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Chapter 1

Executive Summary

This report presents a security evaluation of the ChaCha20-Poly1305 Authenti-
cated Encryption with Associated Data (AEAD). The combination of ChaCha
and Poly1305 is proved to be secure authenticated encryption scheme assuming
ChaCha and Poly1305 are secure algorithms. Additionally, Poly1305 is proven
to be ε-almost-∆-universal i.e., a secure universal hash function. We thus eval-
uate the security of ChaCha against existing attacks.

We showed that no efficient differential analysis, linear cryptanalysis and
distinguish attack, guess and determine analysis, algebraic attack, and attacks
on initialization process exist against ChaCha. Time-Memory-Data tradeoff
attack and side-channel attack apply to ChaCha; however, we can deal with
these attacks with practical countermeasures. We thus concluded that we can
identify no weaknesses in ChaCha20-Poly1305 AEAD.
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Chapter 2

Algorithm Description

We describe the algorithm of ChaCha, Poly1305, and ChaCha20-Poly1305 AEAD.

2.1 ChaCha
ChaCha [NL15] operates on 32-bit words, takes as input a 256-bit key K =
(k0, k1, k2, k3, k4, k5, k6, k7) and a 32-bit counter C = (c0), and produces a se-
quence of 512-bit keystream blocks1. This function acts on the 4× 4 matrix of
32-bit words written as;

X =


x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15



=


σ0 σ1 σ2 σ3

k0 k1 k2 k3
k4 k5 k6 k7
c0 n0 n1 n2


The σ and τ are constants where

(τ0, τ1, τ2, τ3) = (0x61707865, 0x3120646E, 0x79622D36, 0x6B206574)

and

(σ0, σ1, σ2, σ3) = (0x61707865, 0x3320646E, 0x79622D32, 0x6B206574).

The keystream block Z is defined as; Z = X + X(20), where X(r) =
Roundr(X) with the round function of ChaCha and + is word-wise addition
modulo 232. If Z = X + X(r), it is called “r-round ChaCha” or “ChaChar”.
The round function consists the following non-linear operations that are called

1The original version of ChaCha [Ber08a] suport both 128-bit and 256-bit key. However,
128-bit key is out of scope in the IETF version [NL15]. The nonce and counter have 64-bit
length and they are stored (x12, x13) and (x14, x15) respectively in the original version of
ChaCha.
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Algorithm 1 ChaCha
Input: Key K, Counter C, and Nonce N
Output: Keystream Z

Generate initial matrix X using K, C, and N
y ← X
for i← 0 to 9 do
/* Column Round */
(x0, x4, x8, x12)← quarterround(x0, x4, x8, x12)
(x5, x9, x13, x1)← quarterround(x5, x9, x13, x1)
(x10, x14, x2, x6)← quarterround(x10, x14, x2, x6)
(x15, x3, x7, x11)← quarterround(x15, x3, x7, x11)
/* Diagonal Round */
(x0, x5, x10, x15)← quarterround(x0, x5, x10, x15)
(x1, x6, x11, x12)← quarterround(x1, x6, x11, x12)
(x2, x7, x8, x13)← quarterround(x2, x7, x8, x13)
(x3, x4, x9, x14)← quarterround(x3, x4, x9, x14)

end for
Z ← X + y
return Z

quarter round functions. A vector (a, b, c, d) of four words is transformed as;

a = a+ b

d = d⊕ a

d = (d)≪16

c = c+ d

b = b⊕ c

b = (b)≪12

a = a+ b

d = d⊕ a

d = (d)≪8

c = c+ d

b = b⊕ c

b = (b)≪7

The quarter-round functions are applied to the columns (x0, x4, x8, x12), (x5, x9, x13, x1),
(x10, x14, x2, x6) and (x15, x3, x7, x11) in odd round, and diagonals (x0, x5, x10, x15),
(x1, x6, x11, x12), (x2, x7, x8, x13) and (x3, x4, x9, x14) in even rounds. Algo-
rithm 1 describes the complete procedure of ChaCha.

2.2 Poly1305
Poly1305 [Ber05b] is a cryptographic message authentication code (MAC) pro-
posed by Bernstein. The input to Poly1305 is a 256-bit one-time key and an
arbitrary-length message. The output is a 128-bit tag. Algorithm 2 shows the
detailed description of Poly1305. The input key has 256-bit length and is di-
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Algorithm 2 Poly1305
Input: Key K and Message M
Output: Tag T

(m[0],m[1], . . . ,m[d− 1])
16←M

d← dlen(M)/16e
(r, s)

16← K
r ← r&0x0FFFFFFC0FFFFFFC0FFFFFFC0FFFFFFF
for i← 0 to d− 1 do
m[i]← m[i] + 28len(m[i])

end for
T ← m[0]
for i← 1 to d− 1 do
T ← (r · T +m[i]) mod (2130 − 5)

end for
T ← (T + s) mod 2128

return T

Algorithm 3 ChaCha20-Poly1305 AEAD
Input: Key K, Nonce N , Authentication data A, and Message M
Output: Ciphertext C and Tag T
z ← CC-Poly-KS(K,N, len(M))
C ←M ⊕ z
T ← CC-Poly-T(K,N,A,C)
return (C, T )

vided to two 128-bit keys r and s. The algorithm clamps 22-bits of r. The
output tag is ((m[0]rn +m[1]rn−1 + · · ·+m[n]) mod (2130− 5)+ s) mod 2128,
where M [i] is i-th 16-bit chunk of the input message M .

2.3 ChaCha20-Poly1305 AEAD
ChaCha20-Poly1305 is an authenticated encryption with additional data al-
gorithm. The input data are a 256-bit key K; a 96-bit nonce N ; arbitrary
length authenticated data A, and an arbitrary length message M . Algorithm 3
describes the complete procedure of ChaCha20-Poly1305 AEAD and Fig. 2.1
shows the overall structure. Algorithm 4 and 5 show its subroutines.
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Figure 2.1: ChaCha20-Poly1305 AEAD

Algorithm 4 CC-Poly-KS
Input: Key K, Nonce N and Input length L
Output: Keystream Z
b← dL/64e
for i← 0 to b− 1 do
z[i]← ChaCha(K, i+ 1, N)

end for
z ←

∑b−1
i=0 z[i] · 2512i

Z ← trancate(l, z)
return Z

Algorithm 5 CC-Poly-T
Input: Key K, Nonce N , Authentication data A, and Message M
Output: Tag T
k ← trancate(32,ChaCha(K, 0, N))
y ← A
y ← y +M · 2128dlen(A)/16e

y ← y + len(A) · 2128(dlen(A)/16e+dlen(M)/16e)

y ← y + len(M) · 2128(dlen(A)/16e+dlen(M)/16e+1/4)

T ← Poly1305(k, y)
return T
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Chapter 3

Security Analyses

3.1 Related Work
Crowley [Cro06] presented a differential cryptanalysis on reduced round Salsa20/5
that uses a 3-round differential and requires 2165 time complexity and work and
26 plaintexts. Fischer et al. [FMB+06] exploited a 4-round differential to at-
tack Salsa20/6 within 2177 time complexity. Tsunoo et al. [TSK+07] attacked
Salsa20/7 within 2190 time complexity using a 4-round differential, and broke
Salsa20/8 with 2255 time complexity. Aumasson et al. [AFK+08] reduced the
time complexity to 2151 for Salsa20/7 and 2251. for Salsa20/8 still using a 4-
round differential. They also presented that ChaCha6 and ChaCha7 can be
attacked with time complexity 2139 and 2248, respectively. Shi et al. [SZFW12]
proposed improved attack based on second-order differential with 2148 time
complexity for Salsa20/7, 2250. for Salsa20/8, 2136 for ChaCha6 and 2246.5

for ChaCha7. Maitra [Mai16] showed a chosen IV cryptoanalysis and the time
complexity of the attack can be reduced to 2245.5 for Salsa20/8 and 2239 for
ChaCha7. Mouha and Preneel [MP13] proposed a method to search for optimal
differential characteristics for ARX ciphers and applied it to find characteristics
Salsa20/3. Choudhuri and Maitra [CM16] evaluate the security of Salsa and
ChaCha against differential cryptanalysis using a hybrid model of non-linear
round functions and linear approximation. The summary of existing attacks
is shown in Table 3.1. They concluded that Salsa20/12 and ChaCha12 are
sufficient for 256-bit keys under the attack model.

Procter [Pro14] demonstrated that the combination of ChaCha and Poly1305
is a secure authenticated encryption scheme assuming ChaCha is a pseudo-
random function (PRF), and Poly1305 is ε-almost-∆-universal. Imamura and
Iwata [KI16] show key-recovery attack and forge attack are possible in a nonce-
misuse situation where the same nonce is repeatedly used.

3.2 Analysis on ChaCha Structure
ChaCha is similar not to conventional stream cipher algorithms but ARX-type
block ciphers. The structure of ChaCha should be understood as block cipher
algorithm and analyze it focusing on the round function.
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3.2.1 Invertibility
The quarter-round function of ChaCha contains only additions, exclusive-or,
and constant-distance rotations. These basic operations can be described as
follows;

add : (x, y) 7→ (x+ y, y),

xor : (x, y) 7→ (x⊕ y, y),

rotl : x 7→ (x)≪n,

and they are invertible:

add−1 : (x, y) 7→ (x− y, y),

xor−1(= xor) : (x, y) 7→ (x⊕ y, y),

rotl−1(= rotr) : x 7→ (x)≫n.

The quarter-round function of ChaCha is thus invertible, and the inverse quarter-
round function is given as;

b = (b)≫7

b = b⊕ c

c = c− d

d = (d)≫8

d = d⊕ a

a = a− b

b = (b)≫12

b = b⊕ c

c = c− d

d = (d)≫16

d = d⊕ a

a = a− b.

The round function of ChaCha consists of four quarter-round functions and
distinct 4-tuples of words are processed with the quarter-round functions. Thus,
the round function is also invertible. There is no entropy loss in the process of
the round function.

Note that the entire key-generation process is not necessarily invertible. The
keystram Z is calculated as X+X(20) and irreversible addition irradd : (x, y) 7→
(x+ y) is used.

3.2.2 Structual difference from Salsa20
The Salsa20 algorithm is described as follows;

Sala20 Algorithm The stream cipher Salsa20 [Ber08b] operates on 32-bit
words, takes as input a 256-bit key K = (k0, k1, k2, k3, k4, k5, k6, k7) or 128-bit
key K = (k0, k1, k2, k3) and a 64-bit nonce N = (n0, n1) and counter C =
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(c0, c1), and produces a sequence of 512-bit keystream blocks. This function
acts on the 4× 4 matrix of 32-bit words written as;

X =


x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15



=




τ0 k0 k1 k2

k3 τ1 n0 n1

c0 c1 τ2 k4

k5 k6 k7 τ3

 (K is a 128-bit key)


σ0 k0 k1 k2

k3 σ1 n0 n1

c0 c1 σ2 k0

k1 k2 k3 σ3

 (K is a 256-bit key)

The σ and τ are constants where

(τ0, τ1, τ2, τ3) = (0x61707865, 0x3120646E, 0x79622D36, 0x6B206574)

and

(σ0, σ1, σ2, σ3) = (0x61707865, 0x3320646E, 0x79622D32, 0x6B206574).

The keystream block Z is defined as; Z = X + X(20), where X(r) =
Roundr(X) with the round function of Salsa20 and + is word-wise addition
modulo 232. If Z = X + X(r), it is called “r-round Salsa20” or “Salsa20/r”.
The round function consists the following nonlinear operations that are called
quarter round functions. A vector (a, b, c, d) of four words is transformed as;

b = b⊕ ((d+ a)≪7)

c = c⊕ ((a+ b)≪9)

d = d⊕ ((b+ c)≪13)

a = a⊕ ((c+ d)≪18)

The quaterround function are applied to columns (x0, x4, x8, x12), (x5, x9, x13, x1),
(x10, x14, x2, x6) and (x15, x3, x7, x11) in odd round, and rows (x0, x1, x2, x3),
(x5, x6, x7, x4), (x10, x11, x8, x9) and (x15, x12, x13, x14) in even rounds. Algo-
rithm 6 describes the complete procedure of Salsa20.

Deference from Salsa20 The quarter-round function of ChaCha contains
four additions, four exclusive-ors and four constant-distance rotations of 32-bit
words, similar to that of Salsa20. However, ChaCha increases the amount of
diffusion in the quarter-round functions comparing with Salsa20. Figure 3.1 and
3.2 shows the quarter round function of ChaCha and Salsa20. Each input word
is updated twice in ChaCha quarter-round function whereas each word is update
once in Salsa20 quarter-round function. Furthermore, ChaCha quarter-round
function gives each input word a chance to affect each output word similar to
Salsa20 quarter-round function.
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Algorithm 6 Salsa20
Input: Key K, Counter C, and Nonce N
Output: Keystream Z

Generate initial matrix X using K, C, and N
y ← X
for i← 0 to 9 do
/* Column Round */
(x0, x4, x8, x12)← quarterround(x0, x4, x8, x12)
(x5, x9, x13, x1)← quarterround(x5, x9, x13, x1)
(x10, x14, x2, x6)← quarterround(x10, x14, x2, x6)
(x15, x3, x7, x11)← quarterround(x15, x3, x7, x11)
/* Row Round */
(x0, x1, x2, x3)← quarterround(x0, x1, x2, x3)
(x5, x6, x7, x4)← quarterround(x5, x6, x7, x4)
(x10, x11, x8, x9)← quarterround(x10, x11, x8, x9)
(x15, x12, x13, x14)← quarterround(x15, x12, x13, x14)

end for
Z ← X + y
return Z

The rotation distance in the quarter-round function is 16, 12, 8, 7 in ChaCha
and 7, 9, 13, 18 in Salsa20. There is no report on security difference due to the
rotation distances. Three distances can be divided by 4 and two can be divided
by 8 in ChaCha. The change of rotations distance may contribute to improving
the performance in embedded environments with 8-bit or 4-bit CPU.

3.3 Cryptanalysis on ChaCha
3.3.1 Differential Analysis
Differential cryptanalysis introduced by Biham and Shamir [BS93] is now used
as a general method for analyzing various cryptographic primitives including
stream ciphers. Currently, almost all cryptanalysis of Salsa20 and Chacha are
based on the technique of differential analysis.

The most general idea of differential attacks is to exploit pairs of plaintexts
with certain differences which yield other certain differences in the corresponding
ciphertexts (or any internal states of the cipher) with a non-uniform distribution.
Specifically, consider a system with input an n-bit string X = [X1, X2, . . . , Xn]
and output an n-bit string Y = [Y1, Y2, . . . , Yn]. Denote a pair of input as
(X ′, X ′′) and the corresponding pair of output as (Y ′, Y ′′), respectively. The
input difference is denoted by ∆X = X ′ ⊕ X ′′ where “⊕” may represent any
binary operation on n-bit strings which defines the difference between the two
operands and is, in its most general form, the bitwise Exclusive-OR opera-
tion. The difference between X ′ and X ′′ is ∆X = [∆X1,∆X2, . . . ,∆Xn] where
∆Xi = X ′

i ⊕X ′′
i with X ′

i and X ′′
i being the i-th bit of X ′ and X ′′, respectively.

Similarly, ∆Y = Y ′ ⊕ Y ′′ = [∆Y1,∆Y2, . . . ,∆Yn] is the output difference. Dif-
ferential cryptanalysis tries to identify a scenario where a particular ∆Y occurs
given a particular ∆X with a probability differing much from uniform. Note
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Figure 3.1: Quarter-round function of ChaCha

that the probability Pr[∆Y |∆X] can be either much greater than or less than
the uniform probability. When such ∆Y exists, we call the pair (∆X,∆Y ) a
differential. Such a differential can be used either to distinguish the ciphertext
from randomness or to help recover the key used by the cipher.

To recover the (partial) key of the cipher, we work backward from an output
by guessing a part of secret key (we call subkey from now on). More specifically
we feed the cipher with many chosen plaintexts consisting of pairs of plaintexts
with a difference ∆X to generate the ciphertexts C and try to decrypt these
ciphertexts using all possible subkeys to get the internal states Y . By checking
the frequency that ∆Y occurs, we can select the correct subkey with high prob-
ability. If our guess of the subkey is not the correct one, then the frequency of
∆Y equals the probability of ∆Y in the differential analysis is highly impossible.
But for the correct guess, we will observe a frequency of ∆Y quite close to its
conjectured value Pr[∆Y |∆X].

Truncated differential analysis In the above discussion we treat the out-
put difference ∆Y as an n-bit string. But as shown by Knudsen [Knu95]it is not
always necessary to predict the full n bit value of the output difference. Some-
times even a 1-bit value in the output difference suffices for the cryptanalysis.
Such kind of differential which only predicts parts of an n-bit value is called a
truncated differential.
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Figure 3.2: Quarter-round function of Salsa20

Cryptanalysis of Salsa20

Crowley [Cro06] presented the first attack of 256-bit Salsa20/5 using the tech-
nique of truncated differential analysis in 2005. Crowley identified a differential
which as a biased bit in the output difference in the third round of Salsa20
core function. The attack only uses chosen IV, i.e, the nonce (n0, n1) and the
counter (c0, c1). The truncated differential (∆X,∆Y ) Crowley has found is the
following one;

∆X =


0 0 0 0
0 0 0 0
0 0x80000000 0 0
0 0 0 0

 3rounds−−−−−→ ∆Y =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0x02002802 ∗ ∗ ∗

 ,

with a theoretic probability 2−12. But In his experiments Crowley observed a
much higher probability of about 2−9 for this truncated probability in practice.
Using this differential Crowley amounted a key recover attack which works two
rounds backwards from a ciphertext by guessing 160 relevant key bits. This
attack requires 2165 work and 26 keystreams.

Fischer et al. [FMB+06] reported an attack on 256-bit Salsa20/6. This
attack used a similar technique of truncated differential analysis as compared
with Crowley. But Fischer et al. has found a differential with a biased bit in the
output difference in the fourth round which helped to push the attack against
a further round.

To find a differential path for the four rounds Salsa, Fischer et al. first intro-
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duced an alternative LinSalsa20 primitive which replaces the addition modulo
232 in Salsa20 with bitwise XOR and then analyzed some low-weight differ-
ential path for LinSalsa20. Under the condition that addition does not yield
a carry, LinSalsa20 behaves the same as the actual Salsa 20. Using this ob-
servation they successfully applied the differential path found in LinSalsa20 to
Salsa20 and mounted a key recovery attack on Salsa20/6. They also observed
non-randomness for Salsa until round 7. Their attack on 256-bit Salsa20/6
used a differential found after four rounds operation of Salsa20, and work two
rounds backward by guessing 160 relevant key bits. This attack requires 2177

computational complexity and 216 keystreams.
Tsunoo et al. [TSK+07] used the characteristics of differential of modulo

addition [LM01] to rigorously compute the differential probabilities for each bit
in the round 4 internal state of Salsa20. They found the following two 4-round
differentials to have the most biased probability of approximately (1−2−5.24)/2;

∆X1 =


0 0 0 0
0 0 0 0x80000000

0 0 0 0
0 0 0 0

 4rounds−−−−−→ ∆Y1 =


∗ 0x00400000 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 ,

∆X2 =


0 0 0 0
0 0 0 0

0x80000000 0 0 0
0 0 0 0

 4rounds−−−−−→ ∆Y2 =


∗ ∗ ∗ ∗
∗ ∗ 0x00400000 ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

Then using these differentials they reported a key recovery attack by working
3 rounds backwards from Salsa20/7. They used nonlinear approximation of
integer addition to reduce the guessing space for relative key bits to 171. Their
attack requires 2184 work and 211.4 keystreams. They also reported a 2255

complexity attack using 210 keystreams with probability 44% to narrow down
the correct key of Salsa20/8. However, this can hardly be considered as a
useful attack because it is effectively slower than the brute force attack. Since
exhaustive search succeeds with probability 50% within the same number of
trials, with much less data and no additional computations [AFK+08].

Aumasson et al. [AFK+08] proposed attacks on Slasa20/8 and Salsa20/7
and Chacha6. Their attack used the notion of probabilistic neutral bits (PNB)
introduced by Biham and Chen [BC04] to split key bits into two subsets as
the relevant key bits which can be filtered by observations of a biased output
differential and the less significant key bits which are determined by exhaustive
search. Their attacks on Salsa20 worked four rounds forwards to find the biased
bit in the differential and.

Aumasson et al.’s attack on 256-bit Salsa20/7 uses the following 4-round
differential with a median bias |ε∗d| = 0.131.

∆X =


0 0 0 0
0 0 0 0x00010000

0 0 0 0
0 0 0 0

 4rounds−−−−−→ ∆Y =


∗ 0x02000000 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

Using this differential the attack worked 3 rounds backwards by guessing This
attack requires 2151 work and 226 keystreams. Their attack on 128-bit Salsa20/7
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used the same 4-round differential and broke Salsa20/7 within 2111 time and
221 keystreams. The same 4-round differential was used to attack Salsa20/8
by working four rounds backward. This attack requires 2251-operation and 231

keystreams.
Following the work of Aumasson et al., Shi et al. [SZFW12] consider a

new type of distinguisher called column (row) chaining distinguishers (CCD)
which can efficiently make use of the biases of multiple differential trails and
the matrix structure of the cipher. Besides, they found new high probability
second-order differential trails that were not covered by previous results. They
also generalized the notion of PNB to probabilistic neutral vectors (PNV) which
explore the properties against more than one flipped input bit. These new
techniques and notions can effectively improve both time and data complexity
of previous attacks against both Salsa and ChaCha. For example, one of the
highly biased 4-round second-order differential of Salsa is as follows;

∆X =


0 0 0 0
0 0 0 0x00080000

0x00400000 0 0 0
0 0 0 0


4rounds−−−−−→ ∆Y =


∗ 0x10000000 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

Their attack on 256-bit Salsa20/5 used five 3-round differentials by working
two rounds backward from a 5-round keystream block. This attack can break
Salsa20/5 within time 255 and data 210. Their attack on 256-bit Salsa20/6 used
four 4-round differentials as the chaining distinguisher by working two rounds
backward from Salsa20/6 and requires 273 operations and 216 keystreams. To
attack 256-bit Salsa20/7, they used the same 4-round differential as that of
Aumasson et al. This attack requires 2148 operations and 224 keystreams. The
same differential was used to attack 256-bit Salsa20/8 with a time complexity
of 2250 and data complexity of 227. Finally, they showed an attack on 128-bit
Salsa20/7 using the same 4-round differential which requires 2109 operations and
219 keystreams.

In 2015, Maitra[MPM15, Mai16] improved the complexity of attacking Salsa
and ChaCha. In [MPM15], Maitra revisited the single bit differentials for 4-
round Salsa and found better biases which are more significant than previously
published ones. He also revisited technique of PNB used in Aumasson et al.
[AFK+08] and observed that in practice the median of certain biases are 4
times more than what was observed by Aumasson. Maitra further explored the
tradeoff between carefully choosing more PNBs at the cost of accepting less
probability for distinguishing the correct key from the wrong keys. A combina-
tion of the above process resulted in an attack on 256-bit Salsa20/8 with 2247.2

work and 227 keystreams. In a subsequent work [Mai16], Maitra reported cho-
sen IV cryptanalysis on reduced round Salsa and ChaCha. In [Mai16], Maitra
follows his previous idea of exploring more PNBs to obtain better results for the
cryp tanalysis of Salsa and Chacha. He also showed how to exploit specific IVs
(the nonces and counters) corresponding to the secret key which can help im-
prove the attack of Aumasson et al. [AFK+08]. His attack on 256-bit Salsa20/8
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used the following 4-round differential by working 4 rounds backwards.

∆X =


0 0 0 0
0 0 0 0x0x00010000

0 0 0 0
0 0 0 0

 4rounds−−−−−→ ∆Y =


∗ 0x02000000 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

The attacks requires 2245.5 work and 222.5 keystreams.

Cryptanalysis on ChaCha

Due to the similar design of ChaCha and Salsa20, the cryptanalysis on Salsa
discussed above also apply to ChaCha. However, since ChaCha are designed
to achieve a quick diffusion, it is suggested harder to break than Salsa. This is
evidenced by the published attacks on Salsa and ChaCha.

The initial attack on ChaCha was started by Aumasson et al. [AFK+08]
using the technique of probabilistic neutral bits (PNB). Aumasson et al. used
the following 3-round differential to attack ChaCha6 and ChaCha7:

∆X =


0 0 0 0
0 0 0 0
0 0 0 0
0 0x04000000 0 0

 3rounds−−−−−→ ∆Y =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ 0x80000000

∗ ∗ ∗ ∗

 .

The attack on 256-bit ChaCha6 worked three rounds backward from the 6-round
keystream block and required 2139 operations and 230 keystreams. By working
four rounds backwards from ChaCha7, they could successfully attack 256-bit
ChaCha7 using time 2248 and data 227. Same experiments were done on the
128-bit variants. Their attack on 128-bit ChaCha6 can break it within 2107 time
and 230 keystreams. However, their method failed on 128-bit ChaCha7.

The tools of Shi et al. [SZFW12], column chaining distinguisher (CCD)
and probabilistic neutral vectors (PNV) also applies to the analysis of reduced
ChaCha. They used the same 3-round differential as that of Aumasson et al.
[AFK+08] to attack ChaCha6 and ChaCha7. Due to the generalized techniques
and notions compared with [AFK+08], their attacks have better complexity.
Specifically for 256-bit ChaCha6, their attack requires 2136 operations and 228

keystreams; their attack can break 256-bit ChaCha7 within time 2246.5 and data
227, and their attack on 128-bit ChaCha6 uses 2105 work and 228 keystreams.
They did not report results on attacks for 128-bit ChaCha7.

The latest improvement on the attacks against reducing ChaCha came from
Maitra [Mai16] in 2015. The attack used the same tools for attacking Salsa20
such as exploring more PNBs to obtain better results and exploit specific IVs
corresponding to the secret key. Maitra improved the complexity of the attack
on 256-bit ChaCha7 to 2239 operations and 224 keystreams.

Differential-Linear Cryptanalysis

Differential-linear cryptanalysis discovered by Langford and Hellman [LH94]
uses the idea to combine the techniques of differential cryptanalysis and linear
analysis to derive bias for the underlying cipher up to more rounds. It usually
divides the cipher E into two parts E = E1◦E0. Differential-linear cryptanalysis
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uses a differential δi
E0−−→ δo and a linear approximation χi

E1−−→ χo and build trials
or characteristics for both half individually, where δi (δo) is the input (output)
difference for the first half of the cipher E0 and χi (χo) is the input (output)
mask for the second half of the cipher E1, respectively.

Recently Choudhuri and Maitra [CM16] developed a differential-linear crypt-
analysis on reduced round Salsa20 and ChaCha. This is known as currently the
most effective attack on reduced round Salsa20 and ChaCha published so far.
The improvement of their attack mainly comes from the idea of using multi-bit
differentials instead of the single-bit truncated differentials in existing works.
By considering the linear combination of multi-bit in the output difference,
Choudhuri and Maitra have successfully identified high biases in Salsa20 after
six rounds and ChaCha after five rounds, which demonstrates a two rounds of
improvement for both the ciphers over previous cryptanalytic results. Their
results of attacks on 256-bit Salsa20 and ChaCha can be listed as follows:

• 5-round Salsa20: time complexity 28 and data complexity 28.

• 6-round Salsa20: time complexity 232 and data complexity 232.

• 7-round Salsa20: time complexity 2137 and data complexity 261.

• 8-round Salsa20: time complexity 2244.9 and data complexity 296.

• 4-round ChaCha: time complexity 26 and data complexity 26.

• 5-round ChaCha: time complexity 216 and data complexity 216.

• 6-round ChaCha: time complexity 2116 and data complexity 2116.

• 7-round ChaCha: time complexity 2237.7 and data complexity 296.

Note: Biham and Carmeli [BC14] proposed a new technique of partitioning
the data set to improve the performance of linear cryptanalysis against FEAL-
8X. Recently this partitioning technique was generalized by Leurent [Leu16] to
multi-bit partitioning and also to differential cryptanalysis. Leurent applied
the generalized partitioning technique to the cryptanalysis of an ARX-style
message authentication code, Chaskey and got significant improvement. The
Choudhuri-Maitra differential-linear attack was inspired by the work of Leurent
but without the partitioning technique. Therefore we assume there is room for
improvement of the differential-linear cryptanalysis on ChaCha and Salsa using
the partitioning technique.

Rotational Cryptanalysis

Rotational cryptanalysis [KN10, KNP+15]is a probabilistic analysis especially
applicable to word oriented ciphers which use almost rotation-invariant opera-
tions. ChaCha is one example of the ARX cipher family which use only (mod-
ular) Addition, Rotation and Xor operations.

It can be viewed as a special case of differential attack. But the difference
metrics is now defined by rotational difference other than the classic xor differ-
ence.

To launch a rotational attack, one starts from a rotational pair, i.e. two
states X and X ′ where the words of X ′ are all rotations of the words of X
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by a fixed amount. If the corresponding outputs for such rotational pair also
form a rotational pair with a probability higher than in the case of a random
permutation, then this bias can be utilized to distinguish the cipher from a
random permutation, and it can further lead to key recovery attack.

However, one crucial requirement of rotational cryptanalysis is that the con-
stants used in the cipher construction must be rotation-invariant, i.e. the con-
stants must preserve their values when rotated [KNP+15]. In the design of
Salsa20 and ChaCha, the constants are carefully selected to be non-symmetric
to prevent any use of rotational pairs [Ber05a].

Boomerang Attack

Boomerang attack [Wag99] is another differential-style attack which exploits
the differential in half of the rounds to boost the bias of certain differential
characteristics.

The attack divides the cipher E into two parts E = E1 ◦ E0, where E0

represents the first half of the cipher and E1 represents the second half. In order
to lunch boomerang attack one needs to find differential characteristics for the
two halves of the cipher respectively. Denote ∆→ ∆′ a differential characteristic
for E0 and5→ 5′ a differential characteristic for E−1

1 . Consider four plaintexts
P, P ′, Q,Q′ and their corresponding ciphertexts C,C ′, D,D′. The plaintexts
and ciphertexts are generated in the following way: 1), generate P ′ = P ⊕
∆; 2), get the encryption C,C ′ of P, P ′ with two chosen-plaintext queries; 3),
generate D,D′ as D = C ⊕ 5 and D′ = C ′ ⊕ 5; 4), decrypt D,D′ to get
the corresponding plaintexts Q,Q′ with two adaptive chosen-ciphertext queries.
The four plaintexts P, P ′, Q,Q′ generated in the above manner are called a
quartet. The property of the quartet is that P, P ′ satisfy the characteristic
for E0, P,Q and P ′, Q′ satisfy the characteristic for E−1

1 and Q,Q′ satisfy the
characteristic for E−1

0 , ∆′ → ∆. Then using this quartet we can distinguish the
cipher from a random permutation and can further lunch key recovery attack.

But one disadvantage of the boomerang attack is that it inherently re-
quires the ability to perform both chosen-plaintext query and adaptive chosen-
ciphertext query simultaneously which may limit the application in a practi-
cal attack. Also, it is not obvious how boomerang attack can be applied to
ChaCha since the construction of ChaCha uses fixed constants at pre-defined
locations in the initial state. The implication is that when using an adaptive
chosen-ciphertext query, the altered ciphertext may not lead to a valid plain-
text. Currently, there is no report on successful boomerang attack on ChaCha
or Salsa20.

Security Evaluation of Salsa20 and ChaCha

Though several attacks have been developed against reduced Salsa20 and ChaCha,
to the best of our knowledge there has been no report on the weakness of full
round Salsa20/20 or ChaCha. Recently Choudhuri and Maitra [CM16] evalu-
ated the security of Salsa20 and ChaCha against differential cryptanalysis. In
their analysis, they introduced the hybrid model for the evaluation of differential
cryptanalysis of Salsa20 and ChaCha. In the hybrid model, the initial rounds
are run using the nonlinear function as in the real cipher, but subsequent rounds
are run using the linearized counterpart. To utilize this hybrid model they first
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examine the biases in the cipher after a few forward rounds and then estimate
an upper bound on the number of rounds till such biases can be observed. Be-
cause Salsa20 and ChaCha both use only use modular addition and XOR, it is
possible to upper bound the absolute values of the biases of Salsa20 and ChaCha
by those of the linearized counterparts. Combining both the forward biases and
backward biases, they claimed that Salsa20/12 and ChaCha12 are sufficient to
provide security against certain kinds of differential cryptanalysis for 256-bit
keys.

3.3.2 Linear Cryptanalysis and Distinguishing Attack
The quarter-round function of ChaCha consists of four additions. We have a
linear expression of the round function by approximating these additions by
exclusive-or operations.

Sarkar [Sar09] evaluated the probability of the i-th bits of S(n) = X(0) +
X(1) + · · · +X(n−1) and L(n) = X(0) ⊕X(1) ⊕ · · · ⊕X(n−1) are identical; that
is, γ(n)

i = Pr[S
(n)
i = L

(n)
i ]. The probability γ

(2)
i equals to (1 + 2−i)/2 for n = 2.

Let x and y be integers over GF (232). The probability x+ y = x⊕ y holds
is given as;

Pr[x+ y = x⊕ y] =

31∏
i=0

γ
(2)
i = 2−29.75.

The quarter-round functions of ChaCha is given in section 3.2.3 and each func-
tion contain more than one addition. The maximum linear probability of the
quarter-round function is thus bounded by 2−29.75. Note that equivalence be-
tween addition and exclusive-or does not always hold, and the upper bound is
independent of the number of addition. We ignore the rotate operations of the
quarter-round functions in this estimate. The maximum linear probability of
20-round ChaCha is bounded by (2−29.75)20 = 2−595. We conclude that linear
cryptanalyses and distinguishing attacks on ChaCha are not effective.

3.3.3 Guess and Determine Analysis
We first analyze the quarter-round function. The quarter-round function is de-
scribed as follows:

aj+1 = (aj + bj) + (bj ⊕ (cj + (dj ⊕ (aj + bj))≪16))≪12)

bj+1 = ((bj ⊕ (cj + (dj ⊕ (aj + bj))≪16))≪12)

⊕ ((cj + (dj ⊕ (aj + bj))≪16) + ((((dj ⊕ (aj + bj))≪16)

⊕ ((aj + bj) + (bj ⊕ (cj + (dj ⊕ (aj + bj))≪16))≪12)))≪8))≪7

cj+1 = (cj + (dj ⊕ (aj + bj))≪16) + ((((dj ⊕ (aj + bj))≪16)

⊕ ((aj + bj) + (bj ⊕ (cj + (dj ⊕ (aj + bj))≪16))≪12)))≪8)

dj+1 = (((dj ⊕ (aj + bj))≪16)

⊕ ((aj + bj) + (bj ⊕ (cj + (dj ⊕ (aj + bj))≪16))≪12)))≪8

Each output value aj+1, bj+1, cj+1, dj+1 is calculated from all input values
(aj , bj , cj , dj). If adversary obtain all output values, the adversary has to guess
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at least three 32-bit input values in order to obtain remaining one 32-bit input
value. Even though the above guess-and-determine approach applies to one
round operation using the quarter function, the adversary has to guess 3 × 4
32-bit values to break two rounds operation that consists of the column round
operation and the diagonal round operation. Furthermore, keystream bit is
calculated after adding initial state bits as Z ← X +X(20). Thus, a guess-and-
determine approach cannot recover an initial key with reason a computational
cost.

3.3.4 Time-Memory-Data Tradeoff Attack
Baic ideas of time-memory-data tradeoff attack against a stream cipher are
proposed by Babbage [Bab95] and Golić [Gol97]. Birkov and Shamir [BS00]
proposed an advanced scheme that combines the basic ideas and an attack
against a block cipher [Hel80].

They show the tradeoff formula as follows;

TM2D2 = N2, P = N/D (D2 ≤ T ≤ N).

The five key parameters are defined as followings:

• N : the size of the search space

• P : the time required by preprocessing phase of the attack

• M : the amount of random access memory

• T : the time required by real-time phase of the attack

• D: the amount of real-time data available to the attack

Hong and Saker [HS05] evaluate the security of stream cipher with IV based
on the tradeoff. The size of the search space is N = 2k+v where k and v are the
bit length of the key and IV, respectively.

In the original version of ChaCha takes a 256-bit key and 64-bit nonce and
N = 2320. Thus, P = N3/4 = 2240, D = N1/4 = 280, M = N1/2 = 2160,
and T = N1/2 = 2160 satisfies the above the tradeoff formula, the total time
complexity of the attack P + T ≈ 2240 is less than 2256.

In the IFIT version of ChaCha takes a 256-bit key and 96-bit nonce and
N = 2352. A time-memory-data tradeoff attack is theoretically possible against
the version of ChaCha. For example, P = N2/3 = 2234.67, D = N1/3 = 2117,
M = N1/2 = 2176, and T = N1/2 = 2176 satisfies the above the tradeoff
formula, the total time complexity of the attack P + T ≈ 2234.67 is less than
2256. However, we can limit the amount of the real-time data up to 296 to have
a total time is greater than 2256. Table 3.2 shows the typical parameter of the
time-memory-data tradeoff attack.

3.3.5 Algebraic Attack
The algebraic degree and the number of terms in the ANF of the component
Boolean functions of modular addition can be obtained as follows [BS05]:
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d(fi) = i+ 1

n(fi) = 2i + 1

Every round has at least four 32-bit additions; thus after 20 round opera-
tions, d and n can be expected to be sufficiently large, and any algebraic attacks
are not efficient for breaking ChaCha. Currently, no algebraic attack is found.

3.3.6 Attacks on Initialization Process
There is no difference between an initialization process and a keystream gener-
ation process of ChaCha. The cipher has initial key loading process, and the
key, iv and counter values are loaded for every keystream generation. Thus, no
specific attack on the initialization process exists on ChaCha.

3.3.7 Analysis on Period
We estimate the variety of the output keystream of ChaCha to evaluate the
periodicity. ChaCha is assumed to be a random function in this analysis.

The input of the IETF version of ChaCha is a 256-bit key, a 32-bit block
counter, and a 96-bit nonce; thus, the number of elements in the input set
of ChaCha is 2384 The number of possible elements in the output set is up
to 2384. Let these elements be y1, y2, …, y2384 . We introduce probabilistic
variables Y1, Y2, …, Y2384 . The probabilistic value Yi is 1 if there exists an
input x such that yi = ChaCha(x) or 0 otherwise. Now, we define a variable
Y = Y1 + Y2 + · · · + Y2384 . The expectation value E[Y ] is the average number
of elements in the output set.

E[Y] can be evaluated as;

E[Y ] = E[Y1 + Y2 + · · ·+ Y2384 ]

= E[Y1] + E[Y2] + · · ·+ E[Y2384 ]

= 2384E[Y1],

by the identity of the variables.
On the other hand, E[Y1] can be calculated as;

E[Y1] = 1− (1− 2−384)2
384

≈ 1− e−1

≈ 0.632.

Note that (1 − 2−384)2
384 ≈ e−1 is the probability that y1 does not appear in

output set with 2384 inputs.
Thus, E[Y] can be estimated as (1− e−1)2384 and keystream of ChaCha has

variety of 2383. We expect to have 2191.5 keystreams without collision according
to the birthday paradox theory. The IETF version of ChaCha can generate up
to 232 keystreams within the same key and nonce, and it is expected that no
shorter periods would be found.
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3.3.8 Side-Channel Attack
We evaluate the security of ChaCha against side channel attacks including sin-
gle/differential power analysis, cache timing attack, and fault injection attack.

Power Analysis

Single Power Analysis The quarter-round function of ChaCha contains
fixed-distance rotations. The fixed-distance rotation operation can be imple-
mented using two bit-shift operations or (x)≪n = ((x)�n)⊕((x)�(W−n)) where
W is the bit-length of a word. The bit-shift operations are vulnerable to simple
power analysis [Koc09].

Each word of the key is stored into arrays in the initial matrix generation
process. An adversary may get the Hamming weight of the words using the
power consumption information.

A masking countermeasure can protect these analyses.

Differential Power Analysis We evaluate the security of ChaCha against
the correlation power analysis [BCO04] which is a variant of differential power
analyses. We assume that an adversary can control the counter C = (c0) and
nonce N = (n0, n1, n2).

The first four instructions in the quaterround(x0, x4, x8, x12) in the first
round is as followings;

x0 ← σ0 + k0

x12 ← c0 ⊕ (σ0 + k0)

x12 ← (c0 ⊕ (σ0 + k0))≪16

x8 ← k4 + ((c0 ⊕ (σ0 + k0))≪16)

The adversary focus on the second instruction and measure the power con-
sumption by changing c0. One can find the value of k0 using correlation power
analysis based on hamming-distance or hamming-weight model. Now, the ad-
versary can control the value of (c0 ⊕ (σ0 + k0))≪16) after knowing k0 and find
k4 from the third instruction. One must use hamming-weight model since the
previous value of x8 is k4 and unknown.

The first four instructions in the quaterround(x5, x9, x13, x1) in the first
round is as followings;

x5 ← k1 + k5

x1 ← σ2 ⊕ (k1 + k5)

x1 ← (σ2 ⊕ (k1 + k5))≪16

x13 ← n0 + ((σ2 ⊕ (k1 + k5))≪16)

The adversary gets k1 + k5 by controlling n0 in the fourth instruction.
The first two instructions in the quaterround(x10, x14, x2, x6) in the first

round is as followings;

x10 ← k6 + n1

x6 ← k2 ⊕ (k6 + n1)
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The adversary finds k6 by controlling n1 in the first instruction, then gets k2 by
controlling (k6 + n1).

The first four instructions in the quaterround(x15, x11, x11, x7) in the first
round is as followings;

x15 ← n2 + σ3

x11 ← (k7 ⊕ (n2 + σ3))

x11 ← (k7 ⊕ (n2 + σ3))≪16

x7 ← k3 + ((k7 ⊕ (n2 + σ3))≪16)

The adversary finds k7 by controlling (n2 + σ3) in the second instruction then
gets k2 by controlling ((k7 ⊕ (n2 + σ3))≪16) in the fourth instruction.

The adversary knows the value of k0, k1 + k5, k2, k3, k4, k6, and k7 after
completing the correlation power analysis. Thus, one can get the entire key by
guessing k1, which impose 232 time complexity. This analysis can be protected
with a masking countermeasure.

Cache Timing Attack

ChaCha implementation takes constant time on a huge variety of CPUs. The
execution time is input-independent since ChaCha does not contain variant-
time operation such as S-box. Cache timing analysis against ChaCha is thus as
difficult as pure cryptanalysis of the ChaCha output.

Fault Injection Attack

The key stream of ChaCha is calculated as the addition of the initial matrix X
and the matrix X(20) processed by the round function. The initial matrix X or
matrix X(20) is output if the addition instruction is skipped by a fault injection
attack.

Step 1 Skip one of the add instructions that add words of the initial matrix X and
the matrix processed by the round-function X(20). The value of one word
in the keystream changes if one of the add instructions correctly; then,
store the word. The step fails if multiple values of words in the keystream
change, i.e., multiple instructions or some instructions in round functions
are skipped.

Step 2 Repeat Step 1 until obtaining the changed values of all of the word in the
keystream.

Step 3 Generate a matrix from the word obtained in Step 1. The matrix is ether
X or X(20). We can distinguish the matrix by checking orthogonal words
x0, x5, x10, and x15. The matrix is X if the orthogonal words are σ0, σ1,
σ2, and σ3 and go to Step 5. The matrix is X(20) otherwise and go to
Step 4.

Step 4 Calculate X from X(20) using the inverse round function.

Step 5 Extract the key from the words x4, x5, x6, x7, x8, x9, x10, x11 in X.
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Algorithm 7 Implementation 1 of ChaCha
Input: Key K, Counter C, and Nonce N
Output: Keystream Z
X ← Initial Matrix(K,C,N)
Z ← X
X ← X(20)

for i← 0 to 15 do
zi ← zi + xi

end for
return Z

Algorithm 8 Implementation 2 of ChaCha
Input: Key K, Counter C, and Nonce N
Output: Keystream Z
X ← Initial Matrix(K,C,N)
Z ← X(20)

for i← 0 to 15 do
zi ← zi + xi

end for
return Z

Bar-El et al. [BECN+06] and Trichina and Korkiyan [TK10] demonstrates
that instruction skip can be achieved with a laser pulse. Dehbaoui et al. [DDR+12]
and Morno et al. [MDH+13] shows instruction skip using an electromagnetic
pulse. Korak and Hoefler [KH14], Endo et al. [EHH+14], and Yuce et al [YGS15]
proposed instruction skip based on a glitchy clock signal.

Algorithm 7 and 8 shows the implementations of ChaCha. An adversary
can obtain the elements of the initial matrix X or the matrix X(20) processed
by the round function by skipping the add instruction of the first or second
implementation, respectively.

A countermeasure against this sort of attacks is to separate variables; that
is, distinct variables store the inputs and output of the addition. Consider an
addition z ← x+y. The addition returns the initial value of variable z even if the
addition is skipped. Thus, the adversary can get neither the value of variables
x and y. Algorithm 9 shows the implementation using countermeasure based
on variable separation.

We should note that variable separation in source-code level does not work

Algorithm 9 Countermeasure for fault injection analysis
Input: Key K, Counter C, and Nonce N
Output: Keystream Z
X ← Initial Matrix(K,C,N)
Y ← X(20)

for i← 0 to 15 do
zi ← xi + yi

end for
return Z
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int add(int x, int y){
int z;
z = x + y;
return z;

}

Figure 3.3: Variable separation in source-code level

add:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl 8(%ebp), %edx
movl 12(%ebp), %eax
addl %edx, %eax
leave
ret

Figure 3.4: Assembly code for x86 architecture

in actual implementation. Figure 3.3 show the source-code of add function; and,
Figure 3.4 and 3.5 are the assembly code for the x86 and x86-64 architecture,
respectively, compiled from the source-code. In the original source-code the
inputs are stored in the variables x and y and the output is stored to the
variable z; they are separated. On the other hand, the addition z = x + y is
translated to addl %edx, %eax in the assembly code, which means that the
addition result of the values in the registers eax and edx is stored to the register
eax . The second input is stored into the eax in the assembly code in Fig. 3.5 and
3.4; thus, the adversary can get the second input by skipping the add instruction.
Note that the x86 and x86-64 architecture support only two-operand instruction
for addition; thus, we cannot use the variable separation method essentially.
However, the x86 and x86-64 architecture have a complicated structure and Ivy

add:
pushq %rbp
movq %rsp, %rbp
movl %edi, -20(%rbp)
movl %esi, -24(%rbp)
movl -20(%rbp), %edx
movl -24(%rbp), %eax
addl %edx, %eax
popq %rbp
ret

Figure 3.5: Assembly code for x86-64 architecture
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add:
mov r2, r0
add r0, r1, r2
bx lr

Figure 3.6: Assembly code for ARM architecture

Bridge microarchitecture has up to 19 stage instruction pipeline. Thus, it is
hard to skip a specific instruction in an actual CPUs with the x86 and x86-64
architecture.

The ARM architecture targets resource-constraint devices including IoT.
Thus, the ARM has simpler RISC architecture comparing with the x86 and x86-
64 architecture. The ARM Cortex-M0, M3, M4 processor have a three-stage
instruction pipeline, and the Coretex-M0+ has a two-stage pipeline. Yuce et
al. [YGS15] proposed an instruction skip based on a glitchy clock signal against
RISC-based CPU with seven stage instruction pipeline. We thus must protect
the implementation on the ARM architecture against the fault injection attack.

The ARM architecture three-operand instruction such as add r0, r1, r2,
which means that the addition result of the values in the registers r1 and r2 is
stored to the register r0 . Figure 3.6 shows the assembly code where the coun-
termeasure is used. We need to use assembly or inline-assembly implementation
to use the three-operand instruction explicitly.

3.4 Analysis on Poly1305
Bernstein [Ber05b] demonstrated that Poly1305 is ε-almost-∆-universal where
ε = 8dL/16e/2106. We show the definition of ε-almost-∆-universal and the
outline of his proof.

Security Definition Let (B,+) be an Abelian group. A family H of hash
functions that maps from a set A to the set B is said to be ε-almost ∆-universal
(ε-A∆U) w.r.t. (B,+), if for any distinct elements a, a′ ∈ A and for all δ ∈ B:

Pr
h∈H

[h(a)− h(a′) = δ] ≤ ε.

H is ∆-universal (∆U) if ε = 1/|B|.

Security Proof

Theorem 1. Poly1305 is ε-A∆U where ε = 8dL/16e/2106.

Proof. Let m, m′ be distinct messages, such that len(m) = len(m′) = L. Define
g as a 16-byte string and R be as subset of {0, 1, . . . , 2130 − 6}. Let U as the
set of integers in [−2130 + 6, 2130 − 6] congruent to g modulo 2128. Note that
#U ≤ 8.

If Hr(m) = Hr(m
′)+g then (m′(r) mod 2130−5)− (m(r) mod 2130−5) ≡

g( mod 2128) so (m′(r) mod 2130 − 5) − (m(r) mod 2130 − 5) = u for some
u ∈ U . Hence r is a root of the polynomial m′ − m − u modulo the prime
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2130 − 5 (by Lemma 1). This polynomial is non-zero by Lemma 2 and has a
degree at most dL/16e, so it has at most dL/16e roots modulo 2130 − 5. Sum
over all u ∈ U : there are most 8dL/16e possibilities for r.

Thus, there are at most 8dL/16e integers r ∈ R such that Hr(m) = Hr(m
′)+

g. Consequently, if #R = 2106, and if r is a uniform random element of R, then
Hr(m) = Hr(m

′) + g with probability at most 8dL/16e/2106.

Lemma 1. 2130 − 5 is prime.

Proof. Define p1 = (2130 − 6)/1517314646 and p2 = (p1 − 1)/222890620702.
Observe that 37003 and 221101 are prime divisors of p2−1; (37003 ·221101)2 >
p2; 2p2−1 − 1 is divisible by p2; 2(p2−1)/37003 − 1 and 2(p2−1)/221101 − 1 are co-
prime to p2; p22 > p1; 2p1−1−1 is divisible by p1; 2(p1−1)/p2−1 is co-prime to p1;
p21 > 2130−5; 22130−6−1 is divisible by 2130−5; and 2(2

130−6)/p1 −1 is co-prime
to 2130− 5. Hence p2, p1, and 2130− 5 are prime by Pocklington’s theorem.

Lemma 2. Let m and m′ be messages and u be an integer. If the polynomial
m′ −m− u is zero modulo 2130 − 5 then m = m′.

Proof. Define c1, c2, . . . , cq as above, and define c′1, c
′
2, . . . c

′
q for m′.

If q > q′ then the coefficient of xq in m′ −m is 0− c1. By construction c1 is
in {1, 2, 3, . . . , 2129}, so it is non-zero modulo 2130− 5, which is a contradiction.
Thus, q ≤ q′ and q ≥ q′ similarly; hence, q = q′.

If i ∈ {1, 2, . . . , q} then ci − c′i is the coefficient of xq+1−i in m′ − m − u,
which can be divide by 2130− 5 using the hypnosis. However, ci− c′i is between
−2129 and 2129 by construction; thus, ci = c′i. In particular, cq = c′q.

Note that q = dlen(m)/16e; thus,L len(m) is between 16q−15 and 16q. The
value of len(m) is determined by q and cq, which is 16q if 2128 ≤ cq, 16q − 1 if
2120 ≤ cq < 2121, 16q− 2 if 2112 ≤ cq < 2113, …, 16q− 15 if 28 ≤ cq < 29. Hence
m′ also has len(m) bytes.

Now consider any j ∈ {0, 1, . . . , len(m)}. Write i = dj/6e+1; then 16i−16 ≤
j− ≤ 16i − 1, and 1 ≤ i ≤ dlen(m)/16e = q, so m[j] = bci/28(j−16i+16)c
mod 256 = bc′i/28(j−16i+16)c mod 256 = m′[j]. Hence m = m′.

3.5 Analysis on ChaCha20-Poly1305 AEAD
Procter [Pro14] demonstrated that the combination of ChaCha and Poly1305 is
a secure authenticated encryption scheme assuming ChaCha is a pseudo-random
function (PRF), and Poly1305 is ε-almost-∆-universal. We show the outline of
the security model and proof.

Security Model The accepted definition for a secure authenticated encryp-
tion scheme is one that provides both Indistinguishably under Chosen Plaintext
Attacks (IND-CPA) and the Integrity of Ciphertexts (INT-CTXT). These no-
tions were introduced by Bellare and Namprempre, and together these proper-
ties imply IND-CCA security. In fact, the stronger notion of IND$-CPA security
can be shown to be achieved by this composition.

To model these two notions the adversary is given access to an encryption
oracle and a decryption oracle and permitted to make at most q queries to these
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oracles. The proof proceeds via a series of games and the encryption and de-
cryption oracles in Game i are denoted Ei and Di respectively. An adversary
breaks the IND-CPA security of the scheme if they can distinguish (C, T ) gen-
erated by E0 from a random bit-string of the same length (generated by an
oracle denoted by the adversary’s advantage against the IND$-CPA security of
a scheme is measured by

AdvChaCha20-Poly1305 AEAD
IND$-CPA = |Pr[AE0

→ 1]− Pr[A$ → 1]|.

An adversary breaks the INT-CTXT security of a scheme if they can forge a
ciphertext, i.e. output a tuple (N,A,C, T ) with Dk(N,A,C, T ) = (N,A, P ) 6=
⊥ where (N,A,C, T ) is not the output from an encryption query and D outputs
⊥ to signify that the input was not a valid ciphertext. The advantage of this
adversary is measured by

AdvChaCha20-Poly1305 AEAD
INT-CTXT = Pr[AE0,D0

forges].

A combined measure of the adversary’s advantage against both IND$-CPA and
INT-CTXT can be defined as

AdvChaCha20-Poly1305 AEAD
AE = |Pr[AE0,D0

→ 1]− Pr[A$,⊥ → 1]|,

where ⊥ is an oracle that simply returns ⊥ (representing an invalid ciphertext)
an all inputs.

The adversaries that are considered in this section will be restricted to nonce-
respecting adversaries. This is a standard restriction for nonce-based authenti-
cated encryption schemes and means that an adversary will never ask encryption
queries (N,A, P ) and (N,A′, P ′) for (A,P ) 6= (A′, P ′). There are no restrictions
on the adversary’s use of nonces for decryption queries, however without loss
of generality, it is assumed that an adversary makes no redundant queries; no
query is repeated, and the output from an E query is never inputted to the D
oracle or vice versa.

Security Proof

Theorem 2. ChaCha20-Poly1305 AEAD is IND$-CPA and IND-CTXT secure
assuming that ChaCha is a PRF, and Poly1305 is ε-A∆U .

Proof. It is assumed in this security analysis that no pair (k,N ′) is ever repeated,
where N0 is the 12-byte nonce that is input to the ChaCha block function; this
assumption is critical to the security of ChaCha20-Poly1305 AEAD. The draft
recognizes that not all protocols will use 12-byte nonces and ‘it is up to the
protocol document to define how to transform the protocol nonce into a 12-byte
nonce; one suggestion is that prepending a constant value could provide a way
to expand a shorter nonce to 12 bytes.

If an implementation permits both 12-byte nonces and shorter nonces and
an adversary can predict how a short nonce will be expanded to 12 bytes (for
example, by guessing the value that will be prepended), then a nonce collision
could be forced by querying the encryption oracle using a short N and a 12-byte
N ′ which is the expanded version of N . In what follows, we will assume that
all nonces are 12 bytes long and that no (key, nonce) pair is ever repeated to
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the encryption oracle; the protocol specification, therefore, must prevent nonce
collisions of this form.

This section will assume that ChaCha is a PRF with signature ChaCha :
{0, 1}256 × {0, 1}128 → {0, 1}512, that is, 32-byte keys, 16-byte input, and 64-
byte output. This assumption has not been contradicted by any of the existing
cryptanalysis of ChaCha and the analysis presented in this note does not concern
this assumption.

The proof will also make use of the fact that Poly1305 is an ε-almost-∆-universal
hash function. The proof proceeds via a series of games, specified in Figures 1
and 2. Game 0 defines a combined IND-CPA and INT-CTXT game, with oracles
that realize ChaCha20-Poly1305 AEAD. The scheme specified in Game 4 clearly
gives no adversary any advantage in either of the IND$-CPA and INT-CTXT
games. The ciphertext and tag are sampled independently of P and uniformly at
random from {0, 1}512 (as they would be if generated by $) and it is impossible
for an adversary to query D4 with anything returning (N,A, P ) 6= ⊥.

The transitions between these games are justified as follows:

Games 0 and 1 If an adversary can distinguish between these two games, then they can
distinguish ChaCha from a function chosen uniformly at random from the
set of all functions with domain {0, 1}128 and range {0, 1}512. However,
we assume that ChaCha is a PRF, so no adversary gains a significant
advantage through the transition between these games.

Games 1 and 2 These games are identical, on the condition that the inputs to URF in
Game 1 never repeat. The inputs to URF are all of the form (i||N); for
each query, N is constant, but i is never reused 3, and no two encryption
queries use the same value for N . Therefore the random variables in
Games 1 and 2 are identically distributed.

Games 2 and 3 These games are identical unless an adversary submits (N,A,C, T ) to
their decryption oracle and D1 returns (N,A, P ) 6= ⊥. However, for each
query that an adversary makes, this happens with probability at most ε
(because Poly is ε-A∆U). By a standard hybrid argument, the probability
that an adversary making at most q queries successfully forge is at most
qε.

Games 3 and 4 The random variables in these games are sampled in different orders; how-
ever, the joint distributions are identical and therefore these games are
identical.

A standard game-hopping argument allows the probability Pr(AG(i−1) → 1)
to be bounded in terms of Pr(AGi → 1):

Pr(AG0 → 1) ≤ Pr(AG1 → 1) +AdvChaCha
PRF (B)

Pr(AG1 → 1) = Pr(AG2 → 1)

Pr(AG2 → 1) ≤ Pr(AG3 → 1) + qε

Pr(AG3 → 1) = Pr(AG4 → 1) = Pr(A$,⊥ → 1)

Poly1305 is ε-almost-∆-universal for ε = 8dL/16e/2106, where L denotes
the maximum byte length of messages. For this construction L is the largest
possible value of 16(dlen(A)/16e + dlen(C)/16e + 1), because the specification
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of ChaCha20-Poly1305 AEAD pads A and C to 16-byte blocks and adds an
extra 16 bytes of message denoting the length of additional data and ciphertext.
Therefore it can be concluded that for every adversary A there is an adversary
B against the PRF security of the ChaCha block function such that:

AdvChaha20-Poly1305 AEAD
AE = |Pr(AG0 → 1)− Pr(AG4 → 1)|

≤ AdvChaCha
PRF (B) + q

8(dL/16e)
2106

.
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Table 3.1: Comparison of Existing attacks on Salsa20 and ChaCha
Cipher Round/Key length Time Data Reference

2165 26 Crowley [Cro06]
5/256 2167 27 Velichkov et al. [VMCP12]

255 210 Shi et al. [SZFW12]
28 28 Choudhuri [CM17]
2177 216 Fischer et al. [FMB+06]

6/256 273 216 Shi et al. [SZFW12]
232 232 Choudhuri and Maitra [CM17]

7/128 2111 221 Aumasson et al. [AFK+08]
2109 219 Shi et al. [SZFW12]

Salsa20 2190 211.4 Tsunoo et al. [TSK+07]
2151 226 Aumasson et al. [AFK+08]

7/256 2148 224 Shi et al. [SZFW12]
2139 232 Choudhuri and Maitra [CM17]
2137 261 Choudhuri and Maitra [CM17]
2255 211.4 Tsunoo et al. [TSK+07]
2251 231 Aumasson et al. [AFK+08]

8/256 2250 227 Shi et al. [SZFW12]
2247.2 227 Maitra et al. [MPM15]
2245.5 296 Maitra [Mai16]
2244.9 296 Choudhuri and Maitra [CM17]

4/256 26 26 Choudhuri and Maitra [CM17]
4.5/256 212 212 Choudhuri and Maitra [CM17]
5/256 216 216 Choudhuri and Maitra [CM17]
6/128 2107 230 Aumasson et al. [AFK+08]

2105 228 Shi et al. [SZFW12]
2139 230 Aumasson et al. [AFK+08]

ChaCha 2136 228 Shi et al. [SZFW12]
6/256 2130 235 Choudhuri and Maitra [CM17]

2127.5 237.5 Choudhuri and Maitra [CM17]
2116 2116 Choudhuri and Maitra [CM17]
2248 227 Aumasson et al. [AFK+08]

7/256 2246.5 227 Shi et al. [SZFW12]
2238.9 224 Maitra [Mai16]
2233.7 296 Choudhuri and Maitra [CM17]
2233 228 Choudhuri and Maitra [CM17]
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Table 3.2: Time-Memory-Data Tradeoff Attack
Data (D) Memory (M) Preprocessing (P ) Attack (T ) Complexity (P + T )

28 2172 2344 2344 2345

216 2168 2336 2336 2337

224 2164 2328 2328 2329

232 2160 2320 2320 2321

240 2156 2312 2312 2313

248 2152 2304 2304 2305

256 2148 2296 2296 2297

264 2144 2288 2288 2289

272 2140 2280 2280 2281

280 2136 2272 2272 2273

288 2132 2264 2264 2265

296 2128 2256 2256 2257

2104 2124 2248 2248 2249

2112 2120 2240 2240 2241

2120 2116 2232 2232 2233

2128 2112 2224 2224 2225

2136 2108 2216 2216 2217

2144 2104 2208 2208 2209

2152 2100 2200 2200 2201

2160 296 2192 2192 2193
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Chapter 4

Conclusion

We evaluated the security of ChaCha20-Poly1305 AEAD. Procter [Pro14] proved
that ChaCha20-Poly1305 AEAD is secure if both of ChaCha and Poly1305 are
secure as Section 3.4 show the summary of the security proof. Bernstein [Ber05b]
demonstrated that Poly1305 is ε-almost-∆-universal where = 8dL/16e/2106 as
the proof-sketch is given in Section 3.3.

We thus evaluate the security of ChaCha against known cryptanalyses.
There are no efficient differential analysis, linear cryptanalysis and distinguish-
ing attack, guess and determine analysis, algebraic attack, and attacks on ini-
tialization attacks on ChaCha.

Time-memory-data tradeoff attack theoretically applies to ChaCha. The
time complexity to break the original version ChaCha with 64-bit counter and
64-bit IV is 2240 using 280 keystreams and 2160 memory size. The time complex-
ity is 2234.67 using 2117 keystreams and 2176 for the IETF version of ChaCha
with 32-bit counter and 96-bit IV. However, there are no time-memory-data
tradeoff attack with time complexity less than 2256 by limiting the number of
keystream to 296, which is practical assumption.

A naive implementation of ChaCha faces the risk of side-channel analysis
including single power analysis, differential power analysis, and fault injection
attack. Key recovery based on measurement of power consumption can be
deal with a masking countermeasure. We proposed a fault injection attack on
software implementation by skipping the addition (add) instructions to make the
keystream matrix Z from the initial matrix X and the matrix X(20) processed by
the round function. The attack can also be protected with variable separation
countermeasure.

Therefore, we conclude that we cannot find any weaknesses in ChaCha20-
Poly1305 AEAD.
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Table 4.1: Summary of Security Analysis
Algorithm Attack Evaluation

Differential Analysis No attack found
• Rotational Cryptanalysis
• Boomerang Attack
Linear Cryptanalysis No attack found
Distinguishing Attack No attack found
Guess and Determine Analysis No attack found
Time-Memory-Data Tradeoff Attack Protected Practically

ChaCha Algebraic Attack No attack found
Attacks on Initialization Process No attack found
Single Power Analysis Protected Practically
Difference Power Analysis Protected Practically
Cache Timing Attack No attack found
Fault Injection Analysis Protected Practically

Poly1305 N/A Provable Secure
ChaCha20-Poly1305 N/A Provable Secure
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