
Implementation and Didactical
Visualization of the ChaCha Cipher Family

in CrypTool 2

Bachelor’s Thesis

Ramdip Gill

Supervisor

Priv.-Doz. Dr. Wolfgang Merkle

Second Supervisor

Prof. Dr. Frederik Armknecht

Heidelberg, December 11, 2020

Faculty of Mathematics and Computer Science
Heidelberg University

ABSTRACT

This thesis is about the implementation of the ChaCha plug-in in CrypTool 2.

The thesis introduces the ChaCha cipher family, explains what the plug-in is capa-
ble of, and gives insight into the development process of the plug-in.

ChaCha is used in the Transport Layer Security protocol (TLS) since 2014 and so
very relevant for applied modern cryptography. Because of the importance of
ChaCha its internal design should be made more accessible to the broader public.
This is the actual goal of the plug-in.

The goal is achieved by focusing on an in-depth but easy to understand visualiza-
tion of the encryption process. CrypTool 2 is the most popular e-learning platform
in the field of cryptology, used in schools, universities, and companies. Incorporat-
ing this plug-in into CrypTool 2 helps to reach a broad audience.

iii

ZUSAMMENFASSUNG

Diese Bachelorarbeit befasst sich mit der Implementierung des ChaCha Plugins für
CrypTool 2.

Die Arbeit stellt die Familie der ChaCha-Chiffren vor; erklärt, wozu das Plugin in
der Lage ist; und gibt Einblick in den Entwicklungsprozess des Plugins.

ChaCha wird seit 2014 im Transport Layer Security-Protokoll (TLS) verwendet und
ist daher für die angewandte moderne Kryptographie sehr relevant. Aufgrund der
Bedeutung von ChaCha sollte sein internes Design der breiten Öffentlichkeit zu-
gänglicher gemacht werden. Dies ist das eigentliche Ziel des Plugins.

Das Ziel wird erreicht, indem man sich auf eine detaillierte, aber leicht verständli-
che Visualisierung des Verschlüsselungsprozesses konzentriert. CrypTool 2 ist die
beliebteste E-Learning-Plattform im Bereich der Kryptologie und wird in Schulen,
Universitäten und Unternehmen eingesetzt. Durch die Integration des Plugins in
CrypTool 2 wird so ein breites Publikum erreicht.

iv

Acknowledgment

First of all, special thanks to Dr. Wolfgang Merkle who was willing to be the adviser
from my home university, the University of Heidelberg. He introduced me to Prof.
Dr. Frederik Armknecht from the University of Mannheim and thus laid the foun-
dation for all of this. If not for Dr. Merkle, I don’t know who else could have been
the adviser for a bachelor’s thesis in my preferred field, the field of cryptography.
Most likely, I would have written my thesis in a different field.

I am also very grateful to Prof. Dr. Frederik Armknecht that he accepted me whom
he did not know at all beforehand. He offered me a wide variety of interesting
subjects from which I could chose. In the end, I have chosen to develop a plug-
in for CrypTool 2 (CT2), an open-source e-learning platform for cryptography and
cryptanalysis.

Therefore, I want to extend my gratitude to the team behind CT2 whose support
and welcomeness meant a lot to me. Prof. Bernhard Esslinger is the overall coordi-
nator and Dr. Nils Kopal is the technical lead developer, both from the University
of Siegen. Whereas Prof. Dr. Armknecht gave me important feedback from a user’s
perspective since he uses CT2 in his lectures, Prof. Esslinger and Dr. Kopal always
took their time to answer technical questions of mine. Additionally, Prof. Esslinger
was always eager to remind me about things that were easy to miss like adding text
to tooltips which I didn’t even know they existed.

Finally, I also want to thank the people at my new employer Abusix, Inc. They
made it possible for me to focus on my thesis by offering very flexible working
hours. I am also very grateful that I could work on my thesis on their premises
since going into the office was always a guarantee for a very productive day.

v

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or
indirect sources used are acknowledged as references. The principles and recom-
mendations “Verantwortung in der Wissenschaft” of Heidelberg University have
been followed.

first and last name city, date and signature

vi

Contents

1 Introduction 1

2 Related Work 3
2.1 Salsa20 Cipher Family . 3
2.2 Salsa20 CrypTool 2 Plug-in . 4
2.3 Other CrypTool 2 Cipher Visualizations 5

2.3.1 AES Visualization . 5
2.3.2 DES Visualization . 7
2.3.3 Avalanche Visualization . 8

3 ChaCha Specification 11
3.1 Quarter-Round Function . 11
3.2 Little-Endian Function . 12
3.3 ChaCha Hash Function . 12
3.4 ChaCha State Matrix . 14
3.5 Encryption/Decryption . 15

4 Plug-in 17
4.1 Goals . 17
4.2 Implementation Details . 18

4.2.1 Key Features . 18
4.2.2 User Interface . 19
4.2.3 Architecture . 30

4.3 Encountered Problems . 38

5 Conclusion 49
5.1 Summary . 49
5.2 Future Work . 55

Bibliography 59

vii

1 Introduction

Applications of cryptology, the science behind creating encryptions (cryptography)
and breaking them (cryptanalysis), date back far into ancient times. The first known
example of cryptography, a substitution cipher to conceal a formula for pottery
glaze, is from 3500 BC [Bin20]. Ever since, advancements in technology pushed
the boundary for secure ciphers. Nowadays, in the “Age of Information”, keeping
sensitive information private has never been so important and will only get more
important with widespread adoption of new technologies such as the Internet of
Things. This is why research into new encryption standards has to continuously
take place.

The ChaCha cipher family by Daniel J. Bernstein is the result of such research and
was published in 2008 [Ber08]. Because AES-GCM does not perform very well on
devices without hardware acceleration such as wearable or mobile devices, Google
started to replace AES-GCM in the Transport Layer Security (TLS) cipher suite of
its browser Chrome with ChaCha20 for symmetric encryption and Poly1305 for
authentication in 2014. Additionally, ChaCha is by design immune to previous TLS
attacks such as padding-oracle or timing attacks and thus improves the security of
HTTPS connections [Goo14].

This usage in TLS makes the ChaCha cipher family very attractive to include it in
CrypTool 2 (CT2), a free open-source e-learning platform which mainly targets stu-
dents. It uses visual programming to teach cryptographic concepts and includes
visualizations of many different ciphers, attacks and more. Thanks to its under-
lying architecture, one can easily write plug-ins for it using C#, WPF and XAML.
In fact, this was already done multiple times before by students as part of their
bachelor thesis.

This thesis will describe the implemented ChaCha plug-in which includes an
in-depth visualization of its internals. The visualization also makes it possible to
study the diffusion property of the cipher by letting the user alter the input val-
ues. The development process and underlying architecture will also be outlined to
understand the reasoning behind some design decisions.

1

2 Related Work

This chapter discusses relevant work for the ChaCha plug-in implementation and
was therefore reviewed during the work on this thesis.

2.1 Salsa20 Cipher Family

The ChaCha cipher family is based on the 256-bit stream cipher family Salsa20.
Salsa20/20, the 20 rounds variant, was developed by Daniel J. Bernstein in 2005
[Ber05b] and submitted to eSTREAM, a European project to “to promote the design
of efficient and compact stream ciphers suitable for widespread adoption” [Eur12].

It uses only add-rotate-XOR (ARX) operations for encryption which prevents
timing attacks since they run in constant time on basically all platforms [Ber05a].

Beside 256-bit keys, it also supports 128-bit keys. It internally uses a hash function
which transforms a 512-bit state, consisting of the key, four 32-bit constants, a 64-
bit initialization vector and a 64-bit counter, into a keystream block. For following
keystream blocks, only the counter is incremented in the initial state before apply-
ing the hash function. This means that Salsa20 shares the same implementation
advantages as block ciphers in counter mode, in particular the ability to generate
output blocks in any order and in parallel [Ber05b].

Bernstein later introduced other variants with 8 and 12 rounds, named Salsa20/8
and Salsa20/12, to let users decide for a faster, but less secure cipher. Other round
variants like 9, 10 or 11 were not introduced because the difference in speed would
be insignificant [Ber06]. The ChaCha cipher family received the same round vari-
ants.

There is also a variant of Salsa20 called XSalsa20 which supports 192-bit initial-
ization vectors. Since its implementation varies quite a bit from the Salsa20/r vari-
ants and Bernstein introduced XSalsa20 as part of a new cipher family (based on
Salsa20), this cipher is of no relevance for this thesis [Ber11]. There is a XChaCha20
variant but it “is currently not widely implemented outside the libsodium library

3

2 RELATED WORK

Figure 2.1: CT2 template for the already existing Salsa20 plug-in

[a software library for cryptography], due to the absence of formal specification”
[Lib18].

The specification of Salsa20 is very relevant for ChaCha because the specification
for ChaCha only mentions the differences [Ber08]. Therefore, to implement ChaCha,
one has to also read through the specification of Salsa20. However, Chapter 3 will
summarize the specification of ChaCha without assuming prior knowledge about
Salsa20.

2.2 Salsa20 CrypTool 2 Plug-in

CrypTool 2 already has a plug-in for the Salsa20 cipher but without a visualiza-
tion. Figure 2.1 shows the CT2 template for the plug-in. Templates are prepared
workspaces for a plug-in where all necessary components to run the plug-in are
already included and properly connected.

During the work on the ChaCha visualization, we discussed if the code could be
reused to create a visualization for the Salsa20 cipher family. However, this would
at least need adaption of the XAML code since the state is built up differently. Also

4

2.3 OTHER CRYPTOOL 2 CIPHER VISUALIZATIONS

the quarter-round function is slightly different which also needs to be reflected in
the visualization.

Nonetheless, it should be possible to reuse most of the codebase used for the
ChaCha visualization, especially the underlying navigation system and the storage
and retrieval mechanism for the intermediate results. This will further be discussed
in Section 5.2.

2.3 Other CrypTool 2 Cipher Visualizations

This section is all about other existing CT2 cipher visualizations and which ideas
originated from them. The plug-ins were also created by students during their
bachelor’s thesis.

2.3.1 AES Visualization

Matthias Becher created a visualization for the AES cipher in 2016 [Bec16]. It was
the visualization of which the most inspiration was taken from for the ChaCha
visualization. Reading through his bachelor’s thesis was very useful since he en-
countered similar problems. For example, he wrote the following in his bachelor’s
thesis:

“The first big decision that had to be made was whether the states after each
encryption operation would be calculated during the visualization or precalculated
and stored at the start of the execution. One feature the plug-in should have was to
not only jump ahead to later operations but also to go back to previous ones. That
means if the values were calculated during the visualization every time you went
back they would have to be recalculated from the start. Therefore, I decided to
precompute and store results of each operation in an array of byte arrays..” [Bec16]

We came to the exact same conclusion that the values need to be precalculated
for the reasons he mentioned.

Looking through his visualization, his usage of background coloring was very
useful to catch the user’s attention. This is shown in Figure 2.2. Therefore, there is a
similar mechanic during the ChaCha hash function visualization where a light blue
background is put onto the state elements which are used as the quarter-round in-
put. Also during the quarter-round execution, background coloring is extensively
used to indicate where the user should pay attention.

5

2 RELATED WORK

Figure 2.2: AES visualization plug-in

Another thing adopted from his visualization was the navigation in the top-left
corner where the page navigation for the ChaCha visualization is placed.
What is different regarding navigation is to not show so many buttons all the time
to the user. It was quite overwhelming to see all the buttons in the bottom naviga-
tion bar on the start even though they were disabled. Therefore, on pages which
have no actions, there are no buttons in the bottom row. For the ChaCha hash
function, which needed more detailed navigation, the navigation bar looks similar
expect that it uses arrow buttons and text inputs instead of buttons for every single
round. This decreased the amount of buttons while maintaining a similar degree
of navigation.

Further, it was confusing that the “Back” button during the “Expansion” or “En-
cryption” step was disabled. For the ChaCha plug-in, the user should be able to
navigate to any step in the visualization fairly simple. To achieve this, the page
navigation in the top-left corner stays the same on every page and tells the user
on which page he currently is with bold font. This means the user knows that if
he wants to go to a different page, he needs to select the page there. Additionally,
every single action on each page is numbered together with an action text input
and how many actions a page has in total. The text input makes it possible for
the user to immediately jump to an action. If he does not know the number of
the action he wants to go, there are also buttons labeled with descriptive names on

6

2.3 OTHER CRYPTOOL 2 CIPHER VISUALIZATIONS

Figure 2.3: DES visualization plug-in

the pages with actions. For example, the page about the state setup has buttons to
immediately go to the start or end of the key encoding step.

2.3.2 DES Visualization

The DES visualization was created by Lars Hoffman. His approach to visualizing
the diffusion had the most influence on the diffusion visualization in the ChaCha
plug-in. In Figure 2.3, you can see the page on which the user can flip bits to activate
diffusion. The message and key with flipped bits will then be used to show the
diffusion property of DES.

Throughout the visualization, all values are shown in binary. This makes it pos-
sible to just mark flipped bits red since if a bit is marked red, we immediately know
the value of the diffusion run (we just flip the red bit).

It was tried to use the same coloring approach but since the ChaCha cipher uses
longer keys and 512-bit blocks compared to the 64-bit blocks of DES, hex strings
needed to be used for the values to save canvas space. This lead to a loss of infor-
mation about the concrete values if only marking red the hexadecimal characters
which are different. Therefore, the usage of red color was combined together with
showing both values in two rows. In the row for the altered value, the difference is
still marked red for easier visual recognition. This is shown later in Figure 4.11.

7

2 RELATED WORK

2.3.3 Avalanche Visualization

The Avalanche visualization plug-in was created by Camilo Echeverri in 2016 [Ech16].

The most noticeable part about it is probably that it is visually very appealing.
Camilo seemed to be very experienced in creating nice user interfaces. Especially
the pie chart for the amount of flipped bits with its shadow (Figure 2.4a) and
the gradient background stood out. It made it clear that the user interface of the
ChaCha visualization should also be visually appealing and not just functional.

The overview over all rounds (Figure 2.4b) was also a remarkable feature. It
was discussed that the ChaCha visualization should include a similar overview
since seeing how many rounds were needed for half of all bits to be flipped is
useful for studying the diffusion property of a cipher. Unfortunately to date, this
did not make it into the version of the plug-in but can be added in the future (see
Section 5.2).

On the other hand, scrollbars as seen in Figure 2.4a should be prevented because
the user should see everything he needs immediately.

8

2.3 OTHER CRYPTOOL 2 CIPHER VISUALIZATIONS

(a) AES-128 avalanche visualization: End of all rounds

(b) AES-128 avalanche visualization: General overview

Figure 2.4: Avalanche visualization plug-in

9

3 ChaCha Specification

To help with understanding the plug-in visualization and for the sake of complete-
ness, this chapter will summarize the specification of the ChaCha cipher.

ChaCha is a 256-bit stream cipher based on Salsa20, both developed by Daniel
J. Bernstein. It was designed to improve diffusion per round while maintaining or
even increasing the performance compared to Salsa20. This makes it more secure
than Salsa20 with the same amount of rounds. It was developed in the year 2008,
three years after Salsa20 [Ber08].

The specification can be broken apart into five main points:
The quarter-round function, the little-endian function, a hash function which utilizes
the two other mentioned functions, the setup of the 512-bit state and finally, the
encryption/decryption process, bringing all the individual pieces together.

3.1 Quarter-Round Function

The ChaCha quarter-round function takes in four 32-bit unsigned integers which
we will name a, b, c and d. It also returns four 32-bit unsigned integers.
It modifies its input values as described in the following pseudo-code:

quarterround(a,b,c,d):

a += b; d ˆ= a; d <<<= 16

c += d; b ˆ= c; b <<<= 12

a += b; d ˆ= a; d <<<= 8

c += d; b ˆ= c; b <<<= 7

return a, b, c, d

Remark. We define one row, consisting of one 32-bit addition, one XOR and one
shift operation, as one quarter-round step. This naming convention will be reused in
Section 4.2.2.

11

3 CHACHA SPECIFICATION

3.2 Little-Endian Function

The little-endian function takes in one 32-bit unsigned integer and reverses its byte
order; also returning a 32-bit unsigned integer. For example, the hexadecimal value
0x12345678 would be transformed into 0x78563412 with this function.
It can be implemented as follows:

littleendian(x):

x0 = (x >> 24) & 0xff

x1 = (x >> 16) & 0xff

x2 = (x >> 8) & 0xff

x3 = x & 0xff

return (x3 << 24) | (x2 << 16) | (x1 << 8) | x0

Remark. Its naming has nothing to do with system endianness, but was just named
like this by Bernstein for unknown reasons (most likely because reversing the byte
order is what needs to be done when transmitting data between systems of different
endianness).

3.3 ChaCha Hash Function

The ChaCha hash function takes in 16 32-bit unsigned integers and returns 16 32-
bit unsigned integers. The input vector (y0, y1, y2, . . . , y15) can be written as a 4×4
matrix:

y0 y1 y2 y3

y4 y5 y6 y7

y8 y9 y10 y11

y12 y13 y14 y15

Bernstein uses this matrix representation in his paper to help with understanding
why he calls some rounds column rounds and others diagonal rounds (one round
consists of four quarter-rounds):
The ChaCha hash function first iterates through all columns and then through all
diagonals of the matrix; applying the quarter-round function to the four entries of
each column/diagonal. After the first four quarter-rounds it therefore has changed
all columns of the matrix. This is what Bernstein calls a column round in his paper.
After the next four quarter-rounds, it changed all diagonals of the matrix which
Bernstein analogously calls a diagonal round.

12

3.3 CHACHA HASH FUNCTION

To summarize, the following quarter-rounds make up one column round:

quarterround(y0, y4, y8, y12)

quarterround(y1, y5, y9, y13)

quarterround(y2, y6, y10, y14)

quarterround(y3, y7, y11, y15)

whereas the following quarterrounds make up one diagonal round:

quarterround(y0, y5, y10, y15)

quarterround(y1, y6, y11, y12)

quarterround(y2, y7, y8, y13)

quarterround(y3, y4, y9, y14)

After a set amount of rounds (8, 12, or 20), the input vector is added to the vector
on which the rounds were run. Then the byte order of each matrix entry is reversed
using the little-endian function.

Having explained the basic structure of the ChaCha hash function, the following
pseudo-code should complete the readers comprehension of it:

chachahash(y):

z = copy(y)

for(i = 0; i < ROUNDS; i += 2) {

// column round

y[0], y[4], y[8], y[12] = quarterround(y[0], y[4], y[8], y[12])

y[1], y[5], y[9], y[13] = quarterround(y[1], y[5], y[9], y[13])

y[2], y[6], y[10], y[14] = quarterround(y[2], y[6], y[10], y[14])

y[3], y[7], y[11], y[15] = quarterround(y[3], y[7], y[11], y[15])

// diagonal round

y[0], y[5], y[10], y[15] = quarterround(y[0], y[5], y[10], y[15])

y[1], y[6], y[11], y[12] = quarterround(y[0], y[5], y[10], y[15])

y[2], y[7], y[8], y[13] = quarterround(y[0], y[5], y[10], y[15])

y[3], y[4], y[9], y[14] = quarterround(y[0], y[5], y[10], y[15])

}

for(i = 0; i < 16; i += 1) {

y[i] += z[i]

y[i] = littleendian(y[i])

}

return y

13

3 CHACHA SPECIFICATION

3.4 ChaCha State Matrix

ChaCha internally uses a 512-bit state for keystream generation. The ChaCha hash
function modifies this state to generate a keystream block.
This section will explain how the state is setup. It is then passed in 32-bit blocks to
the ChaCha hash function.

The state is made up of a 128-bit constant, a 256-bit key section and a 128-bit
nonce section. To demonstrate that Bernstein had no hidden intent with picking his
constants (nothing-up-my-sleeve number), he defined the constants to be “expand
16-byte k” for 128-bit keys and “expand 32-byte k” for 256-bit keys in ASCII.

In the 128-bit key variant, the key is concatenated with itself to create a 256-bit
key. This concatenated key is then used for the state setup. If the key is already
256-bit, we do nothing and just use it as it is for the state setup.

The nonce section, which consists of a block counter and the initialization vector,
is where the original version and the IETF version differ. In the original version, a
64-bit counter and a 64-bit initialization vector is used whereas the IETF version is
using a 32-bit counter and a 96-bit initialization vector.
This means that the IETF version only partitions the nonce differently. Their rea-
soning to have a longer initialization vector was that with a 32-bit counter, one
can encrypt messages up to 256 GiB which should be enough and therefore one
could make use of a bigger initialization vector. Since we need to make sure that
an initialization vector is never reused with the same key, we can use a bigger ini-
tialization vector to make it more secure in cases where the same key is used by
multiple senders. This is done by partitioning the 96-bit word into one 32-bit and
one 64-bit section. The 32-bit section could be a unique value per sender and the
last 64 bits could be a counter which is incremented for every message [Nir+18].

All state parameters are encoded by first splitting them into 32-bit blocks whose
byte order is reversed except for the counter, whose byte order is first completely
reversed and afterwards split into 32-bit blocks. These 32-bit blocks are then or-
dered as follows to form the 512-bit state matrix:

CONSTANT CONSTANT CONSTANT CONSTANT

KEY KEY KEY KEY

KEY KEY KEY KEY

COUNTER COUNTER/IV IV IV

14

3.5 ENCRYPTION/DECRYPTION

Example. State parameters (all numbers are in hexadecimal):
key (256-bit) 01:02:03:04 05:06:07:08 09:0a:0b:0c 0d:0e:0f:10

11:12:13:14 15:16:17:18 19:1a:1b:1c 1d:1e:1f:20

IV 00:11:22:33 44:55:66:77

Counter 00:00:00:00 00:00:00:01

Since we used a 256-bit key, we will use the ASCII constants “expand 32-byte k”.
Their byte representation is:

Constants 65:78:70:61 6e:64:20:33 32:2d:62:79 74:65:20:6b

The resulting state matrix:
61:70:78:65 33:20:64:6e 79:62:2d:32 6b:20:65:74

04:03:02:01 08:07:06:05 0c:0b:0a:09 10:0f:0e:0d

14:13:12:11 18:17:16:15 1c:1b:1a:19 20:1f:1e:1d

00:00:00:01 00:00:00:00 33:22:11:00 77:66:55:44

3.5 Encryption/Decryption

To encrypt or decrypt a input text, it is XOR’ed with the keystream.
To generate the keystream, the ChaCha hash function is continuously used to create
512-bit keystream blocks until we have enough to XOR every byte of the input text.
The input to the ChaCha hash function is the 512-bit initial state as explained in the
previous section. After each keystream block, the counter is incremented to have a
different initial state as the input each time.

Since we are operating on streams, if the input message is not a multiple of 512-
bit, the bits of the last block of the input message are left-aligned and the remaining
bits of the keystream are dropped. This means that the output will always be the
exact same length as the input.

There is no difference between encryption or decryption because XOR is the in-
verse to itself.

15

4 Plug-in

This chapter describes the goals of the plug-in and how the implementation accom-
modates these goals. It also includes the thought process behind some architectural
decisions that were made.

At the end, alternative solutions that were taken into consideration but even-
tually abandoned are described. They complement the reasoning about the final
architecture.

4.1 Goals

This section lists which goals the plug-in should meet. Each goal will be marked
with a number which will later be reused in Section 5.1 to summarize how the goals
were met.

(G1) Easy-to-understand visualization of the encryption process
The main goal of the plug-in was to teach students how the ChaCha cipher
family encrypts messages. Therefore, the visualization should be easy to fol-
low without much prior knowledge about ciphers.

(G2) Visualization of the diffusion property
To get a better understanding how the cipher hides the relationship between
the ciphertext and the plaintext, the plug-in should contain a visualization of
the diffusion property. To achieve this, the user should be able to flip bits of
the input values.

(G3) Support for all variants of the cipher family
The plug-in should support 128-bit and 256-bit keys and the default 64-bit
counter and 64-bit initialization vector. Since the Internet Engineering Task
Force (IETF) introduced a slightly modified version of the cipher which has a
32-bit counter and a 96-bit initialization vector, the plug-in should also sup-
port these values. Finally, the user should also be able to choose between 8,
12 or 20 rounds.

17

4 PLUG-IN

Figure 4.1: CT2 template for the ChaCha plug-in

4.2 Implementation Details

This section details how the goals described in the previous section were achieved.
In the first subsection, the key features of the plug-in are described to give a rough
overview what a user can expect from the actual plug-in implementation.
The second subsection will then explain the user interface which is used to navi-
gate through the plug-in and communicate to the user what is currently happening
inside the cipher.
The last subsection then goes into technical details to explain how the plug-in in-
ternally was designed to make the user interface behave as it does.

4.2.1 Key Features

The plug-in offers the user the ability to input his own plaintext, key, initialization
vector and initial counter using the concept of visual programming (around which
CT2 is built) as one can see in Figure 4.1. The counter is optional and defaults to
zero. These values are then used to visualize the cipher execution comprehensively.
Descriptions complement the visualization by providing information about what is
happening.
As mentioned in Section 4.1, if the user wants to see the diffusion property of the
cipher, he can alter the key, initialization vector and counter on a dedicated page

18

4.2 IMPLEMENTATION DETAILS

inside the plug-in.
The version (original DJB version or IETF version) and how often the ChaCha hash
function should be run per keystream block can be chosen in the plug-in settings.

4.2.2 User Interface

This subsection will describe the layout and functionality of the user interface and
the reasoning behind it. First, the parts of the user interface which all pages have
in common will be explained. Afterwards, we will expand upon the interface dif-
ferences between the individual pages.

General interface structure

All pages have a common interface layout which consists of three sections. Each
section is inside an own dedicated row.
The first section implements the navigation to move between pages. It also shows
the title of the current page.
The second section shows the content of the current page. The content is not always
static since it can change by using the action navigation bar in the bottom section.
This navigation bar includes buttons to go to the previous or next action, a slider
for quicker action navigation, a text input to go to a given action and a indicator on
which action the user currently is and how many actions there are in total on the
current page. In Figure 4.4, you can see this navigation bar for the first time.

A slider was chosen over alternative solutions like individual buttons because a
slider enables the user to quickly navigate through a page. This advantage is best
noticeable on the page about the ChaCha hash function where there are more than
3000 actions per keystream block. Fitting more than 3000 buttons on a single page
was not feasible but would need pagination features such as showing the next set
amount of buttons which would make quick navigation impossible.
The user can also enter a number into the text input to the right of the slider to go to
an action. But this text input is only more helpful than the slider if the user already
knows the number of the action he wants to go to. If he does not, the slider creates
a much better user experience.
If a page does not have actions, the action navigation is hidden but the space is still
reserved for it to have a consistent canvas size for all pages.

19

4 PLUG-IN

Figure 4.2: Diffusion page in its initial state

What follows are sections which go into greater detail about each page which
does not have fully static content. These pages are the Diffusion page, the State
Matrix Initialization page and the ChaCha Hash Function page.

Diffusion page

The Diffusion page (Figure 4.2) is the dedicated page, as mentioned in Section 4.2.1,
where the user can alter the key, initialization vector (IV) and initial counter in
hexadecimal. They will be used to visualize the diffusion property. This means
that during cipher execution, hexadecimal letters which are different are marked
red. An example of this is shown on the Diffusion page at the right side.

Hexadecimal text inputs were chosen because alternatives like individual check-
boxes for each bit (like in the DES visualization) or binary text inputs would have
taken up a lot of canvas size because the key, counter and IV could be together
384-bit (if using a 256-bit key). This lost canvas size would have taken away the
canvas size for other features like the example or would have made the page very
crowded.

Unfortunately, using hexadecimal input fields made it harder to flip specific bits.
This feature was necessary since when studying the diffusion property of a cipher,
one is more interested in the difference of two values (XOR) during two cipher runs
instead of the concrete values. The solution for this was to introduce a third input

20

4.2 IMPLEMENTATION DETAILS

Figure 4.3: Diffusion page in its active state

field where the user can explicitly input the XOR between the input value and the
altered value. Additionally, if diffusion is active, the user can toggle if he wants
to see the XOR and both concrete values during the cipher execution by using the
button in the top-right corner of each page.

To help with the input, the input fields show an error message if the user entered
invalid characters or a too large string since the hex strings for each value must be
of equal size as the input value. If the hex string is too short, it gets left-padded
with zeroes to align it with the primary value.

Last but not least, the amount of flipped bits is shown in the second to last row
together with a state indication in the last row if the diffusion is active or not. The
diffusion is active if at least one bit was flipped. This is shown in Figure 4.3.

State Matrix Initialization page

The State Matrix Initialization page shows the setup of the initial 512-bit state for
the first keystream block.
In Figure 4.4, you can see the page in its initial state. In the top-left, you see the
state. It is empty at the beginning because the initialization has not started yet.
On the top-right, you see descriptions which inform the user about what the next
steps are. At the bottom-left, the encoding will be visualized. At the bottom-right,
the state parameters with their original values before encoding are shown. At the

21

4 PLUG-IN

Figure 4.4: State Matrix Initialization page in its initial state

bottom above the slider are individual buttons to go to the start and end of each
state parameter encoding.

Only the construction of the state for the very first keystream block is shown on
this page. This was done like this because interrupting the page flow by jumping
back to the visualization of the state matrix initialization after each keystream block
was not reasonable. Further, only the counter would be different for each state so
setting up the state again would introduce a lot of noise to the visualization. The
information which is provided to the user in the first and only state matrix initial-
ization should be enough for him to construct all following initial states without
further guidance. To achieve this, the focus for this page was on developing a com-
prehensive visualization of the encoding for each state parameter (constants, key,
IV, counter).

In Figure 4.5, you can see the page state during the end of each state parameter
encoding. For each encoding step which corresponds to a row in the encoding
section, a page action has been implemented. This means that the user can follow
along each encoding step-by-step in his own speed and is not overwhelmed by a
lot of information.

First, the constants are encoded. Since they are shown in ASCII format in the state
parameters section, they are first decoded to show the actual byte values. Then the
bytes are split into 4 byte chunks whose order is then reversed in the last step.

22

4.2 IMPLEMENTATION DETAILS

Afterwards, the key is encoded. It is just split into 4 byte chunks whose order is
then reversed.
When encoding the counter, the complete byte order is first reversed, and then it is
split into 4 byte chunks whose byte order is then again reversed.
The last parameter is the IV. It is encoded exactly the same as the key.

(a) Constants encoding

(b) Key encoding

23

4 PLUG-IN

(c) Counter encoding

(d) IV encoding

Figure 4.5: Encoding of the state parameters on the State Matrix Initialization page

24

4.2 IMPLEMENTATION DETAILS

Figure 4.6: ChaCha Hash Function page in its initial state

ChaCha Hash Function page

The ChaCha Hash Function page (Figure 4.6) visualizes the generation of a keystream
block by using two kind of visualizations: The quarter-round visualization (Fig-
ure 4.7) and the addition / reverse bytes step visualization at the end of the hash
function (Figure 4.9).

At the top of the page, you can see the current state together with a descrip-
tion about the ChaCha hash function. At the bottom, if we are still in the ChaCha
hash function loop (as described in Section 3.3), you can see the visualization of the
quarter-rounds (Figure 4.7). The quarter-round visualization is split into four cells
on either side and four boxes in the middle. The boxes on the two ends contain
the four input and output values of the quarter-round. The boxes in the middle
visualize one quarter-round step as was described in Section 3.1.

A circuit diagram was used to visualize the quarter-round function similar to the
one found in the ChaCha section on the Wikipedia page about Salsa20 (see Fig-
ure 4.8). This way, the intermediate values could just be put on the circuit lines and
following along the visualization was very clear because all next steps are already
shown.

25

4 PLUG-IN

Figure 4.7: Quarter-round visualization

If we are finished with the loop, we can see the original state at the left, the result
of adding the original state with the state after all rounds in the middle, and at
the right the result of reversing the byte order of each state entry of the state in
the middle (Figure 4.9). This is the final state and thus one 512-bit block inside the
keystream with which the input message is later XOR’ed .

Below the visualization and just above the slider for the page actions is another
navigation bar. This helps the user to quickly navigate through the ChaCha hash
function. He can use the arrow buttons to traverse through the keystream blocks,
rounds or quarter-rounds or enter a number to directly go to a specific step.
Since entering a number into each text input or using the arrows will only bring
the user to the start of each step, he can use the buttons to the right of the quarter-
round input to jump to the end of specific quarter-rounds of the current round.
These buttons also show the state indices that will get updated during their quarter-
round in parentheses. Since column and diagonal rounds take turns, these labels
show the state indices according to the current round.

Figure 4.10 shows exemplary how the page looks like at the end of each quarter-
round of a diagonal round. As you can see, the corresponding state entry is high-
lighted with a light blue background. This light blue background is also used
throughout the visualization to catch the user’s attention about which UI elements
will be updated in the next step.

26

4.2 IMPLEMENTATION DETAILS

(a) Salsa quarter-round circuit diagram (b) ChaCha quarter-round circuit diagram

Figure 4.8: Quarter-round circuit diagram
Source:

(a): https://en.wikipedia.org/wiki/Salsa20
(b): https://en.wikipedia.org/wiki/Salsa20#ChaCha_variant

Figure 4.9: Addition and little-endian step visualization

27

https://en.wikipedia.org/wiki/Salsa20
https://en.wikipedia.org/wiki/Salsa20#ChaCha_variant

4 PLUG-IN

(a) End of first quarter-round (diagonal round) (b) End of second quarter-round (diagonal round)

(c) End of third quarter-round (diagonal round) (d) End of fourth quarter-round (diagonal round)

Figure 4.10: End of each quarterround execution of a diagonal round

Figure 4.11 shows the quarter-round visualization as an example how diffusion
is visualized throughout the plug-in. Figure 4.11a shows the visualization with the
XOR button in the top-right corner not toggled; thus showing the values from both
cipher runs whereas Figure 4.11b shows the visualization with the XOR button
toggled.

28

4.2 IMPLEMENTATION DETAILS

(a) Quarter-round visualization with diffusion (showing both values)

(b) Quarter-round visualization with diffusion (showing XOR)

Figure 4.11: Quarter-round visualization with diffusion

29

4 PLUG-IN

4.2.3 Architecture

This section will go more into detail how the software was layed out.

The software architecture, which was written using WPF (Windows Presentation
Foundation), XAML and C#7.0, can be split into two parts.
The first part is about the Model-View-ViewModel (MVVM) architecture to create
the user interface which was explained in the previous section, using WPF built-in
tools such as data binding, templates, converters and validation rules.
The second part is about the action navigation system which plays a huge role
regarding performance. It powers the slider and buttons in the bottom row of each
page which has actions. The page navigation is handled by the first part because it
is very simple and uses MVVM design patterns.

MVVM architecture

The architecture was built with the MVVM design pattern in mind. As the name
suggest, MVVM is all about separating the code into three parts: Models, Views
and View Models.

Models hold the raw application data. In our case, this would be the classes
which hold the values generated by the ChaCha cipher. It should be completely
unaware of any view or view Model.

Views define how the data should be presented. They consist mainly of XAML
code with as little code-behind as possible. They do not maintain their own state
but rather use data binding to synchronize themselves with the data inside view
models. Therefore, views are aware of view models and in fact depend on them to
show any relevant data.

View models connect the model data with the views. However, they do not di-
rectly manipulate the views but just define properties and methods which imple-
ment the logic for user interactions. The views then use data binding to be notified
about any property changes or call methods if a button is clicked etc. This means
that view models should not rely on any code inside a view. This essentially de-
couples the backend from the frontend.

In Figure 4.12, an example for how this data binding looks in code is provided.
What you see is the view code for the page navigation.

Another technique (that you can also see in the mentioned figure) is the use of
templates. Data templates are used to attach views to view models and control
templates to implement the general UI structure with the three sections mentioned

30

4.2 IMPLEMENTATION DETAILS

Figure 4.12: Implementation of page navigation using data binding

Figure 4.13: Implementation of action navigation inside a control template

31

4 PLUG-IN

in Section 4.2.2. This makes it possible to define the UI layout for all pages in one
place and also reuse a single implementation of the page and action navigation
across all pages. This way, view modifications down the road which applied to all
pages were easy and fast. In Figure 4.13, you can see the view implementation of
the action navigation bar which is only visible on pages which do have actions.

Since the most interesting part about the MVVM architecture is probably how
the diffusion visualization works, this feature will be explained more in-depth in
the following.

Diffusion implementation using MVVM

If the user enters something into the input fields of the Diffusion page, validation of
the input occurs. The validation checks if the input contains only valid hexadecimal
characters and if the size is not too large. This is done by using two-way bindings
and extending the ValidationRule class which is a built-in module of WPF. Only if
the input is valid, the value is saved into a property of the underlying view model.
This way, we can be sure that we always have sane data with which we later can
execute the cipher with.

Furthermore, converters which are also built into WPF are used to convert data
into user-friendly formats. Converters are always attached to bindings, so inside
the two-way bindings, byte arrays are converted into hex strings and vice versa
using custom converters.

Data binding works by notifying a view if a variable has changed. WPF pro-
vides an interface named INotifyPropertyChanged which helps to implement these
data binding notifications. It provides a method named OnPropertyChanged and an
event named PropertyChangedEventHandler which must be called with the name
of the variable to raise such an notification. The data binding system then updates
the variables in the view.

The notification raising and the implementation of the INotifyPropertyChanged

interface can be seen in Figure 4.14. The setter of DiffusionInputKey raises multi-
ple notifications because other variables which depend on DiffusionInputKey also
need updating. (The first call of OnPropertyChanged in the setter has no argument
because the attribute CallerMemberName in the function signature automatically en-
ters the name of the caller if no argument is provided.)

On page exit, ChaChaPresentationViewModel, which is the view model which im-
plements navigation between the different pages (which have their own view mod-

32

4.2 IMPLEMENTATION DETAILS

(a) Data binding notification in the setter of
DiffusionInputKey

(b) ViewModelBase implementation with INotifyPropertyChanged interface

Figure 4.14: Data binding notification implementation

els), calls Teardown on the page we are leaving. This triggers the ChaCha execution
with the given altered values.

Before execution, a flag was set which instructs the list getters into which the
ChaCha component would save its intermediate values to return a different list.
This means that the ChaCha component is agnostic of where it ultimately saves
its intermediate values. During the execution, the intermediate values for the dif-
fusion run are therefore saved in parallel lists. This is shown exemplary for the
quarter-round input values in Figure 4.15. The other pages then simply bind to
these lists to display the intermediate values of the diffusion run. Converting the

33

4 PLUG-IN

Figure 4.15: Saving of intermediate values during ChaCha execution in lists

32-bit unsigned integers into hex strings and marking their characters which are
different red is then done in the view models.

34

4.2 IMPLEMENTATION DETAILS

Figure 4.16: Navigation paths between actions if no reset state was used.

Centralized navigation system

The final design of the navigation system is characterized by reflecting on the prob-
lems previous iterations had. In this subsection, only the current, final implemen-
tation of the navigation system will be described. Previous implementations with
their problems are described in Section 4.3.

The core idea of the navigation system was to decrease hops between actions
without having too many possible transitions since for every transition from ac-
tion A to another action B and vice versa, code needs to be written to perform the
transition. Figure 4.16 shows how a navigation system would look like where the
maximum amount of hops is minimized to one. Total transitions are 2n(n − 1) and
for every new action, transitions increase by 2(n − 1) (n is the total number of ac-
tions). The factor 2 comes from the fact that for every transition from action A to B,
a transition back from B to A is also needed. We can conclude that such an archi-
tecture does not scale very well from the perspective of a developer who needs to
write all of that transitional code.
On the other hand, decreasing the amount of possible transitions by introducing
more hops would degrade performance due to computational overhead, so a sys-
tem with a very high average amount of hops would not scale very well regarding
performance.

We came to the conclusion that the best trade-off would be to have a navigation
system where every action has a transition to a centralized state and this central
state then has a transition to all other actions. This would result in a maximum of
two hops between any two actions. Further, adding a new action would only add
two new transitions to the system. This system design is shown in Figure 4.17.

35

4 PLUG-IN

Figure 4.17: Navigation paths between actions in the centralized navigation system.
The colored state is the reset state which corresponds to the initial state.

During implementation, it turned out that the amount of new transitions for each
action could be decreased to one. Defining the initial state as the central state meant
that transitioning from any action to it could be done by just resetting the whole
page to the first action. Due to this, the central state can also be called the reset or
initial state.

Unfortunately, the issue of code duplication quickly arised with this design.
Since most of the time, the next page state was only a slight modification of the
previous page state, the code for following actions was almost the same. To mit-
igate this issue, we started to think about the actions as sequences. A sequence of
actions would mean that every action inside a sequence is an extension of all previ-
ous actions of the same sequence. Extension in this context means that if action A
extends action B, action A contains at least all the code of action B. To use terminol-
ogy of set theory, one could also say that A is a superset of B; viewing individual
code statements as objects.

To implement this concept, an extension method for the Action type in C# was
created together with an interface to create action sequences. Figure 4.18 shows the
method which extends the built-in Action type.

This concept was further developed by introducing nested sequences. This means
that a sequence could be started inside another sequence. A nested or child se-
quence would extend all the actions from its parent sequence. From the perspec-
tive of the nested sequence, it is no different than if all the actions from the parent
sequence were created inside it. When ending a nested sequence, from the perspec-
tive of the parent sequence, the nested sequence never existed. Figure 4.19 shows a
test which asserts that this nesting does indeed work as expected.

36

4.2 IMPLEMENTATION DETAILS

Figure 4.18: Extension method for the Action type to extend actions

Figure 4.19: Test method for nested sequences

37

4 PLUG-IN

Nesting sequences was very helpful for implementing the actions for the ChaCha
Hash Function page. Since each keystream block started with a cleared quarter-
round visualization and the initial state visible in the state matrix, it made sense
to declare a sequence for each keystream block. Similar was true for the begin-
ning of each round and quarter-round. Therefore, the sequences for the rounds
were nested inside the keystream block sequence and the sequences for the quarter-
rounds were nested inside the round sequences. This meant that I would not intro-
duce too much computational overhead inside the transitional code (even though
only one transition was executed by design) since I could just reset the sequence if
it made no longer sense to include the code of previous actions. This was the case
when a (quarter-)round or keystream block was finished.

Being able to nest sequences essentially prevented the system degrading back to
a linear navigation system as will be described in Section 4.3. The system would
have less transitions but would still execute the same code as a linear navigation
system would when moving from action 0 to any other action; undoing any posi-
tive effect this approach of minimizing transitions could have had.

The weakness of this design was that there was still some overhead when navi-
gating through the page in a linear manner since the system is basically designed
to always go back to the first action first and from there to the desired action. This
leads to a lot of unnecessary resetting because as mentioned, most of the times the
next page state is only a slight modification of the previous one. But this is the
trade-off that was had to be made for a good overall performance. To summa-
rize, this design had a higher overhead for small steps but did scale much better
for bigger steps which were necessary for the keystream, round and quarter-round
navigation.

The following section will make it clear why so much thought was put into the
navigation system design. It will show why previous less thought-out architectures
failed and includes plots about the performance of each architecture at the end.

4.3 Encountered Problems

This section will discuss the main problems that were encountered during imple-
mentation. To briefly summarize, they mainly consisted of how the system behind
the interface should be designed to have the best or at least a reasonable perfor-
mance.

38

4.3 ENCOUNTERED PROBLEMS

Figure 4.20: Navigation paths between actions in the linear navigation system

As described in Section 2.3.1, to enable a fluent navigation experience where the
user can navigate very freely through the visualization (using backward and for-
ward navigation), the intermediate values need to be pre-calculated. But as will be
explained on the next pages, this was not all that was needed to ensure such an
experience.

We hope that the description of these problems and the solutions we have found
may help future students in writing their own plug-ins.

Linear navigation system

The performance of the plug-in was essentially coupled to how the navigation sys-
tem was designed. Other things like the aforementioned calculation of the interme-
diate values for the visualization were compared to the navigation system design
insignificant because they are created by the ChaCha cipher anyway and must just
be saved somewhere to not lose them. This means that storing them was only a
necessary but not sufficient condition for a overall good performance.

This was noticeable for the first time early during the implementation of the ac-
tion input field. This input field would enable the user to skip from any action to
any other action. During testing, the performance of the navigation system turned
out to be a problem. Skipping 100 actions took about one second during which
the UI was unresponsive. As can be seen in Figure 4.24, this time increased lin-
early. Therefore, it was quite clear that something needed to be done against this,
especially because the page with the most actions had over 3000 actions. All mea-
surements were taken by starting at action 0 and skipping to the action specified at
the x axis.

The root cause of the problem was the navigation system design which was
called in hindsight linear navigation system. It consisted of defining actions which
build upon each other. This means that if we are at action 0 (initial state of the
page) and want to go to action 5, we need to execute all the code inside the action

39

4 PLUG-IN

definitions between 0 and 5 to arrive at the page state as it should be at action 5.
This is resembled in Figure 4.20.

This linear navigation system design was used to have a smooth implementa-
tion experience since one has to only write the actual page state changes between
to actions. Code duplication was prevented because pages most of the time only
changed a little bit between steps and thus the page state of each action is best
described using differences. This complemented how the user experiences the vi-
sualization. The actions are numbered in a sequence and thus are inherently linear.
Because of this, reflecting this linear nature in the system design made a lot of sense.

Since this "design flaw" was not the leading cause of the performance problem
(going through a for-loop of size 3000 does not directly lead to performance is-
sues), we will continue with briefly explaining how the actual code responsible for
the transitions looked like.
During the transition between two page states, the state of the page elements which
will change is saved such that we can undo the changes if the user decides to navi-
gate back. This enabled “automatic action undoing” and thus to skip writing tran-
sitional code for backwards navigation. A function was written which retrieved the
state corresponding to the transition and then applied it. This function worked for
all backwards navigation without further intervention which was very convenient
during development.
The problem with that architecture was that the state saving and the execution
logic inside the action definitions were changing a lot of page elements directly by
accessing them via their name that was given to them in the XAML code. This is-
sue combined with the restricted, linear pathing between actions resulted in that
significant performance loss that was described in Figure 4.24.

Linear navigation system with caches

After identifying the two underlying issues, a linear navigation system with caches
was implemented. As the name suggests, cache entries were implemented to be
able to navigate in constant time between an action and an action which was cached.
To not only increase performance during these transitions (action to cached actions)
but between all transitions, we check before each transition, if first moving to a
cached entry would decrease the amount of hops needed to go to our destination.
If this is true, we first go to the cached entry and then to our destination. Figure 4.21
demonstrates that such a navigation system needs less hops between any two given
actions.

40

4.3 ENCOUNTERED PROBLEMS

Figure 4.21: Navigation paths between actions in the linear navigation system with
caches. The colored state has a corresponding cache entry.

The cache entries consisted of instructions to restore the complete state of a page
at the action index for which this cache entry was for. They contained instructions
for the complete state instead of only the difference between two actions because
now, moving to that cache must initialize the page, independent at which action /
page state we were before. This means that there was some overhead in initializing
the page because essentially, the whole page was cleared and then the the page el-
ements with their appropriate content were initialized, potentially leading to some
unnecessary code execution because the content prior to cleaning was already the
one we needed.

Nonetheless, creating a cache entry for every start of a round increased perfor-
mance significantly as can be seen in Figure 4.27. The maximum response time
went down from more around 40 seconds in the system without any caches to
around 1.5 seconds (!). This could further be decreased to in average 250 millisec-
onds by creating cache entries for every start of a quarter-round (see Figure 4.27).
Since it was not feasible to time every single data point, the data points marked
as squares were just interpolated using previously timed data points. This means
that for example, for the interpolated cache data points, the average of all previous
measurements for skips to cached actions was taken.

Further, to decrease the load on the CPU while dragging the action slider, a very
simple asynchronous navigation was implemented. It was implemented by using
a stack as a buffer for the values received from the slider during dragging. Every
50 ms, the last value from the buffer is read and the page moves to that action. Af-
terwards, the buffer is cleared.
This did only enhance the slider but not the performance because at its core, it used
the same navigation logic; just asynchronously. Nonetheless, it improved the user
experience during dragging significantly which I found quite impressing for how

41

4 PLUG-IN

minimal the code for it is. In fact, the whole code for the asynchronous naviga-
tion can be seen in Figure 4.22. Before, dragging the slider lead to weird artifacts
where the slider would jump forwards and backwards because the navigation was
executed while dragging. Therefore, dragging the slider conflicted with the nav-
igation system going to a certain action which would reset the slider to a certain
position. Executing the navigation after dragging was finished was not an option
because that basically made the slider useless.

One of the major drawbacks for this enhanced design with caches was that the
automatic action undoing was no longer possible. Since we can not guarantee that
the state between two actions has been saved, we cannot use our undo function.
Therefore, the code for backwards navigation needed to be written manually.

Final architecture

During the implementation of other features such as the diffusion, it was noticed
that having to implement for each page action the forward and backwards code,
the code became quite error-prone. It was hard to notice bugs because it was not
feasible to check every single action from both directions manually and creating a
testing framework just because of this was out of scope.
Some navigation bugs were easy to notice because due to the overall still linear
nature of the navigation system, errors did propagate. This means that a error in a
previous action most likely did break the page state on future actions because they
depend on each other.
Nonetheless, this did not help in tracking down the bug because it was not known
on which action the error happened. This only gave more reason to reiterate on the
navigation system again.

To decide if the code only needs to be refactored or indeed rewritten from scratch,
all current problems with the existing codebase were summarized. They not only
consisted of performance problems but also with visualization problems. For ex-
ample, resizing the window did not appropriately scale the UI elements as can
be seen in Figure 4.23a. Additionally, the current navigation system was quite re-
stricted in what kind of UI elements it supported without further hassle. Since
during the last navigation system update, the existing code was only updated, the
core design was still all about directly manipulating and creating UI elements on
demand. The existing functions revolved around the UI elements currently in use
thus they could not easily be reused for different, new UI elements; leading to the
mentioned limited support of the navigation system.

42

4.3 ENCOUNTERED PROBLEMS

Figure 4.22: Asynchronous navigation subsystem

43

4 PLUG-IN

(a) Bad scaling property

(b) Fixed scaling property

Figure 4.23: Example for bad scaling property in previous plug-in versions

44

4.3 ENCOUNTERED PROBLEMS

Essentially, the problem was that a lot of the code-behind was highly coupled to
the XAML code. This was done like this because it was very straight-forward to
do so and lead to fast results. At first, the trade-off between loss of maintainabil-
ity/flexibility in the future and not having to spend precious time to learn design
patterns for WPF applications seemed worth it. This thinking was grounded in the
reason that the code for this bachelor’s thesis would not get regular updates long
into the future thus high maintainability or being easy to extend was not a priority.
This assumption turned out to be false when realizing that the amount of "code
smells" that could be handled was already too high about one month before the
date of handing in the thesis. Every code change kept increasing the accumulated
technical debt; killing any motivation still left to work on the existing codebase.
Continuing like this for another month seemed impossible. Therefore, a list of all
current problems was created together with what requirements a new software ar-
chitecture would need to meet to solve them:

1. (Inconsistent) Performance
The underlying linear design was crippling the performance for the reasons already
mentioned. The introduction of caches did only fight the symptoms and not solve
the main issue. Further, it made the performance confusing for the users. Some-
times, it took close to no time at all to move to a certain action (action was cached)
and on other times, it took quite a lot of time to move to a different action (action
was not cached).
Requirement: Moving to any action should be done in O(1). This means, it should
not matter how many actions we needed to skip to arrive at the destination.

2. Error-prone design for action creation
Writing new actions was error-prone because code needed to be written for forward
and backwards navigation which introduced mental overhead because it depended
on the code of all previous actions. This also lead to error propagation. Errors were
easily noticeable by users but were hard to track down to their origin.
Requirement: New actions should be able to be written without having to write
backwards navigation code. Backwards navigation should be handled automati-
cally and thus be "error-free by design".

45

4 PLUG-IN

3. No coherent system design
Adding new code without following a design pattern made it hard to grasp the sys-
tem architecture over the long run. Additionally, the high coupling of the backend
(code-behind) with the frontend (XAML) made it harder to implement new fea-
tures in one part without needing to modify the other part. The system essentially
got very rigid and over time, even seemingly small changes took quite some time
to implement.
Requirement: The new system should make it clear what piece of code is respon-
sible for what and thus be highly modular. This should also make it clear where
new code must be added to implement a new feature without increasing technical
debt; while also decreasing the possibility to introduce bugs since code is less cou-
pled. To summarize, the new architecture should strive for high cohesion, but low
coupling.

All these problems were solved using the MVVM design pattern with a new nav-
igation system design. To implement them, the existing codebase was rewritten
from scratch, which was time-consuming (took about two weeks) but in the end
worth it. Figure 4.25 shows the performance of the final navigation system. As
one can see, the time it takes to skip actions is constantly very low and only varies
between a few milliseconds; making the user interface very responsive.

46

4.3 ENCOUNTERED PROBLEMS

Figure 4.24: Performance of linear navigation system

Figure 4.25: Performance of final (centralized) navigation system

47

4 PLUG-IN

Figure 4.26: Performance of linear navigation system with caches for each round

Figure 4.27: Performance of linear navigation system with caches for each quarter-round

48

5 Conclusion

This chapter finishes the thesis by summarizing its main points. It also includes
suggestions how the plug-in could be further improved in the future.

5.1 Summary

This section gives a high level overview over the main points of this thesis.
In Section 4.2, the implementation is described. The section gave a detailed overview
over how the plug-in was designed to meet the goals defined in Section 4.1. Sec-
tion 4.3 described previous architectures and which problems they had.
The main point of this thesis is the description how the current implementation
meets these goals and how the problems which occurred during development were
solved.

Goals

Three goals which the plug-in should meet were defined.

(G1) Easy-to-understand visualization of the encryption process
The first goal was met by creating a simple but thought-through user interface for
the plug-in visualization.

The visualization is split into five pages in the following order:

• Landing page

• Overview page

• Diffusion page

• State Matrix Initialization page

• ChaCha Hash Function page

Splitting the visualization up into five different pieces (Figure 5.1) made it easier
to let the user focus on a single step of the encryption process. This also made
it possible to have a new page layout for each step without confusing the user

49

5 CONCLUSION

(a) Landing page

(b) Overview page

(c) Diffusion page
50

5.1 SUMMARY

(d) State Matrix Initialization page

(e) ChaCha Hash Function page

Figure 5.1: All pages of the plug-in in their initial state

51

5 CONCLUSION

because each page is presented as an individual piece. A new page layout for each
step was useful because we then were not restricted to a single layout for the whole
visualization. Presenting the pages as individual pieces starts with the clear cut
from the landing page to the overview page using the page navigation bar in the
top-left of each page.

At the landing page, only the page navigation bar at the top-left is shown. This
means the user must use it to advance. After using it, it is clear to the user that this
is the place where he can navigate between pages.

Each page tells the user with descriptions what it is about. If a page has actions,
the user has access to a slider with buttons in the bottom with which he can navi-
gate within a page. At the bottom-right, the total number of actions a page has is
shown as well as a text input which shows the current action index.

Using that text input makes it possible to skip to a certain action. Since the user
will not know which action corresponds to which page state when using the plug-
in for the first time, additional buttons are shown above the slider which bring the
user immediately to important intermediate steps. Looking at the current action
index, the user now knows what he has to type in there to immediately jump to
that action again. This indirectly helps to better understand the cipher because it
enables students and lecturers to talk about a specific step using the action index
number.

The state setup and the hash function were visualized with attention to detail.
During the state setup, each parameter is encoded separately and each encoding
step is described. During the hash function, the quarter-round circuit diagram
makes it possible to show the intermediate results in an intuitive way by placing
them above the circuit lines. Intermediate results were important to let the user
comprehend every single step of the keystream block generation. Further, back-
ground coloring helps to show which elements are used to calculate the next value
or which state entries are currently in use by the quarter-round function.

(G2) Visualization of the diffusion property
The diffusion property is visualized by letting the user enter alternative values on
the Diffusion page. Since the ChaCha keystream is independent of the plaintext,
the user can only use alternative values for the key, counter and IV.

It was important to easily be able to flip bits. Thus, the user can not only enter
the explicit alternative value but also the difference between the two values (XOR).

An example on the same page informs the user what he can expect for the next
pages if he activates diffusion by flipping at least one bit. Using the button in the

52

5.1 SUMMARY

top-right corner enables the user to choose between two vies:
A view which shows both values (as shown in Figure 4.11a) and a view to only
show the XOR between both values (as shown in Figure 4.11b)
The values are always shown in hexadecimal. If a hexadecimal character is different
between both cipher runs, it is marked red for easier visual recognition. The two
different views were important because when studying the diffusion property of a
cipher, one is more interested in the difference between two keystreams instead of
their actual values. On the other hand, having access to the concrete values could
also be useful thus both views were implemented instead of just one.

Additionally, the percentage of flipped bits is shown below the state at the end
of each quarter-round in the ChaCha hash function page.

(G3) Support for all variants of the cipher family
The support to choose the number of rounds and the version (original version by
Bernstein or IETF version) was implemented by adding appropriate settings to the
plug-in. The inputs are then validated accordingly. This means that if the user has
chosen Bernstein’s original version, he must enter a 64-bit counter and a 64-bit IV. If
he has chosen the IETF version, he must enter a 32-bit counter and a 96-bit IV. The
plug-in will not start with wrong inputs. Instead, it will show an error message
with the expected size for the input and its actual size.

The visualization works not much different with a 128-bit or 256-bit key. It is
mentioned that if using a 128-bit key is used, it will be concatenated with itself.
This is done in the step where the encoded key is put into the state.
To reflect the chosen version, only the the overview page and the state setup are
slightly different. The overview page shows the correct parameter sizes and the
last row of the state in the overview page and state setup page are partitioned
accordingly.

Main problems

Two main problems were encountered while developing the plug-in.

(P1) Architecture
The first problem was to find out how the architecture behind the user interface
should be laid out to not hinder further development. This means that it was not
straight-forward to know how all systems (user interface, the cipher implementa-
tion, navigation, storage and retrieval of intermediate values) should interact with-
out introducing hard-to-debug bugs in the long run.

53

5 CONCLUSION

(P2) Performance
The second problem was the overall performance of the plug-in. It was caused
by the desire to let the user navigate to any step within a page. Letting the user
navigate from any step to any step meant that the navigation system must support
a lot of possible transitions in a reasonable time.

Solutions

Here are the solutions that were found for the two problems described above.

(S1) MVVM design pattern
The first problem was solved by following a design pattern. The MVVM design
pattern was chosen because it was very popular across the WPF community [Smi09].

Using a design pattern helped in solving a lot of problems in a very obvious way.
Features which previously were implemented with a lot of code smells (indicators
that usually correspond to a deeper problem within an architecture) could now be
implemented properly without increasing technical debt.
For example, before using a design pattern, the navigation system was spread
across the whole codebase. With the MVVM design pattern, the whole naviga-
tion system could be written as a single interface. An abstract view model class
then implemented this interface. All other view models which had actions then
just extended this base class without having to duplicate any navigational logic.

As mentioned in Section 4.2.3, extensive usage of data binding helped in decou-
pling the view code from the underlying architecture. Therefore, if some things
in the view should change, almost no code in the architecture has to change if the
MVVM design pattern is properly implemented. Previously, the view code was
very rigid. Changing it took a lot of effort because it kept breaking the architecture
behind it.

(S2) Centralized navigation system
The second problem was solved by reflecting on the performance problems previ-
ous navigation system implementations had and their underlying issues.

The problem of the first navigation system was that it was designed to execute
the transitions in a linear manner (hence the name linear navigation system). This
meant that skipping a lot of actions would take a lot more time than skipping only
a few actions because a lot more transitions needed to be executed for the larger
skip. This resulted in taking more roughly 40 seconds to skip 3000 actions on the
ChaCha hash function page.

54

5.2 FUTURE WORK

This was tried to solve by introducing caches. Even though the cache imple-
mentation brought the average response time down to 250 ms, it did not solve the
problem to a satisfactory degree. It introduced inconsistencies regarding the perfor-
mance because with it, it was not obvious to the user why some skips took longer
than others. Before, one could easily see that larger skips took longer than smaller.

As described in Section 4.2.3, as a result, the navigation system was optimized to
have a consistently good performance for any skip. This means that the overhead of
the navigation system design should be approximately equal for any skip. This was
possible with the centralized navigation system. Any transition would start with
first going back to the first action and then from there straight to the destination
action. Therefore, the start action does not matter because moving to the first action
from any action is done in O(1) and moving from the first action to any action is
done in O(1). This improved performance dramatically. The average response time
was now about 10 ms.

5.2 Future Work

This section lists five suggestions how the plug-in could be further improved to
make it even more useful for the audience of CrypTool 2. The last point is a todo the
author will implement during the next 4 weeks to make the plug-in fully complete.

1. Better overview over flipped bits at the end of each round
At the end of the Avalanche visualization, the author provided an overview over
the percentage of flipped bits at the end of each round. This overview is very useful
because it shows how the amount of flipped bits goes up very fast to around 50%
and then stays near it which is exactly what one would expect from a good cipher.

Using a plot instead of the simple text which is updated at the end of each round
was considered but due to canvas and time constraints, this idea was not further
pursued.

Nonetheless, integrating such an overview into the Diffusion page should be
possible. This would need cipher execution while still on the page instead on page
exit but this would not be a big problem since a button to start cipher execution
would suffice. Therefore, this plot could be an addition instead of replacing the
text below the state in the ChaCha hash function visualization.

55

5 CONCLUSION

2. Improve performance during diffusion
All measurements in Section 4.2.3 were done with inactive diffusion since the per-
formance during active diffusion improved in a similar manner. This means that
thanks to the centralized navigation system architecture, moving to any action is
still done in constant time even if diffusion is active.

The problem is that it takes around one or two seconds for each move (instead of
around 10 ms if diffusion was inactive) which is quite annoying. We suspect that
this is the case because the red color is implemented by creating an inline element
for every character and marking it red if it is different.

An idea is to create a single element for every possible combination of color
(black and red) and hexadecimal character ([0-9A-F]). Therefore, we would not
need to create a new inline element for each character but could reuse the same
in multiple places. If the performance issue results from the memory allocation,
this approach should solve it.

However, first attempts resulted in weird bugs. So fixing this will probably be
the most difficult point in this list and could result in once again having to rethink
some major design decisions.

3. Automatic navigation
The AES visualization includes a button labeled with “Auto”. It lets the visualiza-
tion run without further user interaction needed. A slider was provided to adjust
the speed (see Figure 2.2).

Such a button could be useful for the ChaCha visualization, too, especially for
the page about the ChaCha hash function with its many actions.
Since asynchronous navigation is already in use for the action slider, implementing
this feature could easily be integrated within the existing navigation system. Only
page switches could maybe need some clever solutions since the action navigation
is handled within each page thus navigating out of a page may not be straight-
forward.

In the AES visualization though, the automatic navigation does stop between
each step (which roughly corresponds to a page in our visualization) so switching
the page automatically may even not be desired.

56

5.2 FUTURE WORK

4. Salsa20 visualization
As mentioned in Section 2.2, using the now existing codebase for ChaCha visual-
ization to create a Salsa20 visualization would definitely increase the value gained
from this thesis.

This would at least need adaption of the XAML code for the state matrix initial-
ization and the quarter-round since ChaCha and Salsa20 differ in these aspects from
each other. It would most likely even increase the value of the ChaCha visualiza-
tion since both ciphers could then be compared side-by-side. Comparing them and
their diffusion property should be very easy due to the very similar visualization.

5. Localization and online help
Currently, most texts are only localized in English. Only the memo fields, compo-
nent labels and plaintext value are also available in German.
This will be changed in the near future. Then also an online help entry for the
ChaCha plug-in will be available. The online help appears when pressing F1.

57

Bibliography

[Bec16] M. Becher. “Visualization of AES as a CrypTool 2 Plugin”. B.Sc. Thesis.
2016. URL: https://www.cryptool.org/assets/img/ctp/documents/BA_
Becher.pdf (visited on 12/11/2020) (cited on page 5).

[Ber05a] D. J. Bernstein. Salsa20 security. 2005. URL: https://cr.yp.to/snuffle/
security.pdf (visited on 12/11/2020) (cited on page 3).

[Ber05b] D. J. Bernstein. Salsa20 Specification. 2005. URL: https : / / cr . yp . to /
snuffle/spec.pdf (visited on 12/11/2020) (cited on page 3).

[Ber06] D. J. Bernstein. Salsa20/8 and Salsa 20/12. 2006. URL: https://cr.yp.to/
snuffle/812.pdf (visited on 12/11/2020) (cited on page 3).

[Ber08] D. J. Bernstein. ChaCha, a variant of Salsa20. 2008. URL: https://cr.yp.
to / chacha / chacha - 20080120 . pdf (visited on 12/11/2020) (cited on
pages 1, 4, 11).

[Ber11] D. J. Bernstein. Extending the Salsa20 nonce. 2011. URL: http://cr.yp.
to/snuffle/xsalsa- 20110204.pdf (visited on 12/11/2020) (cited on
page 3).

[Bin20] Binance Academy. History of Cryptography. 2020. URL: https://academy.
binance.com/en/articles/history-of-cryptography (visited on 12/11/2020)
(cited on page 1).

[Ech16] C. Echeverri. “Visualization of the Avalanche Effect in CT2”. B.Sc. The-
sis. 2016. URL: https://www.cryptool.org/assets/img/ctp/documents/
BA_Echeverri.pdf (visited on 12/11/2020) (cited on page 8).

[Eur12] European Network of Excellence for Cryptology (ECRYPT) II. eSTREAM:
the ECRYPT Stream Cipher Project. 2012. URL: https://www.ecrypt.eu.
org/stream (visited on 12/11/2020) (cited on page 3).

59

https://www.cryptool.org/assets/img/ctp/documents/BA_Becher.pdf
https://www.cryptool.org/assets/img/ctp/documents/BA_Becher.pdf
https://cr.yp.to/snuffle/security.pdf
https://cr.yp.to/snuffle/security.pdf
https://cr.yp.to/snuffle/spec.pdf
https://cr.yp.to/snuffle/spec.pdf
https://cr.yp.to/snuffle/812.pdf
https://cr.yp.to/snuffle/812.pdf
https://cr.yp.to/chacha/chacha-20080120.pdf
https://cr.yp.to/chacha/chacha-20080120.pdf
http://cr.yp.to/snuffle/xsalsa-20110204.pdf
http://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://academy.binance.com/en/articles/history-of-cryptography
https://academy.binance.com/en/articles/history-of-cryptography
https://www.cryptool.org/assets/img/ctp/documents/BA_Echeverri.pdf
https://www.cryptool.org/assets/img/ctp/documents/BA_Echeverri.pdf
https://www.ecrypt.eu.org/stream
https://www.ecrypt.eu.org/stream

BIBLIOGRAPHY

[Goo14] Google. Speeding up and strengthening HTTPS connections for Chrome on
Android. 2014. URL: https : / / security . googleblog . com / 2014 / 04 /
speeding-up-and-strengthening-https.html (visited on 12/11/2020)
(cited on page 1).

[Lib18] Libsodium. XChaCha20. 2018. URL: https://libsodium.gitbook.io/
doc/advanced/stream_ciphers/xchacha20 (visited on 12/11/2020) (cited
on page 4).

[Nir+18] Y. Nir, A. Langley, Dell EMC, and Google Inc. ChaCha20 and Poly1305
for IETF Protocols. 2018. URL: https://tools.ietf.org/html/rfc8439
(visited on 12/11/2020) (cited on page 14).

[Smi09] J. Smith. Patterns - WPF Apps With The Model-View-ViewModel Design Pat-
tern. 2009. URL: https://docs.microsoft.com/en-us/archive/msdn-
magazine/2009/february/patterns-wpf-apps-with-the-model-view-

viewmodel-design-pattern (visited on 12/11/2020) (cited on page 54).

60

https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://libsodium.gitbook.io/doc/advanced/stream_ciphers/xchacha20
https://libsodium.gitbook.io/doc/advanced/stream_ciphers/xchacha20
https://tools.ietf.org/html/rfc8439
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern

List of Figures

2.1 Salsa20 CT2 template . 4
2.2 AES visualization plug-in . 6
2.3 DES visualization plug-in . 7
2.4 Avalanche visualization plug-in . 9

4.1 ChaCha CT2 template . 18
4.2 Diffusion page in its initial state . 20
4.3 Diffusion page in its active state . 21
4.4 State Matrix Initialization page in its initial state 22
4.5 State Matrix Initialization page: Encoding of state parameters 24
4.6 ChaCha Hash Function page in its initial state 25
4.7 Quarter-round visualization . 26
4.8 Quarter-round circuit diagram . 27
4.9 Addition and little-endian step visualization 27
4.10 End of diagonal rounds . 28
4.11 Quarter-round visualization with diffusion 29
4.12 Page navigation . 31
4.13 Action navigation . 31
4.14 Data binding notification implementation 33
4.15 Saving of intermediate values . 34
4.16 Navigation paths without reset state 35
4.17 Navigation paths in centralized navigation system 36
4.18 Extending Action type . 37
4.19 Test method for nested sequences . 37
4.20 Navigation paths in linear navigation system 39
4.21 Navigation paths in linear navigation system with caches 41
4.22 Asynchronous navigation subsystem 43
4.23 Example for bad scaling property in previous plug-in versions 44
4.24 Performance of linear navigation system 47
4.25 Performance of final (centralized) navigation system 47

61

LIST OF FIGURES

4.26 Performance of linear navigation system with caches for each round 48
4.27 Performance of linear navigation system with caches for each quarter-

round . 48

5.1 All pages of the plug-in in their initial state 51

All figures and screenshots are either created by myself or their origin is indicated.
Screenshots are created with “Snipping Tool" (MS Windows screenshot tool).
Performance plots are created with matplotlib v3.3.3 (https://matplotlib.org/).
Profiling was done in Release mode and with an Intel® i3-4130 @ 3.40 GHz.
Architecture diagrams are created with diagrams.net (https://www.diagrams.net/).
Code screenshots are created with Carbon (https://carbon.now.sh/).

62

https://matplotlib.org/
https://www.diagrams.net/
https://carbon.now.sh/

	Introduction
	Related Work
	Salsa20 Cipher Family
	Salsa20 CrypTool 2 Plug-in
	Other CrypTool 2 Cipher Visualizations
	AES Visualization
	DES Visualization
	Avalanche Visualization

	ChaCha Specification
	Quarter-Round Function
	Little-Endian Function
	ChaCha Hash Function
	ChaCha State Matrix
	Encryption/Decryption

	Plug-in
	Goals
	Implementation Details
	Key Features
	User Interface
	Architecture

	Encountered Problems

	Conclusion
	Summary
	Future Work

	Bibliography

