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wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5]

}

’ ./*--zone.html \

| sort -u | wc -l
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A brief history of

DNSSEC server deployment:

1993.11: DNSSEC design begins.

2008.07: Kaminsky announces

apocalypse, saves the world.

) New focus on DNSSEC.

2009.08.09:

941 IP addresses worldwide

are running DNSSEC servers.

2010.12.24:

2536 IP addresses worldwide

are running DNSSEC servers.
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What is DNSSEC?

Is it a lock for the Internet?

Or is it more like this?

Let’s see what DNSSEC can do

as an amplification tool for

denial-of-service attacks.



Make list of DNSSEC domains:

( cd secspider.cs.ucla.edu

awk ’

/^Zone <STRONG>/ { z = $2

sub(/<STRONG>/,"",z)

sub(/<\/STRONG>/,"",z)

}

/GREEN.*GREEN.*GREEN.*Yes/ {

split($0,x,/<TD>/)

sub(/<\/TD>/,"",x[5])

print x[5],z,rand()

}’ ./*--zone.html

) | sort -k3n \

| awk ’{print $1,$2}’ \

> SERVERS



For each domain: Try query,

estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v "z=$z" -v "ip=$ip" ’{

if ($1 != ";;") next

if ($2 != "MSG") next

if ($3 != "SIZE") next

if ($4 != "rcvd:") next

est = (22+$5)/(40+length(z))

print est,ip,z

}’

done < SERVERS > AMP



For each DNSSEC server,

find domain estimated to have

maximum DNSSEC amplification:

sort -nr AMP | awk ’{

if (seen[$2]) next

if ($1 < 30) next

print $1,$2,$3

seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -l MAXAMP

Output:

95.6279 156.154.102.26 fi.

2326 MAXAMP
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providing > 30� amplification
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Can that really be true?

> 2000 DNSSEC servers

around the Internet, each

providing > 30� amplification

of incoming UDP packets?

Let’s verify this.

Choose quiet test machines

on two different networks

(without egress filters).

e.g. Sender: 1.2.3.4.

Receiver: 5.6.7.8.



Run network-traffic monitors

on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response

address to 5.6.7.8,

and send 1 query/second:

ifconfig eth0:1 \

5.6.7.8 \

netmask 255.255.255.255

while read est ip z

do

dig -b 5.6.7.8 \

+dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip"

done < MAXAMP >/dev/null 2>&1
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I sustained 51� amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers.

Attacker sending 10Mbps

can trigger 500Mbps flood from

the DNSSEC drone pool,

taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flood,

taking down very large site.

Want even more: 100Gbps?

Tell people to install DNSSEC!



Cryptographic failure patterns

Alice and Bob are communicating.

Eve is eavesdropping.

Alice and Bob have several

standard security goals:

Confidentiality despite espionage.

Maybe Eve wants to acquire data.

Integrity despite corruption.

Maybe Eve wants to change data.

Availability despite sabotage.

Maybe Eve wants to destroy data.
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Failure pattern #2: “The attacker

isn’t forging network packets so

we’re secure.”

Examples of this “security”:

� TCP checking IP address.

� DNS checking IP address.

� New: Tcpcrypt.

“Compare this tcpdump output,

which appears encrypted : : : with

the cleartext packets you would

see without tcpcryptd running.

: : : Active attacks are much

harder as they require listening

and modifying network traffic.”
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Failure pattern #3: “We detect

corrupt data so we’re secure.”

What about confidentiality?

DNSSEC encrypts nothing, and

broadcasts private DNS names

(such as acadmedpa.org.br).

dnscurve.org/nsec3walker.html

What about availability?

Eve destroys an SSH connection

or an HTTPS connection

or a DNSSEC lookup

by forging one packet.

Eve uses the DNSSEC drones

to amplify DDoS attacks.

http://dnscurve.org/nsec3walker.html
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Failure pattern #4: “The attacker

doesn’t control these trusted third

parties so we’re secure.”

Are the HTTPS certificate

authorities all trustworthy?

Is the DNS root trustworthy?
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Failure pattern #5: “We’re

cryptographically protecting X

so we’re secure.”

Is X the complete communication

from Alice to Bob, all the way

from Alice to Bob?

Often X doesn’t reach Bob.

Example: Bob views Alice’s

web page on his Android phone.

Phone asked hotel DNS cache

for web server’s address.

Eve forged the DNS response!

DNS cache checked DNSSEC

but the phone didn’t.
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Often X isn’t Alice’s data.

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : : Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement this

needed security measure.”



What did .org actually sign?

2010.12.25 test:

Look up wikipedia.org.

The response has a signed

statement “There might be

names with hashes between

hh91kmqm332a7m6egn74ln9afi3fgk84,

hheprfsv14o44rv9pgcndkt4thnraomv

but we haven’t signed any of

those names. Sincerely, .org”

Plus an unsigned statement

“The wikipedia.org servers are

208.80.152.130, 208.80.152.142,

91.198.174.4.”
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Often X is horribly incomplete.

Example: X is a server address,

with a DNSSEC signature.

What Alice is sending to Bob

are web pages, email, etc.

Those aren’t the same as X!

Alice can use HTTPS

to protect her web pages

: : : but then what attack

is stopped by DNSSEC?
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DNSSEC purists criticize HTTPS:

“Alice can’t trust her servers.”

DNSSEC signers are offline

(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

: : : but X is still wrong!

Alice’s servers still control

all of Alice’s web pages,

unless Alice uses PGP.

With or without PGP, what

attack is stopped by DNSSEC?
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Interlude: Signatures

Are precomputed signatures

fundamentally a good idea?

1. They can’t sign answers

that are generated dynamically.

Those need security too!

DNSSEC purists say “Answers

should always be static.”

Imagine the web with only

statically generated content:

no more database integration,

no more PHP, no more fun.

As boring as cr.yp.to.

http://cr.yp.to
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2. They can’t sign answers

to unpredictable questions.

Ask DNSSEC for qptidszl.de.

Signed response: “There are

no DNSSEC names with hashes

between : : : and : : : .”

Attacker downloads hashes of all

457657 DNSSEC names in .de

with < 457657 queries.

Invert the hashes to find, e.g.,

wedemotors.de. Software from

Ruben Niederhagen checks 1700

billion names/day on a PC with

two GTX 295 graphics cards.
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3. They need to be stored.

Huge deployment problems.

4. They aren’t fresh.

Is an attacker replaying

obsolete signed data?

If clocks are synchronized

then signatures can

include expiration times.

But frequent re-signing

is an administrative disaster.

Some DNSSEC suicide examples:

2010.09.02: .us killed itself.

2010.10.07: .be killed itself.
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More cryptographic failure patterns

Failure pattern #6: “We’re using

a cryptographic standard so we’re

secure.”

Examples of this “security”:

� DES.

� 512-bit RSA.

� 768-bit RSA.

� MD5-based certificates.

Fact: By 1996, a few years

after the introduction of MD5,

prominent cryptographers such as

Preneel and Dobbertin were

calling for MD5 to be scrapped.
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Failure pattern #7: “280

operations are infeasible so we’re

secure.”

Examples of this “security”:

� 1024-bit RSA.

� 160-bit ECC.

Is 280 such a big number?

Multi-university ECC2K-130

attack is > 10% done.

Will be � 277 bit operations.

One GTX 295 graphics card:

> 269 bit operations/year.

2048 GTX 295 graphics cards:

> 280 bit operations/year.
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Failure pattern #8: “Even if the

attacker can do 280 operations,

our data isn’t worth that much,

so we’re secure.”

1. Does the attack cost so much?

Radeon 5970; FPGAs; ASICs.

2. Are you the only target?

Can attack many keys at once,

spreading costs over those keys:

batch NFS, batch ECDL, etc.

3. Is the attacker paying?

Conficker broke into > 223 PCs.
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Failure pattern #9: “This is

so complicated that it must be

secure.” : : : and so complicated

that software implementations

never get it right.

CVE-2009-0265: BIND DNSSEC

bug ) Forge DSA-signed data.

CVE-2009-4022: BIND DNSSEC

bug ) Forge all data.

CVE-2010-0097: BIND DNSSEC

bug ) Forge all data.

CVE-2010-0290: BIND DNSSEC

bug ) Forge all data.
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Failure pattern #10:

“Cryptography is valuable so

people will deploy it.” : : : but

too slow to be deployed.

Google has installed HTTPS

and has fully configured it:

https://www.google.com

encrypts normal text search,

news search, etc.

But Google doesn’t allow

encryption for high-volume data:

images, maps, etc.

https://www.google.com
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A different approach

Focus on security. Assume

that crypto is instantaneous.

How easily can we deploy

high-security cryptography?

It’s safe for the moment

to assume that the attacker

can’t do 2128 operations and

doesn’t have quantum computers.

(Future: see pqcrypto.org.)

Safe, conservative crypto:

Strong 256-bit elliptic curve.

No degradation since 1985.

http://pqcrypto.org
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What cryptography does for us:

Alice encrypts and authenticates

a packet using her secret key

and Bob’s public key.

Bob verifies and decrypts

a packet using his secret key

and Alice’s public key.

Attacker can’t understand

the encrypted packet and

can’t forge a verifiable packet.

Split long messages into

separately verified packets

to improve availability.
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No. Much better availability

and much better speed:
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Discard unverifiable packets.



Put these protected packets

inside a TCP connection,

as in SSH and HTTPS?

No. Much better availability

and much better speed:

Send packets through UDP.

Discard unverifiable packets.

“UDP is unreliable!

We want a reliable stream!”

No problem: Imitate TCP

inside the protected packets.

Simple new protocol: CurveCP.
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Alice knows her own secret key.

How does Alice learn
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How do we protect HTTP?

Alice starts with Bob’s URL.

Alice knows her own secret key.

How does Alice learn

Bob’s public key?

“Nym” case: URL has a key!

Recognize magic number 123 in

http://

1238675309.twitter.com

and extract key 8675309.

(Technical note: Keys are

actually longer than this,

but still fit into names.)



Normal case: URL is

http://www.twitter.com.

twitter.com DNS server

says www.twitter.com CNAME

1238675309.twitter.com.

Again extract key 8675309.

Long CNAME chains are bad

but short chains are okay

and very easy to deploy.



Normal case: URL is

http://www.twitter.com.

twitter.com DNS server

says www.twitter.com CNAME

1238675309.twitter.com.

Again extract key 8675309.

Long CNAME chains are bad

but short chains are okay

and very easy to deploy.

CNAME can’t overlap NS.

What if URL is

http://twitter.com?

Answer: twitter.com NS

1238675309.twitter.com.
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for free as part of

looking up server address.

Alice uses CurveCP to

contact Bob’s web server.

As fast as HTTP, but secure!



Alice obtains this DNS data

for free as part of

looking up server address.

Alice uses CurveCP to

contact Bob’s web server.

As fast as HTTP, but secure!

Simplifying deployment:

Bob actually installs

a CurveCP forwarder

on UDP port 53

talking to his existing

HTTP server on TCP port 80.



How did Alice talk to

twitter.com DNS server?

The DNS server also has

a DNSCurve public key:

twitter.com NS ...

Alice obtains this DNS data

for free as part of

receiving DNS server

address from .com server.

Alice uses DNSCurve to

contact the DNS server.

As fast as DNS, but secure!



Standard final step:

Obtain .com server key

from root server.

Well-known root key.

But now I think it’s better

for DNS software to know

the keys for .com, .de, etc.

Ultra-powerful root is bad.



Standard final step:

Obtain .com server key

from root server.

Well-known root key.

But now I think it’s better

for DNS software to know

the keys for .com, .de, etc.

Ultra-powerful root is bad.

What if .com misbehaves?

Easily protect integrity of

web pages from the URL

1238675309.twitter.com

but availability is harder.

Perhaps P2P DNS can help.



Summary of deployment cost:

Alice installs DNS cache

that understands DNSCurve,

and installs HTTP proxy

that understands CurveCP.

These are small and fast

and run on her laptop/phone/etc.

Bob installs small forwarder

and updates his DNS records.

Simple, robust, easy to use.

No changes to DNS servers,

DNS databases, HTTP servers,

web browsers, firewalls, etc.
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Is speed a problem?

Wild speculation by Kaminsky:

Secure link from Alice’s computer

to Bob’s DNS server

means “abandoning caching : : :

100� increase in load.”

Reality check:

1. Measured increase: 1.15�.

2. Big DNS server operators

have much higher capacity.

Why? Survive DDoS floods!

3. HTTPS can’t be cached

and is much bigger than DNS.



What about CPU time?

Simple crypto_box API from

nacl.cace-project.eu:

High-security curve (Curve25519).

High-security implementation

(e.g., no secret array indices).

Extensive code validation.

Very high speed:

Client and server handle

10000000 new public keys

in < 10 minutes on typical CPUs.

Each public-key computation

is shared by many packets.

http://nacl.cace-project.eu


Post-quantum cryptography:

pqcrypto.org

Measuring DNSSEC amplification

and DNSSEC privacy violations:

dnscurve.org/dnssecamp.html

dnscurve.org/nsec3walker.html

General DNSCurve information:

dnscurve.org

Installing a DNSCurve forwarder:

curvedns.on2it.net

New CurveCP mailing list:

curvecp-subscribe@

list.cr.yp.to

http://pqcrypto.org
http://dnscurve.org/dnssecamp.html
http://dnscurve.org/nsec3walker.html
http://dnscurve.org
http://curvedns.on2it.net
mailto://curvecp-subscribe@list.cr.yp.to
mailto://curvecp-subscribe@list.cr.yp.to

