Skip to main content

Advertisement

Log in

Projected changes in the physical climate of the Gulf Coast and Caribbean

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

As the global climate warms due to increasing greenhouse gases, the regional climate of the Gulf of Mexico and Caribbean region will also change. This study presents the latest estimates of the expected changes in temperature, precipitation, tropical cyclone activity, and sea level. Changes in temperature and precipitation are derived from climate model simulations produced for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), by comparing projections for the mid- and late-21st century to the late 20th century and assuming a “middle-of-the-road” scenario for future greenhouse gas emissions. Regional simulations from the North America Regional Climate Change Program (NARCCAP) are used to corroborate the IPCC AR4 rainfall projections over the US portion of the domain. Changes in tropical cyclones and sea level are more uncertain, and our understanding of these variables has changed more since IPCC AR4 than in the case of temperature and precipitation. For these quantities, the current state of knowledge is described based on the recent peer-reviewed literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Due to the variations in the availability of data, slightly different periods are used for the computation of some different statistics. For time-averaged fields, the period 2075–2099 is compared to 1975–1999. For extremes (Figs. 3, 4, 8 and 9) the normals are defined over 30 years, so those are compared to 30-year averages for the models, 2020–2049 and 2070–2099. The NARCCAP 21st century simulations are forced with a more aggressive scenario (A2), but are run for an earlier period: 2040–2070. In the paper we will label the reference period in the simulation of the 20th Century as 20C and the simulations of the 21st century as 21C, regardless of the scenario used.

  2. The CMIP3 models reproduce the seasonal evolution of temperature and rainfall fairly well, but fail to capture some regional detail. For example, they simulate colder than observed surface temperature in the Caribbean sea, especially in spring and summer, which leads to less rainfall over the Islands in the early rainy season (Rauscher et al. 2008). The coarse resolution prevents a faithful simulation of orographic features, such as maxima in rainfall along the Caribbean coast of Central America and the cold summertime temperatures over the Sierra.

  3. For extremes, as shown in Figs. 3, 4, 8 and 9, data were not available for all models; results shown are computed from the nine models for which these data were available.

  4. Relative humidity is the ratio between the actual (specific) humidity and the humidity of saturated air at the same temperature.

  5. A full description of the integrations is available from www.narccap.ucar.edu.

  6. Melting of sea ice—ice currently floating on the surface of the ocean—does not increase sea level, because the floating ice already displaces its weight in liquid water by Archimedes’ principle, and that weight does not change when the ice melts.

References

  • Allison I, Bindoff N, Bindschadler R, Cox P, de Noblet N, England M, Francis J, Gruber N, Haywood A, Karoly D et al (2009) The Copenhagen Diagnosis, 2009: updating the world on the latest climate science. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia, p 60

    Google Scholar 

  • Bamber JL, Alley RB, Joughin I (2007) Rapid response of modern day ice sheets to external forcing. Earth Planet Sci Lett 257:1–13. doi:10.1016/j.epsl.2007.03.005

    Article  Google Scholar 

  • Battisti DS, Naylor (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323. doi:10.1126/science.1164363

  • Blanchon P, Eisenhauer A, Fietzke J, Liebetrau V (2009) Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand. Nature 458:881–885. doi:10.1038/nature07933

    Article  Google Scholar 

  • Bueno R, Herzfeld C, Stanton E, Ackerman F (2008) The Caribbean and climate change: the costs of inaction. Tech. rep., Stockholm Environment Institute—US Center, Global Development and Environment Institute, Tufts University, Somerville, MA

  • Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramillien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet Change 65(1–2):83–88. doi:10.1016/j.gloplacha.2008.10.004

    Article  Google Scholar 

  • Chang EK, Guo MY (2007) Is the number of north atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys Res Lett 34:L14,801

    Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level change. Geophys Res Lett 33:L01602. doi:10.1029/2005GL024826

    Article  Google Scholar 

  • Diffenbaugh N, Ashfaq M (2010) Intensification of hot extremes in the united states. Geophys Res Lett 37:L15701. doi:10.1029/2010GL043888

  • DiNezio PN, Clement AC, Vecchi GA, Soden BJ (2009) Climate response of the equatorial pacific to global warming. J Climate 22:4873–4892

    Article  Google Scholar 

  • Dube SK, Chittibabu P, Sinha PC, Rao AD, Murty TS (2004) Numerical modelling of storm surge in the Head Bay of Bengal using location specific model. Nat Hazards 31:437–453. doi:10.1023/B:NHAZ.0000023361.94609.4a

    Article  Google Scholar 

  • Dube SK, Jain I, Rao AD, Murty TS (2009) Storm surge modelling for the Bay of Bengal and Arabian Sea. Nat Hazards 51:3–27. doi:10.1007/s11069-009-9397-9

    Article  Google Scholar 

  • Elsner JB, Jagger TH, Dickinson M, Rowe D (2008) Improving multiseason forecasts of North Atlantic hurricane activity. J Climate 21:1209–1219

    Article  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. doi:10.1038/nature03906

    Article  Google Scholar 

  • Emanuel K (2007) Environmental factors affecting tropical cyclone power dissipation. J Climate 20:5497–5509

    Article  Google Scholar 

  • Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature 326:483–485

    Article  Google Scholar 

  • Evan AT, Vimont DJ, Heidinger AK, nand R Bennartz JPK (2009) The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies. Science 324:778–781

    Article  Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  Google Scholar 

  • Gray WM (1979) Hurricanes: their formation, structure and likely role in the tropical circulation. In: Meteorology over the tropical oceans. Royal Meteorological Society, pp 155–218

  • Grinsted A, Moore JC, Jefrejeva S (2009) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn 34:461–472

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jefrejeva S (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37. doi:10.1029/2010GL042947

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Climate 19:5686–5699

    Article  Google Scholar 

  • Holland GJ (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54:2519–2541

    Article  Google Scholar 

  • Horton R, Herweijer C, Rosenzweig C, Liu J, Gornitz V, Ruane AC (2008) Sea level rise projections for current generation CGCMS based on the semi-empirical method. Geophys Res Lett 35. doi:10.1029/2007GL032.486

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Karl TR, Melillo JM, Peterson TC, Hassol SJ (2009) Global climate change impacts in the United States. Cambridge University Press, Cambridge

    Google Scholar 

  • Kharin V, Zwiers F, Zhang X, Hegerl G (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Climate 20(8):1419–1444. doi:10.1175/JCLI4066.1

    Article  Google Scholar 

  • Knutson TR, McBride J, Chan J, Emanuel KA, Holland G, Landsea C, Held I, Kossin J, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nature Geoscience 3:157–163. doi:10.1038/ngeo779

    Article  Google Scholar 

  • Kopp R, Simons F, Mitrovica J, Maloof A, Oppenheimer M (2009) Probabilistic assessment of sea level during the last interglacial stage. Nature 462(7275):863–867

    Article  Google Scholar 

  • Kossin JP, Knapp KR, Vimont DJ, Murnane RJ, Harper BA (2007) A globally consistent reanalysis of hurricane variability and trends. Geophys Res Lett 34:L04,815

    Article  Google Scholar 

  • Landsea CW (2005) Hurricanes and global warming. Nature 438:E11–E13. doi:10.1038/nature04477

    Article  Google Scholar 

  • Landsea CW (2007) Counting atlantic tropical cyclones back to 1900. EOS Trans AGU 88(18). doi:10.1029/2007EO180001

  • Landsea CW, Harper BA, Horau K, Knaff JA (2006) Can we detect trends in extreme tropical cyclones? Science 313:452–454. doi:10.1126/science.1128448

    Article  Google Scholar 

  • Landsea CW, Vecchi GA, Bengtsson L, Knutson TR (2010) Impact of duration thresholds on atlantic tropical cyclone counts. J Climate. doi:10.1175/2009JCLI3034.1

    Google Scholar 

  • Leloup J, Clement A (2009) Why is there a minimum in projected warming in the tropical North Atlantic Ocean? Geophys Res Lett 36. doi:10.1029/2009GL038609

  • Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. EOS 87:233, 238, 241

    Google Scholar 

  • Mann ME, Sabbatelli TA, Neu U (2007) Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts. Geophys Res Lett 36:L22,707

    Google Scholar 

  • Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell J, Stouffer R, Taylor K (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Milliken KT, Anderson JB, Rodriguez AB (2008) A new composite Holocene sea-level curve for the northern Gulf of Mexico. In: Anderson JB, Rodriguez AB (eds) Response of upper Gulf Coast estuaries to Holocene climate change and sea-level rise. Geological Society of America, Boulder, CO, special paper 443, pp 1–11. doi:10.1130/2008.2443(01)

  • Mitrovica J, Gomez N, Clark P (2009) The sea-level fingerprint of West Antarctic collapse. Science 323(5915):753

    Article  Google Scholar 

  • Philander SGH (1990) El Niño, La Niña and the southern oscillation. Academic, New York

    Google Scholar 

  • Pollard D, DeConto R (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458(7236):329–332

    Article  Google Scholar 

  • Prandi P, Cazenave A, Becker M (2009) Is coastal mean sea level rising faster than the global mean? A comparison between tide gauges and satellite altimetry over 1993–2007. Geophys Res Lett 36:L05602. doi:10.1029/2008GL036564

    Article  Google Scholar 

  • Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461(7266):971–975. doi:10.1038/nature08471

    Article  Google Scholar 

  • Rahmstorf S (2010) A new view on sea level rise. Nature 4. doi:10.1038/climate.2010.29

  • Rao AD, Jain I, Murthy MVR, Murty TS, Dube SK (2008) Impact of cyclonic wind field on interaction of surge?wave computations using finite-element and finite-difference models. Nat Hazards 49:225–239. doi:10.1007/s11069-008-9284-9

    Article  Google Scholar 

  • Rauscher S, Giorgi F, Diffenbaugh N, Seth A (2008) Extension and Intensification of the Meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–571. doi:10.1007/s00382-007-0359-1

    Article  Google Scholar 

  • Rauscher SA, Kucharski F, Enfield DB (2010) The role of regional sst warming variations in the drying of meso-america in future climate projections*. J Climate 24(7):2003–2016. doi:10.1175/2010JCLI3536.1

    Article  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311(5763):986–990. doi:10.1126/science.1121381

    Article  Google Scholar 

  • Rignot E, Bamber JL, Broeke MRVD, Davis C, Li YH, Berg WJVD, Meijgaard EV (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience 1(2):106–110. doi:10.1038/ngeo102

    Article  Google Scholar 

  • Sarachik ES, Cane MA (2010) The El Niño—southern oscillation phenomenon. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res 112(F3):1–19

    Article  Google Scholar 

  • Sobel AH (2007) Simple models of ensemble-averaged tropical precipitation and surface wind. In: Schneider T, Sobel AH (eds) The global circulation of the atmosphere. Princeton University Press, Princeton

    Google Scholar 

  • Sobel AH, Held IM, Bretherton CS (2002) The ENSO signal in tropical tropospheric temperature. J Climate 15:2702–2706

    Article  Google Scholar 

  • Swanson KL (2008) Nonlocality of atlantic tropical cyclone intensity. Geochem Geophys Geosyst 9:Q04V01

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and natural 20th century SST trends in the north atlantic. J Climate 22:1469–1481

    Article  Google Scholar 

  • Titus JG, Richman C (2001) Maps of lands vulnerable to sea level rise: modeled elevations along the US Atlantic and Gulf Coasts. Clim Res 18:205–228

    Article  Google Scholar 

  • Vecchi GA, Knutson TR (2008) On estimates of historical north atlantic tropical cyclone activity. J Climate 21:3580–3600. doi:10.1175/2008JCLI2178.1

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007a) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–1070

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007b) Global warming and the weakening of the tropical circulation. J Climate 20:4316–4340

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing. Nature 441. doi:10.1038/nature04744

  • Vecchi GA, Swanson KL, Soden BJ (2008) Whither hurricane activity? Science 322:687. doi:10.1126/science.1164396

    Article  Google Scholar 

  • Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106:21527–21532

    Article  Google Scholar 

  • Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat Sci Rev 21:295–305

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846. doi:10.1126/science.1116448

    Article  Google Scholar 

  • Wingham DJ, Wallis DW, Shepherd A (2009) Spatial and temporal evolution of Pine Island Glacier thinning. Geophys Res Lett 36:L17501. doi:10.1029/2009GL039126

    Article  Google Scholar 

  • Xie SP, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Climate, early online. doi:10.1175/2009JCLI3329.1

Download references

Acknowledgements

We are grateful to the researchers that produced Figs. 1, 12, 16, and 17 and to the publishers that granted permission to use them; to the modeling groups that provided climate simulations to the CMIP3 project; to the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the World Climate Research Programme’s (WCRP’s) Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset (support of this dataset is provided by the Office of Science, U.S. Department of Energy); and to NARCCAP for the regional simulations (NARCCAP is funded by the National Science Foundation (NSF), the U.S. Department of Energy (DoE), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Environmental Protection Agency Office of Research and Development (EPA)).

This work was supported by the Earth Institute at Columbia University to inform policy-makers in the Gulf region in preparation for the United Nations Cancun Climate Summit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Biasutti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biasutti, M., Sobel, A.H., Camargo, S.J. et al. Projected changes in the physical climate of the Gulf Coast and Caribbean. Climatic Change 112, 819–845 (2012). https://doi.org/10.1007/s10584-011-0254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-011-0254-y

Keywords

Navigation