
Modified version of
“Latin Dances Revisited: New Analytic Results of

Salsa20 and ChaCha”

Tsukasa Ishiguro

KDDI R&D Laboratories Inc.
2-1-15 Ohara, Fujimino, Saitama 356-8502, Japan

tsukasa@kddilabs.jp

1 Contents of modification

This paper is a modified version of own paper “Latin Dances Revisited: New Analytic
Results of Salsa20 and ChaCha” presented in ICICS2011. In the original paper, there
are incorrect data because of software bug in the experimental program. Therefore, we
conducted with a correct program. Additionally, we modified the algorithm with a view
to improvement of analysis precision.

Table1 shows the maximum values per round of Salsa20 and ChaCha, and output
of Mersenne Twister as PRF. This table show there are no double bit biases of 5 or more
round Salsa20 and ChaCha (see Section 4). Therefore, these ciphers are not presently
under threat.

Table 1.Double bit differentials of Salsa20

Type RoundKey length [∆0
i] j [∆r

p]q [∆r
s]t |ε̃d|

Salsa20 4 256 [∆0
8]17 [∆4

6]23 [∆4
7]0 0.177887

Salsa20 5 256 - - - Not Found
Salsa20 6 256 - - - Not Found
Salsa20 7 256 - - - Not Found
Salsa20 8 256 - - - Not Found
Salsa20 9 256 - - - Not Found
ChaCha 4 256 - - - Not Found
ChaCha 5 256 - - - Not Found
ChaCha 6 256 - - - Not Found
ChaCha 7 256 - - - Not Found
ChaCha 8 256 - - - Not Found

Latin Dances Revisited: New Analytic Results of
Salsa20 and ChaCha

Tsukasa Ishiguro, Shinsaku Kiyomoto, and Yutaka Miyake

KDDI R&D Laboratories Inc.
2-1-15 Ohara, Fujimino, Saitama 356-8502, Japan
{tsukasa,kiyomoto,miyake}@kddilabs.jp

Abstract. In this paper, we improve an analysis algorithm and apply it to crypt-
analysis of Salsa and ChaCha. We constructed a distinguisher of double-bit differ-
entials to improve Aumasson’s single-bit differential cryptanalysis. This method
has potential to apply to a wide range of stream ciphers; a double-bit correlation
would be found in case that no single-bit correlation is found. However, there are
no double bit biases of 5 or more round Salsa20 and ChaCha.

Keywords: Stream cipher, Salsa20, ChaCha, eSTREAM

1 Introduction

Efficient implementations of stream ciphers are useful in any application which requires
high-speed encryption, such as SSL[13] and WEP[21]. The stream cipher project of
ECRYPT(eSTREAM)[11] was launched to identify new stream ciphers that realizes
secure and high-speed encryption. This project ended with a proposal of a list of new
eight algorithms in 2008, and one was removed from the list in 2009[2] due to a new
vulnerability of the cipher. Four algorithms are assumed to apply to software imple-
mentations, and remaining three are for lightweight hardware implementations.

Salsa20, one of algorithms for software implementations, was proposed by Bern-
stein[5] in 2005, and the cipher is the finalist of the eSTREAM. Salsa20 offers a simple,
clean, and scalable design and is suitable for software implementations. Bernstein ad-
vocated use of 8, 12 and 20 round versions of Salsa20. However, in eSTREAM, the
12-round version was adopted due to the balance, combining a very nice performance
profile with what appears to be a comfortable margin for security.

More recently, he has proposed the ChaCha[3], a variant of the Salsa20 family.
ChaCha follows the same design principles as Salsa20, and a difference between Salsa20
family and ChaCha is the core function; the core function of ChaCha realizes faster dif-
fusion than that of Salsa20 family. ChaCha achieves faster software speed than Salsa20
in some platforms.

Related work. There are many ciphers proposed in eSTREAM, and some have been
broken by distinguishing attacks. NLS proposed by Hawkes et al[14], is an extended
version of SOBER[20]. NLS is a software-oriented cipher based on simple 32-bit op-
erations (such as 32-bit XOR and addition modulo 232), and is related to small fixed

2 T. Ishiguro et al.

arrays. This stream cipher was broken by a distinguishing attack[8] and a Crossword
Puzzle Attack[7] which is a variant of the distinguishing attack. LEX[6] has a simple
design and based on AES. A variant of the distinguishing attack[10] was found on LEX.
Yamb[17] is a synchronous encryption algorithm that allows keys of any length in the
range 80-256 bits and allows initial vectors IV of any length in the range 32-128 bits.
Yamb was broken by a distinguishing attack proposed by Wu et al.[24]. Some other
stream ciphers have been broken by distinguishing attacks[16, 22].

Some independent cryptanalyses on Salsa20 have been published, to report key-
recovery attacks for its reduced versions with up to 8 rounds, while Salsa20 has a total
of 20 rounds. Previous attacks on Salsa20 used a distinguishing attack exploiting a
truncated differential over 3 or 4 rounds. The first attack was presented by Crowley[9],
and it was claimed that an adversary could break the 5-round version of Salsa20 within
3165 trials using a 256-bit key. Later, a four round differential was exploited by Fischer
et al.[12] to break 6 rounds in 2177 trials and by Tsnunoo et al.[23] to break 7 rounds in
about 2190 trials.

The best attack is proposed by Aumasson et al.[15] so far, and it covers the 8-round
version of Salsa20 with an estimated complexity of 2251. Regarding the 128-bit key,
Aumasson proposed key-recovery attacks for reduced versions with up to 7 rounds[15].
Priemuth-Schmid proposed a distinguishing attack using slid pairs[19], but Bernstein
showed that time complexity of the attack is higher than brute force attack[4].

For ChaCha, Aumasson attacked the 6-round version with an estimated complexity
of 2139 and the 7-round version with an estimated complexity of 2248 using a 256-bit
key. Regarding the 128-bit key, Aumasson proposed key-recovery attacks for reduced
versions with up to 7 rounds with an estimated complexity of 2107[15].

These attacks are single-bit differential attacks, a type of correlation attacks. In this
method, an adversary chooses the input pairX,X′ and observes the output pairZ,Z′,
where there is a differential in one bit betweenX andX′. Then, the adversary collects
many output pairs by changing input pair and observes the one bit differential from the
output pair. If the position of the input differential correlates strongly with the position
of output differential, the adversary could distinguish real keystream from a random bit
stream. Additionally, it was indicated a strong correlation from his experimental results.

Contribution. In this paper, we improve an analysis algorithm and apply it to crypt-
analysis of Salsa and ChaCha. We construct a distinguisher using double-bit differen-
tials to improve Aumasson’s method, called single-bit differential cryptanalysis[1]. In
our attack, the adversary chooses the input pairX,X′ with a one-bit differential in the
same way for a single-bit differential. Then, the adversary collects many output pairs
by changing the input pair and observing the double-bit difference from the output pair.
Finally, the adversary observes a correlation of the double-bit of the output pair and
distinguishes keystream from the random bits. We searched correlations to compute 2-
3 days using a PC, and can not find strong correlations 5 or more round Salsa20 and
ChaCha.

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 3

2 Latin Dances

In this section, we describe the specifications of Salsa20[5] and ChaCha[3].

2.1 Salsa20

Algorithm 1 shows Salsa20 algorithm. The stream cipher Salsa20 operates on 32-bit
words, takes as input a 256-bit keyk = (k0, k1, ..., k7) or 128-bit keyk = (k0, k1, ..., k3)
and a 64-bit noncev = (v0, v1), and produces a sequence of 512-bit keystream blocks.
Thei-th block is the output of the Salsa20 function that takes as input the key, the nonce,
and a 64-bit countert = (t0, t1) corresponding to the integeri. This function acts on the
4× 4 matrix of 32-bit words written as:

X =


x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 =

τ0 k0 k1 k2

k3 τ1 v0 v1

i0 i1 τ2 k4

k5 k6 k7 τ3

or,

X =


x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 =

σ0 k′0 k′1 k′2
k′3 σ1 v0 v1

i0 i1 σ2 k′0
k′1 k′2 k′3 σ3

 ,
whereσ andτ are constants dependent on the key length.

Then a keystream blockZ is defined as:

Z = X + X20,

whereXr = Roundr (X) with the round function of Salsa20 and+ is word-wise addi-
tion modulo 232. If Z = X + Xr , it is called “r-round Salsa20”. A round function is
called a doubleround function, and it consists of a columnround function followed by a
rowround function. The doubleround function of Salsa20 is repeated 10 times. A vector
(x0, x1, x2, x3) of four words is transformed into (z0, z1, z2, z3) by calculating as:

z1 = x1 ⊕ ((x0 + x3)≪ 7)

z2 = x2 ⊕ ((z1 + x0)≪ 9)

z3 = x3 ⊕ ((z2 + z1)≪ 13)

z0 = x0 ⊕ ((z3 + z2)≪ 18)

This nonlinear operation is called a quarterround function and it is a basic part of the
columnround function where it is applied to columns (x0, x4, x8, x12), (x5, x9, x13, x1), (x10, y14, y2, y6)
and (y15, y3, y7, y11), and then rowround function transforms rows (x0, x1, x2, x3), (x4, x5, x6, x7),
(x8, x9, x10, x11), and (x12, x13, x14, x15).

4 T. Ishiguro et al.

Algorithm 1 Algorithm of Salsa20
INPUT: Initial matrix X, r ∈ N
OUTPUT: Z = X + Xr

1: X′ ← X
2: for l = 0 up to r

2 do
3: (x′0, x

′
1, x

′
2, x

′
3)← quarterround(x′0, x

′
1, x

′
2, x

′
3) /* 3-6:Columnround */

4: (x′5, x
′
6, x

′
7, x

′
4)← quarterround(x′5, x

′
6, x

′
7, x

′
4)

5: (x′10, x
′
11, x

′
8, x

′
9)← quarterround(x′10, x

′
11, x

′
8, x

′
9)

6: (x′15, x
′
12, x

′
13, x

′
14)← quarterround(x′15, x

′
12, x

′
13, x

′
14)

7: (x′0, x
′
4, x

′
8, x

′
12)← quarterround(x′0, x

′
4, x

′
8, x

′
12) /* 7-10:Rowround */

8: (x′5, x
′
9, x

′
13, x

′
1)← quarterround(x′5, x

′
9, x

′
13, x

′
1)

9: (x′10, x
′
14, x

′
2, x

′
6)← quarterround(x′10, x

′
14, x

′
2, x

′
6)

10: (x′15, x
′
[3, x

′
7, x

′
11)← quarterround(x′15, x

′
[3, x

′
7, x

′
11)

11: end for
12: return X + X′

2.2 ChaCha

Algorithm 2 shows ChaCha algorithm. ChaCha is similar to Salsa20 except the follow-
ing two points. First, the composition of the quarterround function is defined as below.

z0 = z0 + z1, z3 = z3 ⊕ z0, z3 = z3≪ 16,

z2 = z2 + z3, z1 = z1 ⊕ z2, z1 = z1≪ 12,

z0 = z0 + z1, z3 = z3 ⊕ z0, z3 = z3≪ 8,

z2 = z2 + z3, z1 = z1 ⊕ z2, z1 = z1≪ 7

Second, the composition of the initial matrix defined as below.

X =


σ0 σ1 σ2 σ3

k′0 k′1 k′2 k′3
k′0 k′1 k′2 k′3
v0 v1 i0 i1

 ,or


τ0 τ1 τ2 τ3
k0 k1 k2 k3

k4 k5 k6 k7

v0 v1 i0 i1



3 Attack on Latin Dances

In this section, we discuss a distinguishing attack on Salsa20 and ChaCha. First, we de-
fine thesemi-regular distinguisherand explain construction of the distinguisher. Next,
we propose a distinguishing attack using double-bit differentials. Finally, we analyze the
attack based on experimental results using a PC and estimate the number of keystream
bits required for the attack and time complexity of the attack.

3.1 Types of distinguisher

Three types of a distinguisher are known[18] as below.

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 5

Algorithm 2 Algorithm of ChaCha
INPUT: Initial matrix X, r ∈ N
OUTPUT: Z = X + Xr

1: X′ ← X
2: for l = 0 up to r

2 do
3: (x′0, x

′
4, x

′
8, x

′
12)← quarterround(x′0, x

′
4, x

′
8, x

′
12) /* 3-6:Columnround */

4: (x′1, x
′
5, x

′
9, x

′
13)← quarterround(x′1, x

′
5, x

′
9, x

′
13)

5: (x′2, x
′
6, x

′
10, x

′
14)← quarterround(x′2, x

′
6, x

′
10, x

′
14)

6: (x′3, x
′
7, x

′
11, x

′
15)← quarterround(x′3, x

′
7, x

′
11, x

′
15)

7: (x′0, x
′
5, x

′
10, x

′
15)← quarterround(x′0, x

′
5, x

′
10, x

′
15) /* 7-10:Rowround */

8: (x′1, x
′
6, x

′
11, x

′
12)← quarterround(x′1, x

′
6, x

′
11, x

′
12)

9: (x′2, x
′
7, x

′
8, x

′
13)← quarterround(x′2, x

′
7, x

′
8, x

′
13)

10: (x′3, x
′
4, x

′
9, x

′
14)← quarterround(x′3, x

′
4, x

′
9, x

′
14)

11: end for
12: return X + X′

1. Regular Distinguisher.
The adversary selects a single key/IV randomly and produces keystream bits, seeded
by the chosen key/IV, which is long enough to distinguish it from a random bit
stream with a high probability.

2. Prefix Distinguisher.
The adversary uses many randomly chosen key/IV’s rather than a single key and a
few specified bytes from each of the keystream bits generated by those key/IV’s.

3. Hybrid Distinguisher.
The adversary uses many key/IV’s and for each key/IV the adversary collects long
keystream bits.

In this paper, we define theSemi-regular Distinguisheras follows;

Semi-regular Distinguisher.An adversary uses a single random key and enough ran-
domly chosen IVs to distinguish keystream from random bits with a high probability.
The adversary’s ability is intermediate between a regular distinguisher and prefix dis-
tinguisher.

3.2 Construction of Distinguisher

The adversary chooses a key at random. Then the adversary randomly generates IV
and inputs matrixX,X′ that has a difference ofi-th bit. The number of inputs ism.
Output sequences are{z0, · · · , zm−1}, {z′0, · · · , z′m−1}, wherezi , z′i ∈ {0,1}. After that, the
adversary observesti = zi ⊕ z′i , (0 ≤ i < m), where⊕ is exclusive-or.

If {z0, · · · , zm−1}, {z′0, · · · , z′m−1} were random bit sequences, the probabilities:

Pr[ti = 1] = Pr[ti = 0]

=
1
2
, (0 ≤ i < m)

6 T. Ishiguro et al.

are hold.
If {z0, · · · , zm−1} and {z′0, · · · , z′m−1} were keystream bits from a stream cipher, we

obtain the following equations:

Pr[ti = 1] =
1
2

(1+ εd)

Pr[ti = 0] =
1
2

(1− εd), (0 ≤ i < m)

In this instance, the number of keystream bits required for a distinguishing attack is
O(ε−2

d), whereεd is the differential bias explained in Section 3.3. Ifεd is large enough,
an adversary can distinguish keystream bits from random bit sequences. For exampleεd
is sufficiently large for 7-round Salsa20 to distinguish keystream bits[15]. We propose
a double-bit distinguisher for 9-round Salsa20 and 8-round ChaCha in the later section.

3.3 Distinguishing attack using double-bit differentials

In this section, we propose a distinguishing attack using double-bit differentials, which
extends the single-bit distinguishing attack in[15]. Letxi , x′i be thei-th word of the
initial matrix X,X′, and j-th bit of xi is denoted [xi] j . Then, let [∆r

i] j be a differential of
j-th bit of i-th word afterr rounds, where [∆0

i] j = [xi] j ⊕ [x′i] j . In[15], the differential of
r rounds output under [∆0

i] j = 1 is denoted ([∆r
p]q|[∆0

i] j) 1, and a single-bit differential
is defined by

Pr([∆r
p]q|[∆0

i] j) =
1
2

(1+ |εs|).

The biasεs represents the strength of the correlations between one bit in input and one
bit in output. If a keystream bit is pseudorandom,εs must come close to 0. Aumasson
indicated significant differentials between keystream bits and random bit sequences in
8 rounds of Salsa20 and 7 rounds of ChaCha. However, he could not find a significant
differential, where there were more than rounds and 7 rounds.

In a distinguishing attack using double-bit differentials, the biasεd of the output
differential is defined by

Pr(([∆r
p]q ⊕ [∆r

s]t = 1)|[∆0
i] j) =

1
2

(1+ |εd|).

Whenεs is zero, pairs of (p,q), (s, t) have no significant single-bit differentials. That
means zero and one appear with a probability of1

2. In other words, a single-bit differ-
ential only indicates a frequency of [∆r

p]q = 1. There is a possibility that a correlation
exists between cases of [∆r

p]q = 1 and [∆r
s]t = 1. If the biasεd , 0, a double-bit differ-

ential indicates such correlations.
In concrete terms, an adversary chooses [∆0

i] j from a noncev or a counteri; there-
fore, i and j for Salsa20 are chosen within the ranges 6≤ i < 10,0 ≤ j < 32. In

1 This notation is different from [15] in a precise sense. We defined the reduced version asX+Xr

wherer is the number of rounds.

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 7

Algorithm 3 Search for double-bit differentials
INPUT: r, α, β ∈ N
OUTPUT: Average of double-bit differential ofr round
1: Initialize all countby zero
2: for l = 0 up toα do
3: for all [∆0

i] j such thati, j in controllable valuedo
4: Choose keyK at random
5: ChooseX,X′ at random whereX ⊕ X′ = [∆0

i] j = 1
6: Z← X + Xr

7: Z′ ← X′ + X′r

8: for all [∆r
p]q such that 0≤ p < 16, 0 ≤ q < 32do

9: for all [∆r
s] t such that 0≤ s< 16, 0 ≤ t < 32do

10: countp,q,r,s[i, j] ← countp,q,r,s[i, j] + ([∆r
s] t ⊕ [∆r

p]q)
11: end for
12: end for
13: end for
14: end for
15: averagep,q,r,s← average ofcountp,q,r,s[i] for all i, j, (p, q, r, s)
16: return (averagep,q,r,s, (i, j, p,q, r, s))

ChaCha,i and j are chosen within the ranges 12≤ i < 16,0 ≤ j < 32. The biasεd
is dependent on keysk, and it is difficult to calculate all values ofεd due to huge time
complexity. The valueεd can be guessed as a average valueε̃d as follows;

Prk(([∆
r
p]q ⊕ [∆r

s]t = 1)|[∆0
i] j) =

1
2

(1+ |ε̃d|).

4 Experimental Results

In this section, we discuss the experimental results for distinguishing attacks using
double-bit differentials. In Section 4.1, we present an algorithm searching for the maxi-
mum double-bit differential. Then, we demonstrate efficacy of our method using exper-
imental results.

4.1 Algorithm

In a distinguishing attack using double-bit differentials, the adversary previously
has obtained the positions of the maximum double-bit differential in order to distin-
guish keystream bits from random bits. First, the adversary chooses a keyK at random
and fixes it. Then, the adversary generates many input pairs which have a one-bit differ-
ential each other. After the calculation of the output pair corresponding to each input,
the adversary searches all combinations of output positions for double-bit differentials.
Finally, the adversary calculates the averages value with randomly changing keys.

Algorithm 3 shows details of the search algorithm. This algorithm requiresr, α ∈
N, wherer is a number of round,α is the number of trials required to calculate the
average. The balance between the precision of outputs and the time complexity depends

8 T. Ishiguro et al.

Algorithm 4 Sieving a list of candidates
INPUT: Set of{i, j, p, q, r, s}
OUTPUT: Subset of{i, j, p, q, r, s}, which have high bias
1: Initialize all countby zero
2: T ← A list of outputs of over threshold valueγ of Algorithm 3
3: for l = 0 up toβ − 1 do
4: U ← A list of outputs of over threshold valueγ of Algorithm 3
5: T ← T ∩ U
6: if T = ϕ then
7: return ”Not Found”
8: end if
9: end for

10: return T

on these parameters. We discuss the balance and our adoptions in section 4.2. After
the choice ofK at step 3, the chosen key is used for the next loop (from step 4 to
step 15). In the loop, we calculate the average values of the double-bit differential for
fixed key K are calculated. Values [∆0

i] j for all i, j of controllable valuehave to be
chosen at step 5, wherecontrollable valuesarenonceor counter in the initial matrix
(see Section 2, Section 3.2). Hence, in the case of Salsa20, we choosei and j within
the ranges 7≤ i < 11,0 ≤ j < 32, or in ChaCha, we choose them within the ranges
12≤ i < 16,0 ≤ j < 32. From step 6 to step 13, we calculate the double-bit differential
using XOR operation; the computational cost of these steps is dominant in the whole
algorithm. The time complexity of the step is (29)2/2 = 217. Remaining computational
costs of the algorithm is calculated as follows; the number of iterations of the loop from
step 5 is 27, and the number of iteration of the loop from step 2 isα. Thus, the total cost
of the algorithm isα · 224.

However, If the outputs have large biases, these values can appeared at all times.
Therefore, we constructs Algorithm to check reliability of the outputs of above algo-
rithm. Algorithm 4 shows details of the sieving algorithm.

4.2 Results

In the distinguishing attack using double-bit differentials, we need to find the maximum
values ofεd. Accordingly, we conducted an experiment shown inAlgorithm 3 to find
the maximum values for Salsa20 and ChaCha. The total time complexity of the experi-
ment is 248: the space of IV is 128 bits(=27), the combination of output is 218/2 = 217,
and the number of trials is 224. A Intel Core i7 3.3GHz PC requires 2 days computation
for the experiment.

We sampled 224 output pairs for each per one input pair. Letσ be the variance
of samples,N be the average andN′ is the population mean of [∆r

s]t ⊕ [∆r
p]q, where

σ ≈
√

N. The confidence interval is [N′ − θ,N′ + θ] andθ ≈ 2−12, where the confidence
coefficient is 95%. In our experiment,̃εd is larger than 2−12; thus, we setγ = 2 · 1/2−12.
The results are shown in table 1 and table 2.

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 9

Table 1.Double bit differentials of Salsa20

Type RoundKey length [∆0
i] j [∆r

p]q [∆r
s]t |ε̃d|

Salsa20 4 256 [∆0
8]17 [∆4

6]23 [∆4
7]0 0.177887

Salsa20 5 256 - - - Not Found
Salsa20 6 256 - - - Not Found
Salsa20 7 256 - - - Not Found
Salsa20 8 256 - - - Not Found
Salsa20 9 256 - - - Not Found
ChaCha 4 256 - - - Not Found
ChaCha 5 256 - - - Not Found
ChaCha 6 256 - - - Not Found
ChaCha 7 256 - - - Not Found
ChaCha 8 256 - - - Not Found

5 Concluding Remarks

We proposed new distinguishing attacks on Salsa20 and ChaCha, which uses double-
bit differentials. In addition, we proposed shieving algorithm to find a proper double bit
biese. However, there are no double bit biases of 5 or more round Salsa20 and ChaCha.
Therefore, these ciphers are not presently under threat. Obviously, the distinguishing
attack using double-bit differentials can be extended to distinguishing attacks using a
triple-bit differential or more-bit differentials. We will improve the applicability of our
method to extend the number of bits for differentials in our future research.

References

1. JP. Aumasson, S. Fischer, S. Khazaei, and W. Meier. New features of Latin dances: analysis
of Salsa, ChaCha, and Rumba. InFast Software Encryption 2008, pp. 470–488, 5086.

2. S. Babbage, C. D. Cannière, A. Canteaut, C. Cid, H. Gilbert, T. Johansson, M. Parker,
B. Preneel, V. Rijmen, and M. Robshaw. The estream portfolio (rev. 1). eS-
TREAM, ECRYPT Stream Cipher project, 2008.http://www.ecrypt.eu.org/stream/
portfolio revision1.pdf.

3. D. J. Bernstein. ChaCha, a variant of Salsa20.The State of the Art of Stream Ciphers SASC
2008, 2008.http://cr.yp.to/ChaCha.html.

4. D. J. Bernstein. Response to “Slid pairs in Salsa20 and Trivium”, 2008.http://cr.yp.

to/snuffle/reslid-20080925.pdf.
5. D. J. Bernstein. The Salsa20 family of stream ciphers. In D. Buell, editor,New Stream

Cipher Designs, No. 4986 in Lecture Notes in Computer Science, pp. 84–97. Springer, 2008.
http://cr.yp.to/salsa20.html.

6. A. Biryukov. A new 128-bit key stream cipher LEX. eSTREAM, ECRYPT Stream Cipher
project, 2005.http://www.ecrypt.eu.org/stream/nls.html.

7. J. Y. Cho and J. Pieprzyk. Crossword puzzle attack on NLS. Cryptology ePrint Archive,
Report 2006/049, 2006.http://eprint.iacr.org/.

8. J. Y. Cho and J. Pieprzyk. Linear distinguishing attack on NLS. IneSTREAM The ECRYPT
Stream Cipher Project, No. 2006/044, pp. 285–295, 2006.

10 T. Ishiguro et al.

9. P. Crowley. Truncated differemtial cryptanalysis of five round Salsa20.The State of the Art
of Stream Ciphers SASC2006, pp. 198–202, 2006.

10. H. Englund, M. Hell, and T. Johansson. A note on distinguishing attacks.IEEE Trans. on
Info. Theory, pp. 1–4, 2007.

11. eSTREAM. Ecrypt stream cipher project.http://www.ecrypt.eu.org/stream.
12. S. Fischer, W. Meier, C. Berbain, J.-F. Biasse, and M. Robshaw. Non-randomness in eS-

TEAM candidate Salsa20 and TSC-4. InIndocrypt2006, No. 4329 in Lecture Notes in Com-
puter Science, pp. 2–16. Springer, 2006.

13. A. O. Freier, P. Kocher, and P. C. Kaltorn. The SSL protocol version 3.0 draft.http:

//home.netscape.com/eng/ssl3/draft302.txt.
14. P. Hawkes, M. Paddon, G. Rose, and M. Wiggers de Vries. Primitive specification for

NLS. eSTREAM, ECRYPT Stream Cipher project, 2005.http://www.ecrypt.eu.org/
stream/nls.html.

15. S. Khazaei.Neutrality-Based Symmetric Cryptanalysis. PhD thesis, Lausanne EPFL, 2010.
16. S. Kunzli and W. Meier. Distinguishing attack on MAG. eSTREMA report, Report 2005/053,

2005.http://www.ecrypt.eu.org/stream/papersdir/053.pdf.
17. A. N. Lebedev, A. Ivanov, S. Starodubtzev, and A. Kolchkov. Yamb LAN crypto submission

to the ecrypt stream cipher project. IneSTREAM The ECRYPT Stream Cipher Project, No.
2005/034, 2005.

18. S. Poul, B. Preneel, and G. Sekar. Distinguishing attacks on the stream cipher Py. InIn-
docrypt2008, No. 5365 in Lecture Notes in Computer Science, pp. 1–14. Springer, 2008.

19. D. Priemuth-Schmid and A. Biryukov. Slid pairs in Salsa20 and Trivium. InFast Soft-
ware Encryption FSE2006, No. 4047 in Lecture Notes in Computer Science, pp. 405–421.
Springer, 2006.

20. G. Rose. A stream cipher based on linear feedback overGF(28). In Proc. Australian Con-
ference on Information Security and Privacy, Vol. 1438/1998, pp. 135–146. Springer, 1998.

21. IEEE Computer Society. Wireless lan medium access control (MAC) and physical layer
(PHY) speciffications. IEEE Std802.11, 1999.

22. Y. Tsunoo, T. Saito, H. Kubo, and M. Shigeri. Cryptanalysis of Mir-1, a T-function based
stream cipher, 2006.

23. Y. Tsunoo, T. Saito, H. Kubo, T. Suzaki, and H. Nakashima. Differential cryptanalysis of
Salsa20/8. The State of the Art of Stream Ciphers SASC 2007, 2007.

24. H. Wu and B. Preneel. Distinguishing attack on stream cipher Yamb. IneSTREAM The
ECRYPT Stream Cipher Project, No. 2005/043, 2005.

