
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Our non-relativistic assumption therefore allows us to neglect the term 1

c2
@E
@t

in equation (7.1) to give
r⇥B = �

0

j (7.5)

which is known as Ampère’s law. We also make use of Ohm’s law which
states that the current density is proportional to the total electric field given
by

j = �(E+ v ⇥B) (7.6)

where � is the electric conductivity. Rearranging for E and substituting into
(7.3) we see

�@B

@t
= r⇥

✓
j

�
� v ⇥B

◆

) @B

@t
= �r⇥

✓
j

�

◆
+r⇥ (v ⇥B)

and, using Ampère’s law, this becomes

@B

@t
= r⇥ (v ⇥B)�r⇥ (⌘r⇥B)

where ⌘ = 1

�0�
is defined as the magnetic di↵usivity. Expanding the double

cross product we have

@B

@t
= r⇥ (v ⇥B)� ⌘

⇥
r(r ·B)�r2B

⇤

but by (7.2) the divergence of the magnetic field is zero giving

@B

@t
= r⇥ (v ⇥B) + ⌘r2B (7.7)

which is known as the induction equation and directly relates the velocity
field to the magnetic field.

7.3 Ideal MHD Equation of Motion

In conjunction with non-relativistic velocity, one further assumption we will
make in order to simplify our system is that of perfect conductivity. This
assumes that a plasma has negligible electrical resistance, and therefore an
electric field E0 in a comoving reference frame vanishes, that is,

E0 = E+ v ⇥B = 0.

It is these two assumptions that form the basis of ideal MHD. We now
compare the magnitudes of the electric and magnetic terms of the Lorentz
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force to reveal an astounding consequence. Beginning with the electrical
force, we see

⇢⇤E ⇠ ⇢⇤
B

0

l
0

t
0

⇠ ⇢⇤B
0

v
0

.

Now, by equation (7.4) and through imposing our perfect conductivity as-
sumption, we find

⇢⇤ = ✏r ·E = � 1

c2�
0

r · (v ⇥B)

implying that ⇢⇤ ⇠ 1

c2�0
B0v0
l0

. We thus find

⇢⇤E ⇠ B
0

v
0

c2�
0

B
0

v
0

l
0

=
v2
0

c2
B2

0

l
0

�
0

.

Continuing with the magnetic force, Ampère’s law implies that

j⇥B =
1

�
0

rB⇥B

and moreover

j⇥B ⇠ B2

0

�
0

l
0

.

It there follows by our non-relativistic assumption that

⇢⇤E ⌧ j⇥B

and we can neglect the electric term in the Lorentz force. Introducing the
magnetic force into our equation of motion from fluid dynamics (5.14), we
find

⇢

✓
@v

@t
+ (v ·r)v

◆
= �rp� ⇢r'+ µ

✓
r2v +

1

3
r(r · v)

◆
+ j⇥B

or, using Amperè’s law and vector calculus identies to remove j,

⇢

✓
@v

@t
+ (v ·r)v

◆
= �r

✓
p+

B2

2�
0

◆
� ⇢r'

+ µ

✓
r2v +

1

3
r(r · v)

◆
+

✓
B

�
0

·r
◆
B, (7.8)

which we define as the MHD equation of motion.
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7.4 Summary of Ideal MHD Equations

To summarise our equations for ideal MHD and to make full use of our ap-
proximation for �, we diverge away from the standard units of metre and
kilogram for distance and mass to centimetre (cm) and gram (g), which al-
lows us to write �

0

= 4⇡. Therefore, our system of MHD equations becomes

@B

@t
= r⇥ (v ⇥B) + ⌘r2B (7.7)

⇢

✓
@v

@t
+ (v ·r)v

◆
= �r

✓
p+

B2

8⇡

◆
� ⇢r'

+ µ

✓
r2v +

1

3
r(r · v)

◆
+

✓
B

4⇡
·r

◆
B (7.9)

to which we add the equation of mass conservation from fluid dynamics
which is still applicable

@⇢

@t
+r · (⇢v) = 0. (5.6)

Our system is not yet closed however; we still require a further relation for
p. For this, we take the adiabatic equation of state from thermodynamics
given by Gurnett and Bhattacharjee (2005) as

@

@t

⇣
p⇢�

5
3

⌘
= 0. (7.10)

This assumes that heat cannot be exchanged between the plasma and its
surroundings and closes our system of equations.

8 Magnetised Accretion Disc

Let us now reintroduce our steady-state disc from section 6.5. The disc is
thin with Keplerian angular velocity ⌦(r) to a first approximation. We are
interested in how much the introduction of a magnetic field alters this steady
state and therefore turn to a reference frame in Keplerian orbit. Following
Balbus and Hawley (1998), let us define the fluctuation velocity to be u such
that

ur = vr, u✓ = v✓ � r⌦, uz = vz.

We substitute our newly defined velocities into the equation of motion in
an expanded form, taking advantage of the fact that the newly defined
velocity field is almost incompressible, allowing us to neglect the viscous
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term involving r(r ·v) in comparison with r2. This simplification is known
as the Boussinesq approximation. The r-component is therefore given by

⇢


@ur
@t

+ ur
@ur
@r

+
1

r
(u✓ + r⌦)

@ur
@✓

+ uz
@ur
@z

� 1

r
(u✓ + r⌦)2

�

= � @

@r

✓
p+

B2

8⇡

◆
� ⇢

@'

@r
+ (B4⇡ ·r)Br

�
B2

✓

4⇡r
+ ⌘


r2ur �

ur
r2

� 2

r2
@

@✓
(u✓ + r⌦)

�
.

Our aim is to analyse the stability of the magnetised accretion disc, to which
we restrict ourselves to cases over a small patch of the disc where fluctuation
velocities are much less than the steady state velocities giving u ⌧ r⌦. This
local approximation allows us to neglect any curvature terms, i.e. terms
involving reciprocals of r, reducing the equation to

⇢


@ur
@t

+ ur
@ur
@r

+
u✓
r

@ur
@✓

+ ⌦
@ur
@✓

+ uz
@ur
@z

� 2⌦u✓ � r⌦2

�

= � @

@r

✓
p+

B2

8⇡

◆
� ⇢

@'

@r
+

✓
B

4⇡
·
◆
B � r + ⌘r2ur.

We have kept the ✓-di↵erential of ur so this can be simplified using vector
calculus operators. We also see from equation (6.24) that @'

@r ⇡ GM
r2

= r⌦2,
hence the centripetal force on the left cancels with the gravitational force
on the right which we would expect. The r-component therefore becomes

⇢


@ur
@t

+ (u ·r)ur+ ⌦
@ur
@✓

� 2⌦u✓

�

= � @

@r

✓
p+

B2

8⇡

◆
+

✓
B

4⇡
·
◆
B � r + ⌘r2ur

or, redefining D
Dt as D

Dt =
@
@t + (u ·r) + ⌦ @

@✓ ,

⇢

✓
Dur
Dt

� 2⌦u✓

◆
= � @

@r

✓
p+

B2

8⇡

◆
+

✓
B

4⇡
·
◆
B � r + ⌘r2ur. (8.1)

Continuing on to the ✓ and z components with a similar approach, we find

⇢

✓
Du✓
Dt

+
2

2⌦
ur

◆
= �1

r

@

@✓

✓
p+

B2

8⇡

◆
+

✓
B

4⇡
·r

◆
Br + ⌘r2u✓, (8.2)

⇢
Duz
Dt

= � @

@z

✓
p+

B2

8⇡

◆
� ⇢

@'

@z
+

✓
B

4⇡
·r

◆
Bz + ⌘r2uz (8.3)

where 2 = 1

r3
d(r4⌦2

)

dr is defined as the epicyclic frequency. In the case of
Keplerian rotation 2 = ⌦2. We apply the same substitution and approxi-
mations to the induction equations which can be rearranged to give

@B

@t
= �B(r · v) + (B ·r)v � (v ·r)B+ ⌘r2B
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using Maxwell’s equations to equate the divergence of the magnetic field to
zero. Introducing our expression for v, the r-component is given by

@Br

@t
= �Br


1

r

@

@r
(rur) +

1

r

@

@✓
(u✓ + r⌦) +

@uz
@z

�

+


Br

@ur
@r

+
B✓

r

@ur
@✓

+Bz
@ur
@z

� B✓(u✓ + r⌦)

r

�

�

ur

@Br

@r
+

u✓ + r⌦

r

@Br

@z
+ uz

@Br

@z
+

B✓(u✓ + r⌦)

r

�

+ ⌘

✓
r2Br �

Br

r2
� 2

r2
@B✓

@✓

◆
.

Omitting the reciprocals of r, this reduces to

@Br

@t
=�Br

✓
1

r

@

@r
(rur) +

1

r

@u✓
@✓

+
@uz
@z

◆
+

✓
Br

@ur
@r

+
B✓

r

@ur
@✓

+Bz
@ur
@z

◆

�
✓
vr

@Br

@r
+

u✓
r

@Br

@✓
+ uz

@Br

@z

◆
� ⌦

@Br

@✓
+ ⌘r2Br

which can be written

@Br

@t
+ (u ·r)Br + ⌦

@Br

@✓
= �Br(r · u) + (B ·rur + ⌘r2Br). (8.4)

Again, following in a similar way, the ✓ and z-components become

DB✓

Dt
�Br

d(r⌦)

dr
= �B✓(r · u) + (B ·r)u✓ + ⌘r2B✓, (8.5)

DBz

Dt
= �Bz(r · u) + (B ·r)uz + ⌘r2Bz. (8.6)

Given this reduced system of equations describing the behaviour of the mag-
netised accretion disc, we continue by performing a linear perturbation anal-
ysis to gain an understanding of how the disc may become unstable and allow
a su�cient mechanism for accretion.

8.1 Linear Perturbation Analysis

We pertube the steady plasma by small local linear disturbances such that

u = u0, B = B
0

+B0, p = p
0

+ p0, ⇢ = ⇢
0

+ ⇢0,

where the disturbance terms, marked with dashes, are of the form a0 =
<
⇥
âei(k·r�!t)

⇤
such that â are linear amplitudes, k is the wave vector, r the

position vector and ! the angular frequency. Following Balbus and Hawley
(1998), we will only consider magnetic fields with azimuthal and vertical
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components, suggesting Br = 0, since this does not a↵ect our final result
a substantial amount and simplifies our problem extensively. For a similar
reason, we consider only wave numbers in the z-component giving k = ke

z

.
We begin with the conservation of mass equation:

@

@t
(⇢

0

+ ⇢0) +r[(⇢
0

+ ⇢0)v0] = 0 ) @⇢0

@t
+r · (⇢

0

v0 + ⇢0v0) = 0.

Since we assumed disturbances to be small, we can linearise so there are no
second order disturbance quantities, allowing us to omit the ⇢0v0 term. This
local, linear approach is known as a WKB (Wentzel, Kramers and Brillouin)
stability analysis. Substituting in our perturbation expression we find

@

@t
<
h
⇢̂ei(k·r�!t)

i
+r · ⇢

0

<
h
v̂ei(k·r�!t)

i
= 0

) <

⇢̂
@

@t
ei(k·r�!t)

�
+ <

h
⇢
0

r · v̂ei(k·r�!t)
i
= 0

) �⇢̂! + ⇢
0

vzk = 0,

therefore, dropping the zero subscript, the conservation of mass equation
gives us the linear relation

1. �! ⇢̂
⇢ + kuz = 0. (from 5.6)

We continue a WKB analysis on the components of the equation of motion
and the induction equation, together with the equation of state to obtain
the following linear relations:

2. �i!ûr � 2⌦û✓ � ikBz
4⇡⇢ B̂r = 0; (from 8.1)

3. �i!û✓ +
2

2⌦

ûr � ikBz
4⇡⇢ B̂✓ = 0; (from 8.2)

4. �!ûz + k
⇣

ˆP
⇢ + B✓

ˆB✓
4⇡⇢

⌘
= 0; (from 8.3)

5. �!B̂r = kBzûr; (from 8.4)

6. �i!B̂✓ = B̂r
d⌦
d ln r + ikB � zû✓ �B✓ikûz; (from 8.5)

7. B̂z = 0; (from 8.6)

8.
ˆP
P = 5

3

⇢̂
⇢ ; (from 7.10)

We have used the fact that r d⌦
dr = d⌦

d ln r . This gives us a total of eight linear
equations for eight unknowns which can be reduced down to the following
three equations for B̂r, B̂✓ and P̂ :

✓
!3 +

!k2B2

z

4⇡⇢
� 2!

◆
B̂r �

ik2B2

z⌦

2⇡⇢
B̂✓ = 0;
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✓
k

⇢
� !2

ka2⇢

◆
P̂ +

✓
kB✓

4⇡⇢

◆
B̂✓ = 0;

✓
d⌦

d ln r
� !2

2⌦
+

k2B2

z

8⇡!⇢

◆
B̂r + i!B̂✓ �

B✓i!

a2⇢
P̂ = 0.

The reduced system of equations has non-trivial solutions if the determinant
of the matrix

A =

0

BB@

!3 + !k2B2
z

4⇡⇢ � 2! � ik2B2
z⌦

2⇡⇢ 0

0 ik2B2
z⌦

2⇡⇢
k
⇢ � !2

ka2⇢
d⌦
d ln r �

!2

2⌦

+ k2B2
z

8⇡!⇢ i! �B✓i!
a2⇢

1

CCA

is zero. We find

|A| = i

ka2⇢

✓
!3 � !k2B2

z

4⇡⇢
� 2!

◆✓
�
k2B2

✓!

4⇡⇢
� k2a2! + !3

◆

� ikB2

z

4⇡⇢2a2

✓
2⌦

d⌦

d ln r
� !2 +

k2

B2

z

4⇡⇢

◆�
k2a2 � !2

�
,

therefore, defining uA = B

4⇡⇢ as the Alfvén velocity, non-trivial solutions to
our system of linearised perturbation equations exist given that

[!3 � !(k · uA]
2 � 2!)(�k2u2A✓! � k2a2! + !3)

� (k · uA)
2


d⌦2

d ln r
� !2 + (k · uA)

2

�
(k2a2 � !2) = 0.

(8.7)

This relation between the wave frequency and wave number is defined as
a dispersion relation and gives an insight into the behaviour of wave like
solutions. Equation (8.7) be separated into terms with and without rotation
e↵ects to give

[!2 � (k · uA)
2][!4 � k2!2(a2 + u2

A) + k2a2(k · uA)
2]

�
⇢
2!4 � !2


2k2(a2 + u2A✓) + (k · uA)

2

d⌦2

d ln r

��
� k2a2(k · uA)

2

d⌦2

d ln r
= 0.

(8.8)

This cubic equation in !2 can be solved in order to gain a specific expression
for ! in terms of k and ⌦, which will allow us to analyse the MHD waves
caused by small disturbances to the accretion disc.

8.2 MHD Waves and the Origin of Instability

To firstly introduce the waves of MHD, we consider the non-rotating situa-
tion where ⌦ = 0 ) 2 = 0, which gives the dispersion relation

[!2 � (k · uA)
2][!4 � k2!2(a2 + u2

A) + k2a2(k · uA)
2] = 0.
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One solution is clearly the case of

!2 = !2

A = (k · uA)
2 =

1

4⇡⇢
k2B2 cos2 ✓B = k2u2A cos2 ✓B

where ✓B is the angle that the wave propagation makes with the magnetic
field. Such waves are known as Alfvén waves in recognition of the physicist
Hannes Alfvén (1908-1995) who first described this class of MHD waves.
The phase speed of a wave is given by the scalar cp = !

k ; Alfvén waves
therefore have phase speeds

cPA =
!A

k
= uA cos ✓B

where we take the positive square root so they take the same direction as
the magnetic field. We see they are fastest along the lines of the magnetic
field but stationary in the normal direction.

We are then left with the quadratic relation

!4 � k2!2(a2 + u2

A) + k2a2(k · uA)
2 = 0

for !2 which has solutions

!2

± = k2
1

2


a2 + u2A ±

q
(a2 + u2A)

2 � 4u2Aa
2 cos2 ✓B

�
.

These waves correspond to the fast and slow magnetoacoustic waves ; the
slow mode corresponding to the negative sign solution and the fast to the
positive. The naming convention arises since the phase speed of Alfvén
waves lies between that of the slow and fast magnetoacoustic waves. The
fast mode may be thought of as a sound wave distorted by a magnetic field
while the slow mode represents the opposing magnetic tension and pressure.
If the magnetic field is weak (uA ! 0), the slow mode is reduced to an
Alfvén wave while the fast mode becomes a sound wave suggesting that in
this limit, the slow and Alfvén waves are closely related. Without rotation,
there seems no reason to suggest that the plasma would become unstable.

We continue onto analysing the dispersion relation in the case where there
is rotation present. Fixing the values (k · u

A

)2 = 1, kua✓ = 2 and ka = 5,
such that all frequencies are in units of k · u

A

, equation (8.8) reduces to a
cubic for !2 and ⌦2 given by

!6 � !4(31 + ⌦2) + (55 + 26⌦2)!2 + (75⌦2 � 25) = 0.

This can be solved to obtain three expressions for !2 in terms of ⌦2 using
a number of di↵erent approaches (such as Cardano’s method, Vieta’s sub-
stitution or Lagrange’s method) corresponding to the three types of waves
previously discussed. A plot of the three solutions is given in figure 8.
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Figure 8: The three solutions to the rotating dispersion relation, correspond-
ing to the three types of MHD waves. Adapted from Balbus and Hawley
(1998).

An astounding result can be seen within the solution for the slow magne-
toacoustic waves as ⌦2 increases; !2 becomes negative. This implies that
the wave frequency, !, becomes complex, which, by the nature of our WKB
perturbations, would imply exponential growth in our small perturbations
and provide an origin of instability as opposed to a well-behaving wave.
An electrically conducting accretion disc has the potential to induce turbu-
lence, and consequently introduce an e�cient mechanism for the transport
of angular momentum.

8.3 Discussion of Linear Stability Analysis

Our linear perturbation analysis has shown that, given su�cient angular
velocity, the inclusion of a magnetic field within an accretion disc has the
potential to induce an instability. Balbus and Hawley (1998) shown that the
forces associated with a linear perturbation to a rotating disc obey the same
equations as two orbiting point particles connected by a massless spring.
This analogy can therefore be used to discuss the instability and give a
physical insight into its origin and behaviour.

Let us consider two point particles, m
1

and m
2

, connected by a massless
spring in the same Keplerian orbit around a central mass. Now suppose
their positions are displaced slightly, with m

1

adopting an orbit slightly
closer to the central mass than m

2

. The particle with mass m
1

therefore
assumes a higher angular velocity than m

2

. As m
1

orbits on this faster
rate, the distance between the two particles grows and the tension in the
spring connecting them increases, pulling m

2

forwards and m
1

backwards,
which consequently transports angular momentum outwards. The distance
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between the two particles is further increased as the change in angular mo-
menta causes m

1

to take an even smaller orbit and m
2

to drift further
away. Tension in the spring is continuously increased further and the pro-
cess becomes turbulent. This is the basis of the magnetorotational instability
(MRI). It can be shown that this mechanism has the capability to produce
the luminosities observed in accretion discs. We must highlight that this
instability is based on the existence of a weak magnetic field; a strong mag-
netic field will invalidate this theory since the restoring force will stabilise
any small perturbations in a similar way to a strong spring.

Balbus and Hawley (1998) show that the criterion for stability within the

accretion disc becomes d⌦2

d ln r > 0, or r d⌦
dr > 0; an electrically conducting

accretion disc is therefore unstable if angular velocity decreases outwards.
We have shown that for a Keplerian disc this is always the case. In a
generalisation of this analysis, it can be shown that this instability is evident
in discs without Keplerian orbit where the thin approximation breaks down.
It is remarkable that such an e�cient instability beautifully evolves as a
direct consequence of the inclusion of a magnetic field.

9 Conclusion of the Dynamics of Accretion Discs

Our analysis of the dynamics of accretion discs has taken us on a journey
through the fundamental states of matter within our universe: solid parti-
cles; fluids and plasma.

An application of the simple laws from classical mechanics lead us to con-
clude that particles in the presence of a dominating gravitational field would
adopt coplanar orbits, following circular motion in equilibrium. In order for
further energy to be extracted from the system, it became evident that a
process had to be in place which would influence an outward transportation
of angular momentum and an inward transportation of mass, for which we
turned to the viscous stresses described in fluid dynamics.

A continuous disc in di↵erential rotation had the potential to meet our
conditions for energy dissipation through shear stress. Manipulation of the
conservation of mass equation and the Navier-Stokes equation of motion
highlighted that shear stress caused inner parts of the disc to transfer angular
momentum outwards, consequently motivating the mass of the inner parts
to take smaller orbits. Through analysing further the case where the disc
was steady, scaling arguments lead us to believe that shear stress arising
from molecular viscosity was not the primary source of dissipation, yielding
enormous Reynolds numbers and excruciatingly slow accretion rates. Our
discussion of the Rayleigh stability criterion, which could not be broken
under the subject of fluid dynamics, influenced us to consider electrically
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conducting accretion discs.

The equations of a non-relativistic, perfectly conduction plasma allowed us
to deduce the MHD equation of motion and the induction equation, which
we were able to apply to a steady disc in Keplerian orbit. A simple WKB
linear stability analysis reduced these equations to a dispersion relation,
relating the frequency of wave like solutions to their wave number, which
could be simplified to show the three waves of MHD in a non-rotating limit.
Upon the reintroduction of rotation into this system, our dispersion relation
extraordinarily highlighted that under su�cient angular velocity, the wave
frequency associated with a small perturbation was complex, causing the
disturbances to grow exponentially. The comparison by Balbus and Hawley
(1998) of this instability under a weak magnetic field to two point particles
connected by a massless spring highlighted its mechanics, which can be
attributed as a candidate for the origin of dissipation within accretion discs,
known as the magnetorotational instability.

To this day, the role of MRI not only remains an active area of research
within accretion discs, but also other areas of plasma dynamics. It plays a
significant part in the study of the Taylor-Couette flow, consisting of a vis-
cous fluid contained in the space between two rotating cylinder, unbounded
in the z-directions. MRI is also though to occur in a variety of other as-
trophysical systems such as planetary dynamos and internal rotation within
stars. Our analysis into the dynamics of accretion discs has lead us to an
area of plasma physics that is, and will remain, a fundamental interest to
astrophysicists.
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Appendix

A Expressions in Cylindrical Coordinates

Let f be a scalar quantity and F be a vector. The vector calculus operators
can be expanded in cylindrical coordinates as follows:

rf =
@f

@r
e
r

+
1

r

@f

@✓
e✓ +

@f

@z
e
z

; (A.1)

r · F =
1

r

@

@r
(rFr) +

1

r

@F✓

@✓
+

@Fz

@z
; (A.2)
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@

@r

✓
r
@

@r
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+

1

r2
@2

@✓2
+

@2

@z2
; (A.3)
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B Vector Calculus Identites

Let f be a scalar and F and G be vectors. The following vector calculus
identities hold true:

r⇥rf = 0; (B.1)

r · (r⇥ F) = 0; (B.2)

r · (fF) = f(r · F) + F ·rf ; (B.3)

r⇥ (fF) = f(r⇥ F) +rf ⇥ F; (B.4)

r⇥ (F⇥G) = (G ·r)F� (F ·r)G�G(r · F) + F(r ·G); (B.5)

r · (F⇥G) = G ·r⇥ F� F ·r⇥G; (B.6)

r2F = r(r · F)�r⇥ (r⇥ F); (B.7)

(r⇥ F)⇥ F = (F ·r)F�r
✓
1

2
F2

◆
. (B.8)

The divergence theorem states, for a volume V bounded by a simple closed

surface S with outward normal n,

Z

S
F · n dS =

Z

V
r · F dV,

Z

S
fn dS =

Z

V
rf dV.
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