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Abstract. An increasing number of cryptographic primitives are built
using the ARX operations: addition modulo 2n, bit rotation and XOR.
Because of their very fast performance in software, ARX ciphers are
becoming increasingly common. However, there is currently no rigorous
understanding of the security of ARX ciphers against one of the most
common attacks in symmetric-key cryptography: differential cryptanal-
ysis. In this paper, we introduce a tool to search for optimal differential
characteristics for ARX ciphers. Our technique is very easy to use, as
it only involves writing out simple equations for every addition, rota-
tion and XOR operation in the cipher, and applying an off-the-shelf
SAT solver. As is commonly done for ARX ciphers, our analysis assumes
that the probability of a characteristic can be computed by multiplying
the probabilities of each operation, and that the probability of the best
characteristic is a good estimate for the probability of the corresponding
differential. Using extensive experiments for Salsa20, we find that these
assumptions are not always valid. To overcome these issues, we propose
a method to accurately estimate the probability of ARX differentials.

Keywords: Differential cryptanalysis, ARX, Evaluation Tool, SAT solver,
Salsa20.

1 Introduction

ARX ciphers are composed of only three operations: additions modulo 2n, bit
rotations and XORs. We use n to denote the word size, typically n = 32 or
n = 64. Recently, many ciphers have appeared that are based on ARX. Examples
are the SHA-3 finalist hash functions BLAKE [4] and Skein [19], the tweakable
block cipher Threefish [19] and the stream cipher Salsa20 [8].

Although the term ARX was not introduced until 2009,3 the concept of
ARX ciphers is much older, and dates back to at least 1987, when the block

⋆ This work was supported in part by the Research Council KU Leuven: GOA TENSE
(GOA/11/007) and by the iMinds-MiX-MediaID project.

3 Although Weinmann initially introduced the term AXR [41], he changed this into
ARX soon afterwards. We use ARX in this paper, because this term has come into
wide acceptance in cryptographic literature.



cipher FEAL was published [31]. In this paper, we will use the term “ARX”
interchangeably with “pure ARX” [22,23]. That is, we do not use ARX to refer
to ciphers that also use other components as a source of non-linearity in GF(2),
such as the bitwise Boolean functions used in MD5 and SHA-1.

The security of ARX ciphers is currently not well understood. To analyze
the security of symmetric-key cryptographic primitives, two of the most powerful
techniques are differential cryptanalysis [9] and linear cryptanalysis [25]. Security
against these attacks is therefore typically a major design criterion for modern
ciphers. For example, the block cipher AES used the wide-trail design strategy to
provide provable resistance against both linear and differential cryptanalysis [16].

For ARX ciphers, there are currently no proven security bounds against dif-
ferential cryptanalysis in existing literature. Because typical ARX ciphers are
very fast on high-end processors, they are usually overdesigned. A large number
of rounds is used, because the optimal trade-off between security and efficiency is
not well understood. Designers of ARX ciphers have previously attempted to ar-
gue the security against differential cryptanalysis by using a variety techniques to
search for high-probability differential characteristics, and explaining that high-
probability differential characteristics could not be found for a sufficient number
of rounds [4, 8, 19].

In this paper, we construct a tool to search for optimal differential charac-
teristics of ARX ciphers. To use the tool, all that is required is to write simple
equations for every addition, rotation and XOR of the ARX cipher. These equa-
tions are then input into STP [20], a program that converts these equations into
a conjunctive normal form (CNF) formula. A SAT solver then either finds a
satisfying assignment to the CNF formula, or outputs unsatisfiable when it can
prove that no valid assignment exists.

Our technique assumes that the probability of the best characteristic is an
accurate estimate of the probability of the corresponding differential. We also
assume that the probability of the characteristic equals the product of the proba-
bilities of each operation. These assumptions are commonly made, either implic-
itly or explicitly, when searching for characteristics for the ARX hash functions
Skein [1,23,43] and BLAKE [3,36], as well as for MD5 [34,35] and SHA-1 [18,39].

Whereas most differential cryptanalysis attacks are based on theoretical cal-
culations of probabilities, some attacks are based on experimentally derived prob-
abilities. Notable examples include attacks by Crowley on Salsa20 [14], by Au-
masson et al. on Salsa20, ChaCha and Rumba [2], and by Biryukov et al. on
BLAKE [10]. However, such experimental estimations are computationally very
intensive, and can therefore only be performed for a limited number of rounds.
Thus it is important that we can easily and accurately estimate the probability
of a characteristic.

We perform experiments to verify the probability of differentials, more specif-
ically investigate if a differentials consist of multiple characteristics and if the
differential probabilities of every operation can be multiplied. We find that our
assumptions do not always hold. Therefore, we introduce techniques to accu-
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Table 1. Notation.

Notation Description

x + y addition of x and y modulo 2n (in text)
x ⊞ y addition of x and y modulo 2n (in figures)
x ≪ s rotation of x to the left by s positions
x≪ s shift of x to the left by s positions
x⊕ y bitwise exclusive OR (XOR) of x and y

x ∧ y bitwise AND of x and y

¬x bitwise NOT of x

:= is defined as
∆x XOR difference of x and x′: ∆x = x⊕ x′

∆+x additive difference of x and x′: ∆x = x′ − x′

∆±x signed difference of x and x′: ∆x[i] = x′[i]− x[i] ∈ −1, 0, 1
x[i] bit selection: bit at position i of word x,

where i = 0 is the least significant bit
(i, j, ...) XOR difference of 2i ⊕ 2j ⊕ ...

rately estimate the probability of a differential, and then verify these techniques
experimentally.

Outline. Notation is defined in Table 1. Section 2 gives an overview of related
work. We define the Salsa20 stream cipher in Sect. 3. In Sect. 4, we provide
a general framework to find differential characteristics for ARX ciphers. This
framework is used to find three-round Salsa20 characteristics up to weight 26
in Sect. 5. We investigate the probability of these characteristics and their cor-
responding differentials, both theoretically and experimentally. We conclude in
Sect. 6. The characteristics for three rounds of Salsa20 with the highest probabil-
ity are given in App. A.1. In App. A.2, we give 9 randomly selected differentials,
for which we experimentally verify probability in Sect. 5.5. Source code to find
characteristics for three rounds of Salsa20 is given in App. A.3.

2 Related Work

Biham and Shamir introduced differential cryptanalysis in [9]. For block ciphers,
it is used to analyze how input differences in the plaintext lead to output differ-
ences in the ciphertext. If this happens in a non-random way, this can be used
to build a distinguisher or even a key-recovery attack for the block cipher. In
the case of hash functions, differential cryptanalysis can be used to construct a
collision attack, as was done for the commonly used hash functions MD5 [40]
and SHA-1 [39]. For stream ciphers, differential cryptanalysis can be used in the
context of a resynchronization attack [15].

To prove the security of ciphers against differential cryptanalysis, Lai et al.
introduced the theory of Markov ciphers [21]. Their paper was the first to make
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a distinction between a differential and a differential characteristic. A differen-
tial is a difference propagation from an input difference to an output difference.
A differential characteristic defines not only the input and output differences,
but also the internal differences after every round of the iterated cipher. The
probability of a differential is equal to the sum of the probabilities of all differ-
ential characteristics that correspond to this differential. It is commonly assumed
that the probability of the best differential can accurately be estimated by the
probability of the best differential characteristic.

Daemen and Rijmen used this theory of Markov ciphers to prove the security
of AES against differential cryptanalysis [16]. This was done by proving a lower
bound for the probability of the best differential characteristic. For AES in the
single-key setting, such a proof is very straightforward because of the wide trail
design strategy.

For ARX ciphers, finding differential characteristics is much more difficult.
It typically involves months of tedious manual calculations (as done by Wang
et al. for several hash functions, including MD5 [40] and SHA-1 [39]), or the
construction of a heuristic search program.

By their very nature, these heuristic search programs cannot guarantee that
optimal characteristics are found. The search program either only considers a
limited set of high-probability output differences for every operation [33, 34], or
makes random guesses to construct characteristics [18]. Random guesses also
appear in linearization, a technique where every ARX cipher is replaced by an
XOR operation, after which techniques from coding theory are used to find low-
weight codewords [11,28].

In this paper, we propose a radically different approach. By use of a SAT
solver, we do not limit ourselves to finding “good” characteristics, but instead
we find optimal characteristics according to certain criteria.

Although our toolkit is not specific to one specific cipher, we chose to test our
techniques on the ARX stream cipher Sala20. In the next section, we formally
define Salsa20.

3 Description of Salsa20

Salsa20 is a stream cipher designed by Bernstein [8]. The originally proposed
Salsa20 consists of R = 20 rounds. Later, Bernstein proposed two reduced-
round variants: Salsa20/8 and Salsa20/12, consisting of 8 and 12 rounds respec-
tively [6]. For the sake of clarity, the 20-round Salsa20 is sometimes referred to
as Salsa20/20.

The Salsa20 stream cipher was submitted to the ECRYPT eSTREAM com-
petition. At the end of the competition, the Salsa20/12 cipher was included in
the eSTREAM portfolio. Although an attack was shown on Salsa20/8 [2], there
are currently no known attacks on either Salsa20/12 or Salsa20/20.

Although eSTREAM portfolio includes Salsa20 with 12 rounds, Bernstein is
more conservative and recommends choosing R = 20 for typical cryptographic
applications [8].
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Salsa20 supports both 128-bit and 256-bit keys. When using 128-bit keys, we
first double the key to form a 256-bit key. Salsa20 operates on 32-bit words. The
Salsa20 core function converts a 256-bit key (k0, k1, k2, k3, k4, k5, k6, k7), a 64-bit
counter (t0, t1), a 64-bit nonce (v0, v1), and four 32-bit constants (c0, c1, c2, c3)
into a 512-bit output. The inputs are mapped to a two-dimensional square matrix
as follows:









x0
0 x0

1 x0
2 x0

3

x0
4 x0

5 x0
6 x0

7

x0
8 x0

9 x0
10 x0

11

x0
12 x0

13 x0
14 x0

15









←









c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3









. (1)

A Salsa20 round consists of four parallel quarterround functions, defined in
Fig. 1:
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followed by a matrix transposition:

∀i, j : 0 ≤ i < 4, 0 ≤ j < 4 : xr+1

4i+j ← yr
4j+i . (6)

After R rounds, the output is calculated by a feed-forward operation:

∀i : 0 ≤ i < 16 : zi ← x0
i + xR

i mod 232 . (7)

Note that Salsa20 specification [8] defines both a columnround and a rowround

function. In this paper, we include a matrix transposition as part of every round
function. This simplifies the analysis: because of our definitions, every round of
Salsa20 is identical.

4 A Framework to Find Differential Characteristics of

ARX Ciphers

4.1 Calculating Differential Probabilities

Given a differential characteristic, we want to calculate the probability with
which it holds. Unless explicitly mentioned otherwise, we always use XOR dif-
ferences. We say that a differential is valid if it occurs with non-zero probability.
The bit rotation and XOR operations are linear in GF(2). Therefore, for every
input difference, there is only one valid output difference.

In [24], Lipmaa and Moriai study the differential properties of addition. Let
xdp+(α, β → γ) be the XOR-differential probability of addition modulo 2n, with
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≪ 7

≪ 9

≪ 13

≪ 18

a0 a1 a2 a3

b0 b1 b2 b3

Fig. 1. The Salsa20 quarterround function is defined as: (b0, b1, b2, b3) ←
quarterround(a0, a1, a2, a3)

input differences α and β and output difference γ. Lipmaa and Moriai prove that
the differential (α, β → γ) is valid if and only if:

eq(α≪ 1, β ≪ 1, γ ≪ 1) ∧ (α⊕ β ⊕ γ ⊕ (β ≪ 1)) = 0 , (8)

where
eq(x, y, z) := (¬x⊕ y) ∧ (¬x⊕ z) . (9)

For every valid differential (α, β → γ), we define the weight w(α, β → γ) of the
differential as follows:

w(α, β → γ) := − log2(xdp+(α, β → γ)) . (10)

The weight of a valid differential can then be calculated as:

w(α, β → γ) := h∗(¬eq(α, β, γ)) , (11)
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where h∗(x) denotes the number of non-zero bits in x, not counting x[n− 1].
In our analysis, we assume that the probability of a valid differential charac-

teristic is equal to the multiplication of the probabilities of each addition opera-
tion. Put differently, we calculate the weight of a valid differential characteristic
as the sum of the weights of each addition operation. In Sect. 5.4, we will revisit
this assumption by investigating cases where this assumption does not hold.

4.2 Searching for Differential Characteristics

In this paper, we will use a SAT solver to find differential characteristics up to a
certain weight W . If a complete SAT solver returns unsatisfiable, this proves that
no such differential characteristic exists. Initially, we choose W to be sufficiently
small, so that the search space is limited and the SAT solver terminates within
a reasonable time. We then gradually increase W and run the solver again, in
order to search for characteristics of a higher weight.

The first problem that we encounter, is that the input of typical SAT solvers
must be in conjunctive normal form (CNF). This corresponds to a product-of-
sum with binary variables. The expressions that we will use, however, involve
Boolean functions and additions on n-bit words, where n = 32 in the case of
Salsa20. To overcome this problem, we will make use of STP [20]. STP converts
equations using n-bit words into CNF, and then invokes a SAT solver. If a
satisfying solution exists, STP converts the solution back into a solution for the
original n-bit words.

To search for differential characteristics, we proceed with the following steps:

– For every pair of n-bit input words (x, x′) of the cipher, we use one n-bit
word ∆x in STP to represent the XOR differences between the corresponding
inputs ∆x = x⊕ x′.

– Additional n-bit variables may be needed to represent the XOR differences
of the outputs of the addition, XOR and rotate operations. These are intro-
duced when required.

– For every XOR and every bit rotation in the ARX cipher, we apply the same
XOR and bit rotation to the XOR differences. These hold with probability
one, and are therefore not included in the weight calculation.

– For every addition modulo 2n in the ARX cipher, we use (8) and (9) to ensure
that the input and output differences correspond to valid differentials of the
addition modulo 2n. These equations ensure that either all differentials are
valid, or SAT solver will output unsatisfiable.

– Additionally for every addition modulo 2n of the ARX cipher, we include
(11) to calculate the weight of the differential. This formula only applies to
valid differentials, but this is ensured by the previous equations.

– The weights of all these differentials are summed together. We specify that
the corresponding sum is at most W , which is the maximum weight of the
differentials that are considered by our search program.

– We specify that at least one XOR input difference is non-zero. Otherwise,
we would find the following trivial differential: if there is no difference in the
inputs, there is no difference in the outputs with probability one.
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The STP program will be generated by a small script, that processes the
addition operation in a special way to generate the corresponding equations.
Note that using this method, the input to our script corresponds almost exactly
to the C source code of the ARX algorithm. This greatly simplifies the task of
the cryptanalyst, and minimizes the possibility that a human error is made.

5 Application to Salsa20

5.1 Applying the Framework

Salsa20 has 16 input variables: x0
0, x0

1,..., x0
15. For each of these, we introduce a

32-bit variable to represent the XOR difference in STP. We can then straight-
forwardly apply the framework of Sect. 4 to find differentials for any number of
rounds of Salsa20. However, there is one additional issue that should be taken
into account.

For any number of rounds of Salsa20, there exist differential characteris-
tics that have probability one. In particular, if ∀i : 0 ≤ i < 16 : xr

i [31] are
flipped, then ∀i : 0 ≤ i < 16 : xr+1

i [31] will be flipped as well with probability
one. This property was noted by several cryptographers, including Robshaw [7],
Wagner [37] and Hernandez-Castro et al. [12].

As already pointed out by Bernstein [7], the use of the four 32-bit constants
(c0, c1, c2, c3) ensures that these probability-one characteristics will never occur
as an input to the Salsa20 round function. To avoid finding these probability-one
characteristics in our search program, we arbitrarily specify that ∆x0

0[31] = 0.
This also halves the number of characteristics found by our program: for every
found characteristic, there exists another characteristic where the differences in
every MSB are flipped.

5.2 Characteristics for Three Rounds of Salsa20

In what follows, we will describe how to apply our toolkit to three rounds of
Salsa20. The basic program can be found in App. A.3, and is part of a software
toolkit that will be made available online.

Weight 17. We include equations for three rounds of Salsa20, and specify that
we want to find all differential characteristics up to weight W = 17. We solve
this problem using STP. The default SAT solver of STP, CryptoMiniSat2 [32],
is used as a back end. The system that we will use for all our experiments, is
a 3.4 GHz Intel Core i7-2600 processor. After 23 minutes and 38 seconds of
computation, the SAT solver outputs unsatisfiable. Therefore, we find that three
rounds of Salsa20, no differential characteristic exists with a weight of less than
18.
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Weight 18. To find characteristics with weight 18, we proceed in a similar way,
but now with W = 18 as a bound. We are interested in finding not just one,
but all differential characteristics. Because this is not supported by STP, we tell
STP to display the CNF formula and exit.

We input this CNF formula into a SAT solver. For every solution that we
find, we generate an extra clause that blocks this solution, and then run the SAT
solver again. This is repeated until the SAT solver returns unsatisfiable, which
tells us that no more solutions exist.

If we use an incremental SAT solver, the SAT solver does not start again
from scratch when we add a new clause, but instead retains previously learned
information. CryptoMiniSat2 is an incremental SAT solver, and can be used to
find all solutions using the blocking clauses method with the --maxsolutions

flag. After 26 minutes and 22 seconds, we find four differential characteristics
before CryptoMiniSat2 returns unsatisfiable.

These four characteristics satisfy ∆x0
0[31] = 0, as explained earlier. By flip-

ping the MSB of every XOR word difference, the other four differential char-
acteristics of weight 18 can be constructed. The differential characteristics are
shown in App. A.1. Note that four characteristics identical except for a reorder-
ing of the input XOR differences. This is a result of the symmetry of the Salsa20
core function, as already pointed out in the original design document [5, 7].

Weight 26. For three rounds of Salsa20, the number of characteristics increases
exponentially when the weight is increased. Adding blocking clauses for each of
these solutions greatly increases the number of clauses that the SAT solver has
to deal with. We must therefore use a different approach, otherwise the SAT
solver will eventually run out of memory after several days of computation.

However, we have noticed that although a very large number of characteristics
exist with weight up to 26, many of these characteristics share the same internal
differences. We have constructed an STP program to find characteristics up to
W = 26, with ∆x0

0[31] = 0. STP generates a CNF program, which we again
solve with CryptoMiniSat2. However, for every characteristic that we find, we
add a blocking clause that contains only ∆x2

0, ∆x2
1,..., ∆x2

15. After 18 hours, 32
minutes and 9 seconds, the SAT solver that there are 418 possible values for the
input difference to the third round.

To enumerate all these characteristics is straightforward: using the tool of
App. A.3, we construct 418 SAT programs that specify each of the 418 inputs
differences to the third round, and again use CryptoMiniSat2 to find all solutions.
We find a total of 6,761,988 characteristics. In the next section, we study these
characteristics in detail.

5.3 Differentials and Characteristics

From Sect. 2, we recall that the probability of a differential is equal to the sum of
the probabilities of all differential characteristics that correspond to this differ-
ential. Using our framework, it is easy to find all characteristics that correspond
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to a given differential. When we specify the input and output differences, it takes
CryptoMiniSat2 only a fraction of a second to find all characteristics.

For each of the 6,761,988 three-round Salsa20 characteristics of weight up
to 26 found in the previous section, we find that no combination of input and
output differences occurs more than once. As such, we obtain 6,761,988 three-
round Salsa20 differentials. We find that out of these, only 2,604 differentials
contain more than one characteristic.

Using the weights of all characteristics corresponding to a differential, we ob-
tain an estimate for the weight of a differential. The results are shown in Table 2:
for all the differentials that we have found, only a very small fraction contains
more than one characteristic, and this increases the weight of the differential
only slightly.

Table 2. For three rounds of Salsa20, we give the number of characteristics with
weights up to 26, which we find in this case is the same as the number of differentials.
Some of these differentials consist of more than one characteristic: we show for how
many differentials this holds and estimate the weight of the best differential in every
group.

Weight of Corresponding # Differentials with Weight of Best
Characteristic # Differentials Multiple Characteristics Differential

18 8 0 18
19 112 0 19
20 872 0 20
21 5,080 0 21
22 24,696 0 22
23 105,128 0 23
24 404,272 16 23.91
25 1,435,784 264 24.68
26 4,786,036 2324 25.68

Total 6,761,988 2604

We give two examples of differentials with more than one characteristic:
Differential A and Differential B. From now on, let us use the following notation
to denote the XOR input and output differences of a differential:









x0
0 x0

1 x0
2 x0

3

x0
4 x0

5 x0
6 x0

7

x0
8 x0

9 x0
10 x0

11

x0
12 x0

13 x0
14 x0

15









→









x3
0 x3

1 x3
2 x3

3

x3
4 x3

5 x3
6 x3

7

x3
8 x3

9 x3
10 x3

11

x3
12 x3

13 x3
14 x3

15









(12)

where all XOR differences will be denoted as hexadecimal values.
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First, we consider Differential A:
2

6

6

4

00000420 00001080 00200000 01000000

84021000 00021000 02000000 04000000

00084000 01004000 00000000 00000000

01080000 88200000 00001001 00020000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

00001000 40020000 00000000 80000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

3

7

7

5

In Fig. 2, we show the two characteristics that correspond to Differential A:
a characteristic of weight 25 (left), as well as one of weight 27 (right), resulting
in a differential weight of − log2(2

−25 + 2−27) = 24.67. No other characteristics
exist for Differential A.

In the next section, we will explain that the weight of the characteristic of
Fig. 2 (right) does not correspond to the sum of the weights of every addition of
the ARX cipher. We will calculate that this characteristic actually has a weight
of 26, and therefore the differential has a weight of − log2(2

−25 + 2−26) = 24.42
Also note that the best found characteristic for Differential A cannot be

obtained by a greedy search strategy: for the characteristic of Fig. 2 (left), the
output difference after every addition is not always the one with the highest
probability.
We then consider Differential B:

2

6

6

4

00000010 00000840 00040100 80080000

00000800 21000000 84000000 00000100

00002000 80042010 80000010 00001000

00000000 00000042 00000802 00000000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00040000 80000000 00020010 00000000

00000000 00000000 00000000 00000000

3

7

7

5

Differential B is composed of characteristics with weights 24, 28 and 32, as
well as characteristics of a higher weight. In Fig. 3, we only show the character-
istics with estimated weights of 24 and 28. We again find that the weight of the
characteristic is not equal to the sum of the weights of every component. A more
detailed calculation, which will be performed in the next section, will show that
these three characteristics have actual weights of 24, 27 and 30 respectively.

5.4 Probability of the Characteristics

As already mentioned in the previous section, the commonly made assumption
that the probability of a differential characteristic is equal to the multiplication
of the probabilities of each operations is not always correct.

To understand why, we use the concept of signed differences ∆±x. These split
up the XOR differences into three possible cases:

– x[i] = x′[i], which is denoted as ∆±x[i] = 0,
– x[i] = 0, x′[i] = 1, which is denoted as ∆±x[i] = +1,
– x[i] = 1, x′[i] = 0, which is denoted as ∆±x[i] = −1.

Note that a signed difference ∆±x corresponds to exactly one XOR difference
∆x:

∆x =

n−1
⊕

i=0

|∆±x[i]| · 2i , (13)
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≪ 7

≪ 9

≪ 13

≪ 18

∆x1

15

(24, 19) (31, 27) (12)(17)
∆x1

3
∆x1

7
∆x1

11

() (31) ()()
∆x2

15
∆x2

12
∆x2

13
∆x2

14

(17, 12)

(17)

(31)

(31)

+1

≪ 7

≪ 9

≪ 13

≪ 18

∆x0

5

(24, 14) (31, 27, 21) (12, 7)(17, 12)
∆x0

9
∆x0

13
∆x0

1

() (31, 27, 26) ()()
∆x1

5
∆x1

6
∆x1

7
∆x1

4

(17, 7)

(17, 12)

(31, 26)

(31, 26)

-1

+1

+0

≪ 7

≪ 9

≪ 13

≪ 18

∆x0

5

(24, 14) (31, 27, 21) (12, 7)(17, 12)
∆x0

9
∆x0

13
∆x0

1

() (31, 26) ()()
∆x1

5
∆x1

6
∆x1

7
∆x1

4

(17, 7)

(18, 17, 12)

(31, 26)

(31, 26)

≪ 7

≪ 9

≪ 13

≪ 18

∆x1

15

(24, 19) (31, 26) (12)(17)
∆x1

3
∆x1

7
∆x1

11

() (31) ()()
∆x2

15
∆x2

12
∆x2

13
∆x2

14

(17, 12)

(17)

(31)

(31)

Fig. 2. Differential A (defined in Sect. 5.3) is composed of exactly two characteristics,
one of weight 25 (left), and another of weight 26 (right). For the characteristic on the
right, we use ‘+1’ and ‘-1’ to denote the increase or decrease of weight, compared to the
characteristic on the left. In Sect. 5.4, we show that not all operations are independent
for the characteristic on the right: this explains why one addition has ‘+0’ instead of
‘+1’. Note that only part of the characteristics are shown.
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≪ 7

≪ 9

≪ 13

≪ 18

∆x0

10

(11, 1) (18, 8) (31, 26)(31, 4)
∆x0

14
∆x0

2
∆x0

6

() (18, 14, 13) ()()
∆x1

10
∆x1

11
∆x1

8
∆x1

9

(26, 4)

(31, 5, 4)

(18, 13)

(18, 13)

≪ 7

≪ 9

≪ 13

≪ 18

∆x1

0

(11, 6) (18, 14, 13) (31)(4)
∆x1

4
∆x1

8
∆x1

12

() (18) ()()
∆x2

0
∆x2

1
∆x2

2
∆x2

3

(31, 4)

(5, 4)

(18)

(18)

+1

+1

+0

+1

≪ 7

≪ 9

≪ 13

≪ 18

∆x0

10

(11, 1) (18, 8) (31, 26)(31, 4)
∆x0

14
∆x0

2
∆x0

6

() (18, 13) ()()
∆x1

10
∆x1

11
∆x1

8
∆x1

9

(26, 4)

(31, 4)

(18, 13)

(18, 13)

≪ 7

≪ 9

≪ 13

≪ 18

∆x1

0

(11, 6) (18, 13) (31)(4)
∆x1

4
∆x1

8
∆x1

12

() (18) ()()
∆x2

0
∆x2

1
∆x2

2
∆x2

3

(31, 4)

(4)

(18)

(18)

Fig. 3. Differential B (defined in Sect. 5.3) is composed of several characteristics. We
show the two with the lowest weight: weight 24 (left), and weight 27 (right). For the
characteristic on the right, we use ‘+1’ and ‘-1’ to denote the increase or decrease of
weight, compared to the characteristic on the left. In Sect. 5.4, we show that not all
operations are independent for the characteristic on the right: this explains why one
addition has ‘+0’ instead of ‘+1’. Note that only part of the characteristics are shown.
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as well as to exactly one additive difference ∆+x:

∆+x =

n−1
∑

i=0

∆±x[i] · 2i mod 2n . (14)

Let us now revisit Differential A. In 2 (right), we find an addition with input
differences ∆x1

7 = 231⊕ 227⊕ 226 and ∆x1
6 = 0. Let us denote the corresponding

output difference by ∆d = 231 ⊕ 226.
Every XOR difference corresponds to a set of signed differences. Not all

of these are valid for the addition operation. For example, ∆±x1
7[27] = +1,

∆±x1
4[26] = −1 and ∆±d[26] = +1 results in a valid assignment, because 231 +

227−226 = 231+226 mod 232. However, no valid assignment exists if ∆±x1
7[27] =

∆±x1
7[26].

Then, we observe that ∆x1
7 is reused in another addition which also imposes

the condition ∆±x1
7[27] = ∆±x1

7[26] to obtain a valid output difference. Because
this condition is already satisfied, the differential probability of this addition
increases from 2−2 to 2−1.

The same effect occurs with Differential B, as can be seen from Fig. 3. Here,
we see that the characteristic of Fig. 3 (right) has a weight of 27 instead of 28.

The effect is also not limited to cases where a differential consists of several
characteristics. Let us consider Differential C:

2

6

6

4

00000000 00000000 00000002 10000002

00000000 80000000 00000040 00000108

00000000 00000040 03000000 00200000

00000000 00000100 80002000 04000000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

10280000 840040a2 00000040 00008100

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

3

7

7

5

and Differential D:

2

6

6

4

00000000 00000000 00000002 10000002

00000000 80000000 00000040 00000108

00000000 00000040 03000000 00200000

00000000 00000100 80002002 04000000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

10280000 840040a2 00000040 00008100

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

3

7

7

5

Differentials C and D each contain exactly one characteristic, which are shown
in Fig. 4 (left) and Fig. 4 (right) respectively. As shown by Fig. 4 (left), Differen-
tial C has a probability of 20 instead of 21 when an analysis of signed differences
is taken into account. In Fig. 4 (right), the characteristic with weight 22 turns
out to be impossible due to a contradiction.

5.5 Experimental Verification of the Probabilities

In this section, we evaluate the probabilities of three-round Salsa20 characteristic
experimentally. We evaluate the probability of Differentials A and B of Sect. 5.3),
and Differentials C and D of Sect. 5.4.

We also selected 9 differentials at random for three rounds of Salsa20, one
for every weight from 18 up to 26. These characteristics are chosen at random
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≪ 7

≪ 9

≪ 13

≪ 18

∆x0

10

(31, 13) (1) (6)(25, 24)
∆x0

14
∆x0

2
∆x0

6

() () (6)()
∆x1

10
∆x1

14
∆x1

2
∆x1

6

(24, 6)

(24)

()

(7, 6)

≪ 7

≪ 9

≪ 13

≪ 18

() () (6)()
∆x2

15
∆x2

12
∆x2

13
∆x2

14

(26, 24, 6)

(24)

()

(7, 6)

∆x0

10

(31, 13, 1) (1) (6)(25, 24)
∆x0

14
∆x0

2
∆x0

6

∆±x0

10
[25] 6= ∆±x0

10
[24] ∆±x0

10
[25] = ∆±x0

10
[24]

∆±x0

10
[25] 6= ∆±x0

10
[24] ∆±x0

10
[25] 6= ∆±x0

10
[24]

Fig. 4. Differential C (defined in Sect. 5.4) consists of exactly one characteristic (left),
with a weight of 20 instead of weight 21 due to the condition ∆±x0

10[25] 6= ∆±x0
10[24].

Differential D (see Sect. 5.4) also consists of one characteristic (right). Although a first
estimate showed that this characteristic had a weight of 21, we actually find that the
characteristic is impossible due to a contradiction for ∆±x0

10[25] and ∆±x0
10[24]. Note

that only part of the characteristics are shown.

with the following requirements: ∆x0
0[31] = 0, there is only one characteristic

per differential, and no extra conditions appear due to modular differences. Note
that for every differential where ∆x0

0[31] = 0, we can obtain another differential
where ∆x0

0[31] = 1 with probability one. These differentials can be found in
Sect. A.2.

We selected the sample sizes such that the difference between the experi-
mental weight and the theoretical weight will be at most 0.015 for 99% of the
samples. The results of our calculations are given in Table 3. We find that all
experimental weights pass a two-tailed binomial test with a significance level of
1%, which provides evidence that the experimental probability corresponds to
the theoretical probability.

5.6 Discussion

Our analysis uses conditions on two bits to verify characteristics. Two-bit condi-
tions have been used before for the manual cryptanalysis of the members of the
MD4 family by Wang et al. [38], and subsequently in automated techniques by
Mouha et al. [27] and Mendel et al. [26]. These two-bit conditions mostly occur
due to the propagation of differences in the Boolean functions.
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Table 3. Experimental Probabilities of Differentials for Three Rounds of Salsa20.

Name Ref.
Theoretical Sample Expected Experimental

Difference p-value
Weight Size Value Value

Differential 18 § A.2 18 234 65,536 65,800 +264 0.3033
Differential 19 § A.2 19 235 65,536 65,209 -327 0.2022
Differential 20 § A.2 20 236 65,536 65,496 -40 0.8774
Differential 21 § A.2 21 237 65,536 65,664 +128 0.6185
Differential 22 § A.2 22 238 65,536 65,667 +131 0.6102
Differential 23 § A.2 23 239 65,536 65,119 -417 0.1037
Differential 24 § A.2 24 240 65,536 65,725 +189 0.4615
Differential 25 § A.2 25 241 65,536 65,113 -423 0.0989
Differential 26 § A.2 26 242 65,536 65,848 +312 0.2237

Differential A § 5.3 23.81 240 74,896 75,227 +331 0.2272
Differential B § 5.3 24.42 241 98,304 98,264 -40 0.8997
Differential C § 5.4 20 236 65,536 65,453 -83 0.7473
Differential D § 5.4 infinity 242 0 0 0 1

For ARX ciphers, Leurent proposed conditions on two and on three adjacent
bits of one word in [22]. Although these conditions capture the conditions that
encounter in Sect. 5.3 and Sect. 5.4, they do not detect the necessary conditions
that appear in Salsa20 characteristics.

For example, consider the 32-bit addition operation a + b = c, where ∆a =
23 ⊕ 20, ∆b = 0 and ∆c = 22 ⊕ 21 ⊕ 20. This differential is only valid if
∆±a[3] 6= ∆±a[0]. Leurent’s ARXtools does not detect this condition, because
it only considers three adjacent bits. Instead, it is necessary to convert one XOR
difference into a signed difference, to allow ARXtools to detect this condition.

In the case of BLAKE and Skein, the output of an addition can be used di-
rectly as the input of another addition. As can be seen from Fig. 1, this situation
never occurs in Salsa20. For Salsa20, the output of the addition of two variables
is, after rotation, XORed with a third variable. This XOR operation has the
effect of whitening the outputs, i.e. to ensure that for a particular output differ-
ence, the values of the output pairs are uniformly distributed. This assumption
greatly simplifies our analysis, and seems to seems to be valid since we consider
very sparse characteristics. However, this property needs to be investigated fur-
ther in future work.

Note that this assumption of uniformly distributed outputs is seemingly con-
tradicted by Leurent’s ARXtools [22]. This tool finds that for the last charac-
teristic of App. A.1, bits (x2

13[21], x2
13[20], x2

13[20]) cannot have values (1, 0, 0)
or (0, 1, 1). However, this does not imply that the x2

13 is not uniformly dis-
tributed when it is output by the XOR operation. It can be seen that these
conditions are the consequence of subsequent operations. By removing all sub-
sequent operations that use x2

13 as inputs and running ARXtools again, we find
that (x2

13[21], x2
13[20], x2

13[20]) can be assigned to all 28 values.

16



We also note that the contradiction found by Leurent [22] for the near-
collision attack on step-reduced Skein-256 by Yu et al. [42] does not occur for our
characteristics. The reason is that this inconsistency is caught by the Lipmaa-
Moriai formula of Sect. 4.1.

6 Conclusion and Future Work

In this paper, we provide a toolkit to efficiently find optimal characteristics for
ARX ciphers, assuming that the probability of a characteristic is equal to the
product of the probability of its component. The same technique can also be
used to find all characteristics corresponding to a given differential.

The framework that we propose, requires writing equations for every addi-
tion, rotation and XOR of the ARX cipher. For the addition operation, we use
the formulae proposed by Lipmaa and Moriai to restrict the input and output
differences to valid differentials, and to calculate the differential probability. Our
framework then uses a SAT solver to find characteristics up to a certain weight.

We perform extensive experiments for three rounds of Salsa20. We find that
there are 6,761,988 differentials for weights of up to 26. Out of these, only 2,604
differentials consist of more than one characteristic, and this reduces the weight
of the differentials only slightly.

It is commonly assumed for ARX ciphers that the probability of a char-
acteristic can be computed by multiplying the probability of each component.
However, we find that this analysis does not hold for certain characteristics. In
order to resolve this issue, we introduce conditions between two (not necessar-
ily adjacent) bits of one word, to indicate whether their signed differences are
opposite or equal.

We then perform a extensive amount of experiments to verify that the exper-
imental probability of the differentials matches the theoretical probability that
we assumed.

The integration of these signed differences into the automatic search for char-
acteristics is an interesting topic for future research.
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Improved Cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT. Lecture Notes
in Computer Science, vol. 5912, pp. 542–559. Springer (2009)

2. Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features
of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. In: Nyberg [29], pp.
470–488

17



3. Aumasson, J.P., Guo, J., Knellwolf, S., Matusiewicz, K., Meier, W.: Differential
and Invertibility Properties of BLAKE. In: Hong, S., Iwata, T. (eds.) FSE. Lecture
Notes in Computer Science, vol. 6147, pp. 318–332. Springer (2010)

4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to the NIST SHA-3 Competition (Round 3) (2010), http://131002.
net/blake/blake.pdf

5. Bernstein, D.J.: Salsa20 specification. http://cr.yp.to/snuffle/spec.pdf (April
2005)

6. Bernstein, D.J.: Salsa20/8 and Salsa20/12. http://cr.yp.to/snuffle/812.pdf

(February 2006)
7. Bernstein, D.J.: Response to “On the Salsa20 core function”. http://cr.yp.to/

snuffle/reoncore-20080224.pdf (February 2008)
8. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw and Billet [30],

pp. 84–97
9. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.

Cryptology 4(1), 3–72 (1991)
10. Biryukov, A., Nikolic, I., Roy, A.: Boomerang Attacks on BLAKE-32. In: Joux, A.

(ed.) FSE. Lecture Notes in Computer Science, vol. 6733, pp. 218–237. Springer
(2011)

11. Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words
in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense
BCH Codes of Length 511. IEEE Transactions on Information Theory 44(1), 367–
378 (1998)
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A Additional Supporting Information

A.1 Differential Characteristics for Three Rounds of Salsa20

There are exactly eight three-round differential characteristics for Salsa20 with
a weight of less than or equal to 18. Below, we give four of these characteristics.
The characteristics show the symmetry of the Salsa20 core function, as explained
in [5, 7]. The other four characteristics can be obtained by flipping the MSB of
every XOR word difference.

– Characteristic 1:









(31) (6) (8, 3) ()
(6) (24) (21) ()
(8) (31, 13) (26) ()
() (1) (28, 1) ()









→









(31) () () ()
(6) () () ()
(8) () () ()
() () () ()









→









(31) () () ()
() () () ()
() () () ()
() () () ()









→









(31, 26, 14, 7, 5, 1) (6) (15, 8) (28, 21, 19)
() () () ()
() () () ()
() () () ()









– Characteristic 2:









() () (1) (28, 1)
() (31) (6) (8, 3)
() (6) (24) (21)
() (8) (31, 13) (26)









→









() () () ()
() (31) () ()
() (6) () ()
() (8) () ()









→









() () () ()
() (31) () ()
() () () ()
() () () ()









→









() () () ()
(28, 21, 19) (31, 26, 14, 7, 5, 1) (6) (15, 8)

() () () ()
() () () ()









– Characteristic 3:









(26) () (8) (31, 13)
(28, 1) () () (1)
(8, 3) () (31) (6)
(21) () (6) (24)









→









() () (8) ()
() () () ()
() () (31) ()
() () (6) ()









→









() () () ()
() () () ()
() () (31) ()
() () () ()









→









() () () ()
() () () ()

(15, 8) (26, 21, 19) (31, 26, 14, 7, 5, 1) (6)
() () () ()
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– Characteristic 4:








(24) (21) () (6)
(31, 13) (26) () (8)

(1) (28, 1) () ()
(6) (8, 3) () (31)









→









() () () (6)
() () () (8)
() () () ()
() () () (31)









→









() () () ()
() () () ()
() () () ()
() () () (31)









→









() () () ()
() () () ()
() () () ()
(6) (15, 8) (28, 21, 19) (31, 26, 14, 7, 5, 1)









A.2 Randomly Selected Differentials for Salsa20

In this Section, we give a list of 9 randomly selected differentials for three rounds
of Salsa20, one for every weight from 18 up to 26. These differentials were chosen
randomly out of the set of all 6,761,988 possible differentials, with the restrictions
that ∆x0

0[31] = 0, that there is only one characteristic per differential, and that
no extra conditions appear due to modular differences. For other differentials,
we refer to Sect. 5.3 and Sect. 5.4.

We give XOR input and output differences of differentials (in hexadecimal
format) according to the following notation: Format:









x0
0 x0

1 x0
2 x0

3

x0
4 x0

5 x0
6 x0

7

x0
8 x0

9 x0
10 x0

11

x0
12 x0

13 x0
14 x0

15









→









x3
0 x3

1 x3
2 x3

3

x3
4 x3

5 x3
6 x3

7

x3
8 x3

9 x3
10 x3

11

x3
12 x3

13 x3
14 x3

15









(15)

Differential 18, weight 18:
2

6

6

4

01000000 00200000 00000000 00000040

80002000 04000000 00000000 00000100

00000002 10000002 00000000 00000000

00000040 00000108 00000000 80000000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000040 00008100 10280000 840040a2

3

7

7

5

Differential 19, weight 19:
2

6

6

4

04000000 00000000 00000100 80006000

10000002 00000000 00000000 00000002

00000108 00000000 80000000 00000040

00200000 00000000 00000040 01000000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00008100 10280000 840040a2 00000040

00000000 00000000 00000000 00000000

3

7

7

5

Differential 20, weight 20:
2

6

6

4

01000000 00200000 00000000 00000040

80002001 04000000 00000000 00000100

00000002 10000006 00000000 00000000

00000040 00000108 00000000 80000000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000040 00008100 10280000 840040a2

3

7

7

5

Differential 21, weight 21:
2

6

6

4

01000000 00200000 00000000 00000040

80006000 04000000 00000000 00000100

00000006 10000002 00000000 00000000

00000040 00000108 00000000 80000000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000040 00008100 10180000 84004022

3

7

7

5
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Differential 22, weight 22:

2

6

6

4

01000000 00600000 00000000 00000040

80002000 04000000 00000000 00000100

00000002 30000002 00000000 00000000

00000040 00000118 00000000 80000000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000040 00008100 10280000 840041a2

3

7

7

5

Differential 23, weight 23:

2

6

6

4

00000000 80000040 80000118 80000000

80000040 81000000 80200000 80000000

80000100 00002000 84000000 80000000

80000000 80000002 90000002 80000000

3

7

7

5

→

2

6

6

4

0401c066 80000040 80008100 90280000

80000000 80000000 80000000 80000000

80000000 80000000 80000000 80000000

80000000 80000000 80000000 80000000

3

7

7

5

Differential 24, weight 24:

2

6

6

4

04000000 00000000 00000100 80002001

30000002 00000000 00000000 00000006

00000108 00000000 80000000 00000040

00200000 00000000 00000040 01000000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00008100 10580000 84004162 00000040

00000000 00000000 00000000 00000000

3

7

7

5

Differential 25, weight 25:

2

6

6

4

00000000 00000000 00000006 10000002

00000000 80000000 00000040 00000118

00000000 00000040 03000000 00200000

00000000 00000100 80002000 04000000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

10280000 8403c1a2 00000040 00008100

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

3

7

7

5

Differential 26, weight 26:

2

6

6

4

00000000 00000000 08000000 08400000

00000000 02000000 00000001 20000004

00000000 00000001 00040000 00008000

00000000 00000004 02000080 00100000

3

7

7

5

→

2

6

6

4

00000000 00000000 00000000 00000000

00406000 8a100301 00000001 00000204

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

3

7

7

5

A.3 Source Code to find Characteristics for Three Rounds of

Salsa20

1 #!/ usr /bin / p e r l −w
2

3 $ s t r i n g = << ’HERE’ ;
4

5 % inputs + outputs
6 x00 , x01 , x02 , x03 , x04 , x05 , x06 , x07 ,
7 x08 , x09 , x10 , x11 , x12 , x13 , x14 , x15 : BITVECTOR(32) ;
8 y00 , y01 , y02 , y03 , y04 , y05 , y06 , y07 ,
9 y08 , y09 , y10 , y11 , y12 , y13 , y14 , y15 : BITVECTOR(32) ;

10 z00 , z01 , z02 , z03 , z04 , z05 , z06 , z07 ,
11 z08 , z09 , z10 , z11 , z12 , z13 , z14 , z15 : BITVECTOR(32) ;
12 u00 , u01 , u02 , u03 , u04 , u05 , u06 , u07 ,
13 u08 , u09 , u10 , u11 , u12 , u13 , u14 , u15 : BITVECTOR(32) ;

23



14

15 % output o f add i t i on
16 c00 , c01 , c02 , c03 , c04 , c05 , c06 , c07 ,
17 c08 , c09 , c10 , c11 , c12 , c13 , c14 , c15 : BITVECTOR(32) ;
18 c16 , c17 , c18 , c19 , c20 , c21 , c22 , c23 ,
19 c24 , c25 , c26 , c27 , c28 , c29 , c30 , c31 : BITVECTOR(32) ;
20 c32 , c33 , c34 , c35 , c36 , c37 , c38 , c39 ,
21 c40 , c41 , c42 , c43 , c44 , c45 , c46 , c47 : BITVECTOR(32) ;
22

23 % he lpe r v a r i ab l e to c a l c u l a t e weight
24 p00 , p01 , p02 , p03 , p04 , p05 , p06 , p07 ,
25 p08 , p09 , p10 , p11 , p12 , p13 , p14 , p15 : BITVECTOR(32) ;
26 p16 , p17 , p18 , p19 , p20 , p21 , p22 , p23 ,
27 p24 , p25 , p26 , p27 , p28 , p29 , p30 , p31 : BITVECTOR(32) ;
28 p32 , p33 , p34 , p35 , p36 , p37 , p38 , p39 ,
29 p40 , p41 , p42 , p43 , p44 , p45 , p46 , p47 : BITVECTOR(32) ;
30

31 % weight o f the c h a r a c t e r i s t i c
32 weight : BITVECTOR(11) ;
33

34 % f i r s t round
35 ASSERT( add ( x00 , x12 , c00 ) ) ;
36 ASSERT( ( y04 = BVXOR(x04 , r o t l ( c00 , 7 ) ) ) ) ;
37 ASSERT( pen ( x00 , x12 , c00 , p00 ) ) ;
38

39 ASSERT( add ( y04 , x00 , c01 ) ) ;
40 ASSERT( ( y08 = BVXOR(x08 , r o t l ( c01 , 9 ) ) ) ) ;
41 ASSERT( pen ( y04 , x00 , c01 , p01 ) ) ;
42

43 ASSERT( add ( y08 , y04 , c02 ) ) ;
44 ASSERT( ( y12 = BVXOR(x12 , r o t l ( c02 , 1 3 ) ) ) ) ;
45 ASSERT( pen ( y08 , y04 , c02 , p02 ) ) ;
46

47 ASSERT( add ( y12 , y08 , c03 ) ) ;
48 ASSERT( ( y00 = BVXOR(x00 , r o t l ( c03 , 1 8 ) ) ) ) ;
49 ASSERT( pen ( y12 , y08 , c03 , p03 ) ) ;
50

51 ASSERT( add ( x05 , x01 , c04 ) ) ;
52 ASSERT( ( y09 = BVXOR(x09 , r o t l ( c04 , 7 ) ) ) ) ;
53 ASSERT( pen ( x05 , x01 , c04 , p04 ) ) ;
54

55 ASSERT( add ( y09 , x05 , c05 ) ) ;
56 ASSERT( ( y13 = BVXOR(x13 , r o t l ( c05 , 9 ) ) ) ) ;
57 ASSERT( pen ( y09 , x05 , c05 , p05 ) ) ;
58

59 ASSERT( add ( y13 , y09 , c06 ) ) ;
60 ASSERT( ( y01 = BVXOR(x01 , r o t l ( c06 , 1 3 ) ) ) ) ;
61 ASSERT( pen ( y13 , y09 , c06 , p06 ) ) ;
62

63 ASSERT( add ( y01 , y13 , c07 ) ) ;
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64 ASSERT( ( y05 = BVXOR(x05 , r o t l ( c07 , 1 8 ) ) ) ) ;
65 ASSERT( pen ( y01 , y13 , c07 , p07 ) ) ;
66

67 ASSERT( add ( x10 , x06 , c08 ) ) ;
68 ASSERT( ( y14 = BVXOR(x14 , r o t l ( c08 , 7 ) ) ) ) ;
69 ASSERT( pen ( x10 , x06 , c08 , p08 ) ) ;
70

71 ASSERT( add ( y14 , x10 , c09 ) ) ;
72 ASSERT( ( y02 = BVXOR(x02 , r o t l ( c09 , 9 ) ) ) ) ;
73 ASSERT( pen ( y14 , x10 , c09 , p09 ) ) ;
74

75 ASSERT( add ( y02 , y14 , c10 ) ) ;
76 ASSERT( ( y06 = BVXOR(x06 , r o t l ( c10 , 1 3 ) ) ) ) ;
77 ASSERT( pen ( y02 , y14 , c10 , p10 ) ) ;
78

79 ASSERT( add ( y06 , y02 , c11 ) ) ;
80 ASSERT( ( y10 = BVXOR(x10 , r o t l ( c11 , 1 8 ) ) ) ) ;
81 ASSERT( pen ( y06 , y02 , c11 , p11 ) ) ;
82

83 ASSERT( add ( x15 , x11 , c12 ) ) ;
84 ASSERT( ( y03 = BVXOR(x03 , r o t l ( c12 , 7 ) ) ) ) ;
85 ASSERT( pen ( x15 , x11 , c12 , p12 ) ) ;
86

87 ASSERT( add ( y03 , x15 , c13 ) ) ;
88 ASSERT( ( y07 = BVXOR(x07 , r o t l ( c13 , 9 ) ) ) ) ;
89 ASSERT( pen ( y03 , x15 , c13 , p13 ) ) ;
90

91 ASSERT( add ( y07 , y03 , c14 ) ) ;
92 ASSERT( ( y11 = BVXOR(x11 , r o t l ( c14 , 1 3 ) ) ) ) ;
93 ASSERT( pen ( y07 , y03 , c14 , p14 ) ) ;
94

95 ASSERT( add ( y11 , y07 , c15 ) ) ;
96 ASSERT( ( y15 = BVXOR(x15 , r o t l ( c15 , 1 8 ) ) ) ) ;
97 ASSERT( pen ( y11 , y07 , c15 , p15 ) ) ;
98

99 % second round
100 ASSERT( add ( y00 , y03 , c16 ) ) ;
101 ASSERT( ( z01 = BVXOR(y01 , r o t l ( c16 , 7 ) ) ) ) ;
102 ASSERT( pen ( y00 , y03 , c16 , p16 ) ) ;
103

104 ASSERT( add ( z01 , y00 , c17 ) ) ;
105 ASSERT( ( z02 = BVXOR(y02 , r o t l ( c17 , 9 ) ) ) ) ;
106 ASSERT( pen ( z01 , y00 , c17 , p17 ) ) ;
107

108 ASSERT( add ( z02 , z01 , c18 ) ) ;
109 ASSERT( ( z03 = BVXOR(y03 , r o t l ( c18 , 1 3 ) ) ) ) ;
110 ASSERT( pen ( z02 , z01 , c18 , p18 ) ) ;
111

112 ASSERT( add ( z03 , z02 , c19 ) ) ;
113 ASSERT( ( z00 = BVXOR(y00 , r o t l ( c19 , 1 8 ) ) ) ) ;
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114 ASSERT( pen ( z03 , z02 , c19 , p19 ) ) ;
115

116 ASSERT( add ( y05 , y04 , c20 ) ) ;
117 ASSERT( ( z06 = BVXOR(y06 , r o t l ( c20 , 7 ) ) ) ) ;
118 ASSERT( pen ( y05 , y04 , c20 , p20 ) ) ;
119

120 ASSERT( add ( z06 , y05 , c21 ) ) ;
121 ASSERT( ( z07 = BVXOR(y07 , r o t l ( c21 , 9 ) ) ) ) ;
122 ASSERT( pen ( z06 , y05 , c21 , p21 ) ) ;
123

124 ASSERT( add ( z07 , z06 , c22 ) ) ;
125 ASSERT( ( z04 = BVXOR(y04 , r o t l ( c22 , 1 3 ) ) ) ) ;
126 ASSERT( pen ( z07 , z06 , c22 , p22 ) ) ;
127

128 ASSERT( add ( z04 , z07 , c23 ) ) ;
129 ASSERT( ( z05 = BVXOR(y05 , r o t l ( c23 , 1 8 ) ) ) ) ;
130 ASSERT( pen ( z04 , z07 , c23 , p23 ) ) ;
131

132 ASSERT( add ( y10 , y09 , c24 ) ) ;
133 ASSERT( ( z11 = BVXOR(y11 , r o t l ( c24 , 7 ) ) ) ) ;
134 ASSERT( pen ( y10 , y09 , c24 , p24 ) ) ;
135

136 ASSERT( add ( z11 , y10 , c25 ) ) ;
137 ASSERT( ( z08 = BVXOR(y08 , r o t l ( c25 , 9 ) ) ) ) ;
138 ASSERT( pen ( z11 , y10 , c25 , p25 ) ) ;
139

140 ASSERT( add ( z08 , z11 , c26 ) ) ;
141 ASSERT( ( z09 = BVXOR(y09 , r o t l ( c26 , 1 3 ) ) ) ) ;
142 ASSERT( pen ( z08 , z11 , c26 , p26 ) ) ;
143

144 ASSERT( add ( z09 , z08 , c27 ) ) ;
145 ASSERT( ( z10 = BVXOR(y10 , r o t l ( c27 , 1 8 ) ) ) ) ;
146 ASSERT( pen ( z09 , z08 , c27 , p27 ) ) ;
147

148 ASSERT( add ( y15 , y14 , c28 ) ) ;
149 ASSERT( ( z12 = BVXOR(y12 , r o t l ( c28 , 7 ) ) ) ) ;
150 ASSERT( pen ( y15 , y14 , c28 , p28 ) ) ;
151

152 ASSERT( add ( z12 , y15 , c29 ) ) ;
153 ASSERT( ( z13 = BVXOR(y13 , r o t l ( c29 , 9 ) ) ) ) ;
154 ASSERT( pen ( z12 , y15 , c29 , p29 ) ) ;
155

156 ASSERT( add ( z13 , z12 , c30 ) ) ;
157 ASSERT( ( z14 = BVXOR(y14 , r o t l ( c30 , 1 3 ) ) ) ) ;
158 ASSERT( pen ( z13 , z12 , c30 , p30 ) ) ;
159

160 ASSERT( add ( z14 , z13 , c31 ) ) ;
161 ASSERT( ( z15 = BVXOR(y15 , r o t l ( c31 , 1 8 ) ) ) ) ;
162 ASSERT( pen ( z14 , z13 , c31 , p31 ) ) ;
163
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164 % th i rd round
165 ASSERT( add ( z00 , z12 , c32 ) ) ;
166 ASSERT( ( u04 = BVXOR( z04 , r o t l ( c32 , 7 ) ) ) ) ;
167 ASSERT( pen ( z00 , z12 , c32 , p32 ) ) ;
168

169 ASSERT( add ( u04 , z00 , c33 ) ) ;
170 ASSERT( ( u08 = BVXOR( z08 , r o t l ( c33 , 9 ) ) ) ) ;
171 ASSERT( pen ( u04 , z00 , c33 , p33 ) ) ;
172

173 ASSERT( add ( u08 , u04 , c34 ) ) ;
174 ASSERT( ( u12 = BVXOR( z12 , r o t l ( c34 , 1 3 ) ) ) ) ;
175 ASSERT( pen ( u08 , u04 , c34 , p34 ) ) ;
176

177 ASSERT( add ( u12 , u08 , c35 ) ) ;
178 ASSERT( ( u00 = BVXOR( z00 , r o t l ( c35 , 1 8 ) ) ) ) ;
179 ASSERT( pen ( u12 , u08 , c35 , p35 ) ) ;
180

181 ASSERT( add ( z05 , z01 , c36 ) ) ;
182 ASSERT( ( u09 = BVXOR( z09 , r o t l ( c36 , 7 ) ) ) ) ;
183 ASSERT( pen ( z05 , z01 , c36 , p36 ) ) ;
184

185 ASSERT( add ( u09 , z05 , c37 ) ) ;
186 ASSERT( ( u13 = BVXOR( z13 , r o t l ( c37 , 9 ) ) ) ) ;
187 ASSERT( pen ( u09 , z05 , c37 , p37 ) ) ;
188

189 ASSERT( add ( u13 , u09 , c38 ) ) ;
190 ASSERT( ( u01 = BVXOR( z01 , r o t l ( c38 , 1 3 ) ) ) ) ;
191 ASSERT( pen ( u13 , u09 , c38 , p38 ) ) ;
192

193 ASSERT( add ( u01 , u13 , c39 ) ) ;
194 ASSERT( ( u05 = BVXOR( z05 , r o t l ( c39 , 1 8 ) ) ) ) ;
195 ASSERT( pen ( u01 , u13 , c39 , p39 ) ) ;
196

197 ASSERT( add ( z10 , z06 , c40 ) ) ;
198 ASSERT( ( u14 = BVXOR( z14 , r o t l ( c40 , 7 ) ) ) ) ;
199 ASSERT( pen ( z10 , z06 , c40 , p40 ) ) ;
200

201 ASSERT( add ( u14 , z10 , c41 ) ) ;
202 ASSERT( ( u02 = BVXOR( z02 , r o t l ( c41 , 9 ) ) ) ) ;
203 ASSERT( pen ( u14 , z10 , c41 , p41 ) ) ;
204

205 ASSERT( add ( u02 , u14 , c42 ) ) ;
206 ASSERT( ( u06 = BVXOR( z06 , r o t l ( c42 , 1 3 ) ) ) ) ;
207 ASSERT( pen ( u02 , u14 , c42 , p42 ) ) ;
208

209 ASSERT( add ( u06 , u02 , c43 ) ) ;
210 ASSERT( ( u10 = BVXOR( z10 , r o t l ( c43 , 1 8 ) ) ) ) ;
211 ASSERT( pen ( u06 , u02 , c43 , p43 ) ) ;
212

213 ASSERT( add ( z15 , z11 , c44 ) ) ;
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214 ASSERT( ( u03 = BVXOR( z03 , r o t l ( c44 , 7 ) ) ) ) ;
215 ASSERT( pen ( z15 , z11 , c44 , p44 ) ) ;
216

217 ASSERT( add ( u03 , z15 , c45 ) ) ;
218 ASSERT( ( u07 = BVXOR( z07 , r o t l ( c45 , 9 ) ) ) ) ;
219 ASSERT( pen ( u03 , z15 , c45 , p45 ) ) ;
220

221 ASSERT( add ( u07 , u03 , c46 ) ) ;
222 ASSERT( ( u11 = BVXOR( z11 , r o t l ( c46 , 1 3 ) ) ) ) ;
223 ASSERT( pen ( u07 , u03 , c46 , p46 ) ) ;
224

225 ASSERT( add ( u11 , u07 , c47 ) ) ;
226 ASSERT( ( u15 = BVXOR( z15 , r o t l ( c47 , 1 8 ) ) ) ) ;
227 ASSERT( pen ( u11 , u07 , c47 , p47 ) ) ;
228

229 % Fl ipp ing MSBs : a l s o a va l i d c h a r a c t e r i s t i c :
230 ASSERT( x00 [ 3 1 : 3 1 ] = 0b0 ) ;
231

232 % No a l l−zero c h a r a c t e r i s t i c :
233 ASSERT( NOT(( x00 | x01 | x02 | x03 | x04 | x05 | x06 | x07 | x08 | x09 | x10 | x11 |

x12 | x13 | x14 | x15 ) = 0hex00000000 ) ) ;
234

235 ASSERT( ( weight = (BVPLUS(11 ,0 b000000@wtx ( p00 ) ,
236 0b000000@wtx ( p01 ) , 0b000000@wtx ( p02 ) , 0b000000@wtx ( p03 ) ,
237 0b000000@wtx ( p04 ) , 0b000000@wtx ( p05 ) , 0b000000@wtx ( p06 ) ,
238 0b000000@wtx ( p07 ) , 0b000000@wtx ( p08 ) , 0b000000@wtx ( p09 ) ,
239 0b000000@wtx ( p10 ) , 0b000000@wtx ( p11 ) , 0b000000@wtx ( p12 ) ,
240 0b000000@wtx ( p13 ) , 0b000000@wtx ( p14 ) , 0b000000@wtx ( p15 ) ,
241 0b000000@wtx ( p16 ) , 0b000000@wtx ( p17 ) , 0b000000@wtx ( p18 ) ,
242 0b000000@wtx ( p19 ) , 0b000000@wtx ( p20 ) , 0b000000@wtx ( p21 ) ,
243 0b000000@wtx ( p22 ) , 0b000000@wtx ( p23 ) , 0b000000@wtx ( p24 ) ,
244 0b000000@wtx ( p25 ) , 0b000000@wtx ( p26 ) , 0b000000@wtx ( p27 ) ,
245 0b000000@wtx ( p28 ) , 0b000000@wtx ( p29 ) , 0b000000@wtx ( p30 ) ,
246 0b000000@wtx ( p31 ) , 0b000000@wtx ( p32 ) , 0b000000@wtx ( p33 ) ,
247 0b000000@wtx ( p34 ) , 0b000000@wtx ( p35 ) , 0b000000@wtx ( p36 ) ,
248 0b000000@wtx ( p37 ) , 0b000000@wtx ( p38 ) , 0b000000@wtx ( p39 ) ,
249 0b000000@wtx ( p40 ) , 0b000000@wtx ( p41 ) , 0b000000@wtx ( p42 ) ,
250 0b000000@wtx ( p43 ) , 0b000000@wtx ( p44 ) , 0b000000@wtx ( p45 ) ,
251 0b000000@wtx ( p46 ) , 0b000000@wtx ( p47 ) ) ) )
252 ) ;
253

254 ASSERT( BVLE( weight , 0b00000010010 ) ) ;
255

256 QUERY(FALSE) ;
257

258 COUNTEREXAMPLE;
259

260 HERE
261
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262 sub e v a l r o t { r e turn ” ( ( ( $1 ) << $2 ) [ 3 1 : 0 ] | ( ( $1 ) >> ” . (32−
$2 ) . ” ) ) ” ; }

263

264 $ s t r i n g =˜ s /add \ ( ( . ∗ ? ) , ( . ∗ ? ) , ( . ∗ ? ) \) /( eq ( s h i f t 1 ( $1 ) , s h i f t 1 ( $2
) , s h i f t 1 ( $3 ) ) & (BVXOR(BVXOR(BVXOR(( $1 ) , ( $2 ) ) , ( $3 ) ) , s h i f t 1
( $2 ) ) ) = 0hex00000000 ) /g ; # add (a , b , c ) means a + b = c

265 $ s t r i n g =˜ s /pen \ ( ( . ∗ ? ) , ( . ∗ ? ) , ( . ∗ ? ) , ( . ∗ ? ) \) / ( ( $4 ) = (˜ eq ( $1 , $2
, $3 ) ) ) /g ; # pen (a , b , c , p ) means p i s pena l ty f o r a + b = c

266 $ s t r i n g =˜ s / r o t l \ ( ( . ∗ ? ) , ( . ∗ ? ) \)/&ev a l r o t ( $1 , $2 ) /eg ; # ro ta t e
l e f t

267 $ s t r i n g =˜ s /eq \ ( ( . ∗ ? ) , ( . ∗ ? ) , ( . ∗ ? ) \) /(BVXOR(˜( $1 ) , ( $2 ) ) &
BVXOR(˜( $1 ) , ( $3 ) ) ) /g ; # equa l s func t i on

268 $ s t r i n g =˜ s / s h i f t 1 \ ( ( . ∗ ? ) \) / ( ( ( $1 ) << 1) [ 3 1 : 0 ] ) /g ; # s h i f t
the the l e f t by one po s i t i o n

269 $ s t r i n g =˜ s /wtx \ ( ( . ∗ ? ) \) /(BVPLUS(5 ,0 bin0000@ ( $1 \ [ 0 : 0 ] ) ,0
bin0000@ ( $1 \ [ 1 : 1 ] ) ,0 bin0000@ ( $1 \ [ 2 : 2 ] ) ,0 bin0000@ ( $1 \ [ 3 : 3 ] )
,0 bin0000@ ( $1 \ [ 4 : 4 ] ) ,0 bin0000@ ( $1 \ [ 5 : 5 ] ) ,0 bin0000@ ( $1
\ [ 6 : 6 ] ) ,0 bin0000@ ( $1 \ [ 7 : 7 ] ) ,0 bin0000@ ( $1 \ [ 8 : 8 ] ) ,0 bin0000@ (
$1 \ [ 9 : 9 ] ) ,0 bin0000@ ( $1 \ [ 1 0 : 1 0 ] ) ,0 bin0000@ ( $1 \ [ 1 1 : 1 1 ] ) ,0
bin0000@ ( $1 \ [ 1 2 : 1 2 ] ) ,0 bin0000@ ( $1 \ [ 1 3 : 1 3 ] ) ,0 bin0000@ ( $1
\ [ 1 4 : 1 4 ] ) ,0 bin0000@ ( $1 \ [ 1 5 : 1 5 ] ) ,0 bin0000@ ( $1 \ [ 1 6 : 1 6 ] ) ,0
bin0000@ ( $1 \ [ 1 7 : 1 7 ] ) ,0 bin0000@ ( $1 \ [ 1 8 : 1 8 ] ) ,0 bin0000@ ( $1
\ [ 1 9 : 1 9 ] ) ,0 bin0000@ ( $1 \ [ 2 0 : 2 0 ] ) ,0 bin0000@ ( $1 \ [ 2 1 : 2 1 ] ) ,0
bin0000@ ( $1 \ [ 2 2 : 2 2 ] ) ,0 bin0000@ ( $1 \ [ 2 3 : 2 3 ] ) ,0 bin0000@ ( $1
\ [ 2 4 : 2 4 ] ) ,0 bin0000@ ( $1 \ [ 2 5 : 2 5 ] ) ,0 bin0000@ ( $1 \ [ 2 6 : 2 6 ] ) ,0
bin0000@ ( $1 \ [ 2 7 : 2 7 ] ) ,0 bin0000@ ( $1 \ [ 2 8 : 2 8 ] ) ,0 bin0000@ ( $1
\ [ 2 9 : 2 9 ] ) ,0 bin0000@ ( $1 \ [ 3 0 : 3 0 ] ) ) ) /g ; # hamming weight ,
minus MSB

270

271 pr in t $ s t r i n g ;

Listing 1.1. Tool to Find Characteristics for Three Rounds of Salsa20 with Weight
up to 18, to execute: perl lemma1.pl | stp
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