Skip to main content

Chemical War in Marine Animal Forests: Natural Products and Chemical Interactions

  • Chapter
  • First Online:
Perspectives on the Marine Animal Forests of the World
  • 724 Accesses

Abstract

Forests are characterized by many different species living together, a high biodiversity, and many kinds of relationships among them, resulting from an advanced degree of mutual adaptations along evolution. Interactions occur both at interspecific and intraspecific levels, including many different types, such as competition (for food, light, space, etc.), predation, fouling, parasitism, symbiosis, etc. Many organisms evolved to defend or protect themselves against all sort of aggressive interactions. Reactions may include chemical, physical, and/or behavioral strategies. Chemical interactions are very common in terrestrial forests, regulating many of these relationships among species. Natural products are the molecules involved in these regulations and usually consist of secondary metabolites. In marine animal forests, many interactions are regulated just the same way as in terrestrial forests, with all sorts of relationships controlled by natural compounds, but studying these ecosystems is often challenging because many species are cryptic, small, and/or rare and belong to poorly known taxonomic groups. In this chapter, the different chemical strategies commonly found in marine animal forests are reviewed, as well as how relevant they are in the structuring and functioning of these ecosystems. This chapter also shows how high biodiversity is correlated to high chemical diversity in marine animal forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affeld S, Kehraus S, Wägele H, König GM (2009) Dietary derived sesquiterpenes from Phyllodesmium lizardensis. J Nat Prod 72(2):298–300. https://doi.org/10.1021/np800583e

    Article  CAS  PubMed  Google Scholar 

  • Ambrosio LJ, Brooks WR (2011) Recognition and use of ascidian hosts, and mate acquisition by the symbiotic pea crab Tunicotheres moseri (Rathbun, 1918): the role of chemical, visual and tactile cues. Symbiosis 53(2):53–61

    Article  Google Scholar 

  • Amsler CD (2001) Induced defenses in macroalgae: the herbivore makes a difference. J Phycol 37:353–356

    Article  Google Scholar 

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91

    CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (1998) Chemical defense against herbivory in the antarctic marine macroalgae Iridaea cordata and Phyllophora antarctica (Rhodophyceae). J Phycol 34:53–59

    Article  CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (1999) An Antarctic feeding triangle: defensive interactions between macroalgae, sea urchins, and sea anemones. Mar Ecol Prog Ser 183:105–114

    Article  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2000) Chemical defenses of Antarctic marine organisms: a reevaluation of the latitudinal hypothesis. In: Davidson W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. 7th SCAR international biology symposium, Christchurch

    Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2001) Secondary metabolites as mediators of trophic interactions among Antarctic marine organisms. Am Zool 41:17–26

    CAS  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159

    Article  CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2008) Macroalgal chemical defenses in polar marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 91–103

    Chapter  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Baker BJ (2009a) Defenses of polar macroalgae against herbivores and biofoulers. Bot Mar 52(6):535–546

    Article  CAS  Google Scholar 

  • Amsler MO, McClintock JB, Amsler CD, Angus RA, Baker BJ (2009b) An evaluation of sponge-associated amphipods from the Antarctic Peninsula. Ant Sci 21:579–589

    Article  Google Scholar 

  • Anderson JA, Valentine M, Epifanio CE (2010) Characterization of the conspecific metamorphic cue for Hemigrapsus sanguineus (De Haan). J Exp Mar Biol Ecol 382:139–144

    Article  Google Scholar 

  • Angulo-Preckler C, Cid C, Oliva F, Avila C (2015a) Antifouling activity in some benthic Antarctic invertebrates by “in situ” experiments at Deception Island, Antarctica. Mar Environ Res 105:30–38. https://doi.org/10.1016/j.marenvres.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  • Angulo-Preckler C, Spurkland T, Avila C, Iken K (2015b) Antimicrobial activity of selected benthic Arctic invertebrates. Polar Biol 38:1941–1948

    Article  Google Scholar 

  • Angulo-Preckler C, Tuya F, Avila C (2017a) Abundance and size patterns of echinoderms in coastal soft-bottoms at Deception Island (South Shetland Islands, Antarctica). Cont Shelf Res 137:131–141

    Article  Google Scholar 

  • Angulo-Preckler C, San Miguel O, García-Aljaro C, Avila C (2017b) Antibacterial defenses and palatability of some shallow-water Antarctic sponges. Hydrobiology 806(1):123–138

    Article  CAS  Google Scholar 

  • Anthoni U, Nielsen RH, Perieira M, Christophersen C (1990) Bryozoan secondary metabolites: a chemotaxonomical challenge. Comp Biochem Physiol 96B:431–437

    Google Scholar 

  • Antonov AS, Avilov SA, Kalinovsky AI, Anastyuk SD, Dmitrenok PS, Evtushenko EV, Kalinin VI, Smirnov AV, Taboada S, Ballesteros M, Avila C, Stonik VA (2008) Triterpene glycosides from Antarctic Sea cucumbers I. Structure of liouvillosides A1, A2, A3, B1 and B2 from the sea cucumber Staurocucumis liouvillei: new procedure for separation of highly polar glycoside fractions and taxonomic revision. J Nat Prod 71(10):1677–1685

    Article  CAS  PubMed  Google Scholar 

  • Antonov AS, Avilov SA, Kalinovsky AI, Anastyuk SD, Dmitrenok PS, Kalinin VI, Taboada S, Bosch A, Avila C, Stonik VA (2009) Triterpene glycosides from Antarctic Sea cucumbers II. Structure of Achlioniceosides A1 (1), A2 (2), A3 (3), B1 (4) from the sea cucumber Achlionice violaecuspidata (=Rhipidothuria racowitzai). J Nat Prod 72(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Antonov AS, Avilov SA, Kalinovsky AI, Dmitrenok PS, Kalinin VI, Taboada S, Ballesteros M, Avila C (2011) Triterpene glycosides from Antarctic Sea cucumbers III. Structures of liouvillosides A(4) and A(5), two minor disulphated tetraosides containing 3-O-methylquinovose as terminal monosaccharide units from the sea cucumber Staurocucumis liouvillei (Vaney). Nat Prod Res 25(14):1324–1333

    Article  CAS  PubMed  Google Scholar 

  • Arntz WE, Brey T, Gallardo A (1994) Antarctic zoobenthos. Oceanogr Mar Biol 32:241–304

    Google Scholar 

  • Aronson RB, Blake D (2001) Global climate change and the origin of modern benthic communities in Antarctica. Am Zool 41:27–39

    Google Scholar 

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2010) Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. Eur J Phycol 45(1):19–26

    Article  Google Scholar 

  • Avila C (1992) A preliminary catalogue of natural substances of opisthobranch molluscs from Western Mediterranean and near Atlantic. Sci Mar 5(4):373–382

    Google Scholar 

  • Avila C (1993) Sustancias naturales de moluscos opistobranquios: estudio de su estructura, origen y función en ecosistemas bentónicos. PhD Dissertation. Universitat de Barcelona, Barcelona, Catalonia

    Google Scholar 

  • Avila C (1995) Natural products of opisthobranch molluscs: a biological review. Oceanogr Mar Biol Annu Rev 33:487–559

    Google Scholar 

  • Avila C (2006) Molluscan natural products as biological models: chemical ecology, histology and laboratory culture. In: Cimino G, Gavagnin M (eds) Progress in molecular and subcellular biology. Subseries marine molecular biotechnology, vol 2. Springer, Berlin, pp 1–23

    Google Scholar 

  • Avila C (2016) Biological and chemical diversity in Antarctica: from new species to new natural products. Biodiversity 17(1):1–7

    Article  Google Scholar 

  • Avila C, Durfort M (1996) Histology of epithelia and mantle glands of selected species of Doridacean molluscs with chemical defensive strategies. Veliger 39(2):148–163

    Google Scholar 

  • Avila C, Paul VJ (1997) Chemical ecology of the nudibranch Glossodoris pallida: is the location of diet-derived metabolites important for defense? Mar Ecol Progr Ser 150:171–180

    Article  CAS  Google Scholar 

  • Avila C, Iken KB, Fontana A, Gimino G (2000) Chemical ecology of the Antarctic nudibranch Bathydoris hodgsoni Eliot, 1907: defensive role and origin of its natural products. J Exp Mar Biol Ecol 252:27–44

    Article  CAS  PubMed  Google Scholar 

  • Avila C, Taboada S, Núñez-Pons L (2008) Antarctic marine chemical ecology: what is next? Mar Ecol 29:1–71

    Article  CAS  Google Scholar 

  • Avila C, Núñez-Pons L, Moles J (2018) From the tropics to the poles: chemical defensive strategies in sea slugs (Mollusca: Heterobranchia). In: Puglisi-Weening M, Becerro M (eds) Chemical ecology: the ecological impacts of marine natural products. CRC Press and Taylor and Francis, New York, pp 71–163

    Chapter  Google Scholar 

  • Bakus GJ, Green G (1974) Toxicity in sponges and holothurians: a geographic pattern. Science 185:951–953

    Article  CAS  PubMed  Google Scholar 

  • Bane V, Lehane M, Dikshit M, O’Riordan A, Furey A (2014) Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins 6:693–755. https://doi.org/10.3390/toxins6020693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J, Sun YL, Zhang XY, Han Z, Gao HC, He F, Qian PY, Qi SH (2013) Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. J Antibiot 66:219

    Article  CAS  Google Scholar 

  • Barnes DKA, Rothery P (1996) Competition in encrusting Antarctic bryozoan assemblages: outcomes, influences and implications. J Exp Mar Biol Ecol 196:267–284

    Article  Google Scholar 

  • Barthel D (1995) Tissue composition of sponges from the Weddell Sea, Antarctica—not much meat on the bones. Mar Ecol Prog Ser 123(1–3):149–153

    Article  Google Scholar 

  • Barthel D, Gutt J (1992) Sponge associations in the eastern Weddell Sea. Antarct Sci 4:137–150

    Article  Google Scholar 

  • Barthel D, Tendal OS (1994) Antarctic Hexactinellida. In: Wägele JW, Sieg J (eds) Synopses of Antarctic benthos. Koeltz Scientific Books, Champaing, IL, pp 9–135

    Google Scholar 

  • Blackman AJ, Walls JT (1995) Bryozoan secondary metabolites and their chemical ecology. Stud Nat Prod Chem 17:73–112

    Article  CAS  Google Scholar 

  • Blumenberg M, Thiel V, Pape T, Michaelis W (2002) The steroids of hexactinellid sponges. Naturwissenschaften 89(9):415–419

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Carroll AR, Copp BR, Keyzers RA, Davis RA (2018) Marine natural products. Nat Prod Rep 35:8–53

    Article  CAS  PubMed  Google Scholar 

  • Boal JG, Prosser KN, Holm JB, Simmons TL, Haas RE, Nagle GT (2010) Sexually mature cuttlefish are attracted to the eggs of conspecifics. J Chem Ecol 36:834–836

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov A, Kehraus S, Bleidissel S, Preisfeld G, Schillo D, Piel J, Brachmann AO, Wägele H, König GM (2014) Defense in the Aeolidoidean genus Phyllodesmium (Gastropoda). J Chem Ecol 40:1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Bosch TCG, McFall-Ngai MJ (2011) Metaorganisms as the new frontier. Zoology 114:185–190

    Article  PubMed  Google Scholar 

  • Boucher DH, Jarnes S, Keeler KH (1982) The ecology of mutualism. Annu Rev Ecol Syst 13:315–347

    Article  Google Scholar 

  • Bourdeau PE (2010) Cue reliability, risk sensitivity and inducible morphological defense in a marine snail. Oecologia 162:987–994

    Article  PubMed  Google Scholar 

  • Bowden DA (2005) Seasonality of recruitment in Antarctic sessile marine benthos. Mar Ecol Prog Ser 297:101–118

    Article  Google Scholar 

  • Bowden DA, Clarke A, Peck LS, Barnes DKA (2006) Antarctic sessile marine benthos: colonisation and growth on artificial substrata over 3 years. Mar Ecol Prog Ser 316:1–16

    Article  Google Scholar 

  • Brandt A, Gooday AJ, Brandaõ SN, Brix S, Brökeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe JA, Janussen D, Kaiser S, Linse K, Malyutina M, Pawlowski J, Raupach M, Vanreusel A (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447(7142):307–311

    Article  CAS  PubMed  Google Scholar 

  • Brey T, Pearse J, Basch L, McClintock J, Slattery M (1995) Growth and production of Sterechinus neumayeri (Echinoidea: Echinodermata) in McMurdo Sound, Antarctica. Mar Biol 124:279–292

    Article  Google Scholar 

  • Brodie ED (1999) Predator–prey arms races. Bioscience 49(7):557–568

    Article  Google Scholar 

  • Bronstein JL (1994) Our current understanding of mutualism. Q Rexi Biol 69:31–51

    Article  Google Scholar 

  • Bruno JF, Petes LE, Drew Harvell C, Hettinger A (2003) Nutrient enrichment can increase the severity of coral diseases. Ecol Lett 6:1056–1061

    Article  Google Scholar 

  • Bryan PJ, Yoshida WY, McClintock JB, Baker BJ (1995) Ecological role for pteroenone, a novel antifeedant from the conspicuous antarctic pteropod Clione antarctica (Gymnosomata: Gastropoda). Mar Biol 122:271–277

    Google Scholar 

  • Bryan PJ, McClintock JB, Hopkins TS (1997) Structural and chemical defenses of echinoderms from the northern Gulf of Mexico. J Exp Mar Biol Ecol 210:173–186

    Article  CAS  Google Scholar 

  • Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL, Ford SE (2014) Climate change influences on marine infectious diseases: implications for management and society. Annu Rev Mar Sci 6:249

    Article  Google Scholar 

  • Callow JA, Callow ME (2006) Biofilms. In: Antifouling compounds. Springer, Berlin, pp 141–169

    Chapter  Google Scholar 

  • Campbell AH, Harder T, Nielsen S, Kjelleberg S, Steinberg PD (2011) Climate change and disease: bleaching of a chemically defended seaweed. Glob Chang Biol 17(9):2958–2970

    Article  Google Scholar 

  • Carbone M, Núñez Pons L, Castelluccio F, Avila C, Gavagnin M (2009) Illudalane sesquiterpenoids of the Alcyopterosin series from the Antarctic marine soft coral Alcyonium grandis. J Nat Prod 72(7):1357–1360

    Article  CAS  PubMed  Google Scholar 

  • Carbone M, Núñez-Pons L, Paone M, Castelluccio F, Avila C, Gavagnin M (2012) Rossinone-related meroterpenes from the Antarctic tunicate Aplidium fuegiense. Tetrahedron 68:3541–3544

    Article  CAS  Google Scholar 

  • Carbone M, Gavagnin M, Haber M, Guo YW, Fontana A, Manzo E, Genta-Jouve G, Tsoukatou M, Rudman WB, Cimino G, Ghiselin MT, Mollo E (2013) Packaging and delivery of chemical weapons: a defensive Trojan horse stratagem in chromodorid nudibranchs. PLoS One 8:e62075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cárdenas CA, González-Aravena M, Font A, Hestetun JT, Hajdu E, Trefault N, Malmberg M, Bongcam-Rudloff E (2018) High similarity in the microbiota of cold-water sponges of the genus Mycale from two different geographical areas. Peer J 6:e4935. https://doi.org/10.7717/peerj.4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro P, Huber ME (2005) Marine biology, 5th edn. McGraw-Hill, Dubuque, IA

    Google Scholar 

  • Cerrano C, Arillo A, Bavestrello G, Calcinai B, Cattaneo-Vietti R, Penna A, Sarà M, Totti C (2000) Diatom invasion in the antarctic hexactinellid sponge Scolymastra joubini. Polar Biol 23(6):441–444

    Article  Google Scholar 

  • Cetrulo GL, Hay ME (2000) Activated chemical defenses in tropical versus temperate seaweeds. Mar Ecol Progr Ser 207:243–253

    Article  CAS  Google Scholar 

  • Cimino G, Ghiselin MT (2001) Marine natural products chemistry as an evolutionary narrative. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press LLC, pp 115–154

    Google Scholar 

  • Clare AS, Rittschof D, Gerhart DJ, Maki JS (1992) Molecular approaches to nontoxic antifouling. Inv Repr Dev 22:67–76

    Article  CAS  Google Scholar 

  • Clark MS, Peck LS (2009a) HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Mar Gen 2:11–18

    Article  Google Scholar 

  • Clark MS, Peck LS (2009b) Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chap 14:649–660

    Article  CAS  Google Scholar 

  • Clarke A, Aronson RB, Crame JA, Gili JM, Blake DB (2004) Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct Sci 16:559–568

    Article  Google Scholar 

  • Coley PD, Bryant JB, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Colin C, Leblanc C, Wagner E, Delage L, Leize-Wagner E, Van Dorsselaer A, Kloareg B, Potin P (2003) The brown algal kelp Laminaria digitata features distinct bromoperoxidase and iodoperoxidase activities. J Biol Chem 278:23545–23552

    Article  CAS  PubMed  Google Scholar 

  • Colin C, Leblanc C, Wagner E, Delage L, Leize-Wagner E, Van Dorsselaer A, Potin P (2005) Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases. J Biol Inorg Chem 10:156–166

    Article  CAS  PubMed  Google Scholar 

  • Cortesi F, Cheney KL (2010) Conspicuousness is correlated with toxicity in marine opisthobranchs. J Evol Biol 23(7):1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Costa Leal MC, Puga J, Serodio J, Gomes NCM, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades – where and what are we bioprospecting? PLoS One 7(1):e30580. https://doi.org/10.1371/journal.pone.0030580

    Article  CAS  Google Scholar 

  • Cronin G (2001) Marine chemical ecology. In: McClintock JB, Baker BJ (eds). CRC Press, Boca Raton, p 325

    Google Scholar 

  • Cronin G, Hay ME (1996a) Induction of seaweed chemical defenses by amphipod grazing. Ecology 77(8):2287–2301

    Article  Google Scholar 

  • Cronin G, Hay ME (1996b) Within plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth differentiation balance hypothesis. Oecologia 105:361–368

    Article  PubMed  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists

    Google Scholar 

  • Cruz-Rivera E, Hay ME (2003) Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol Monogr 73(3):483–506

    Article  Google Scholar 

  • Cutignano A, Zhang W, Avila C, Cimino G, Fontana A (2011) Intrapopulation variability in the terpene metabolism of the Antarctic opisthobranch mollusc Austrodoris kerguelenensis. Eur J Org Chem 2011:5383–5389

    Article  CAS  Google Scholar 

  • Da Cruz JF, Gaspar H, Calado G (2012) Turning the game around: toxicity in a nudibranch-sponge predator-prey association. Chemoecology 22:47–53

    Article  CAS  Google Scholar 

  • Da Gama BAP, Pereira RC, Carvalho AGV, Coutinho R, Yoneshigue­Valentin Y (2002) The effects of seaweed secondary metabolites on biofouling. Biofouling 18:13–20

    Article  CAS  Google Scholar 

  • Davidson BS (1993) Ascidians: producers of amino acid-derived metabolites. Chem Rev 93(5):1771–1791

    Article  CAS  Google Scholar 

  • Davidson SK (1999) The biology of bryostatins in the bryozoan Bugula neritina. Ph.D. dissertation, University of California San Diego, La Jolla

    Google Scholar 

  • Davidson SK, Haygood MG (1999) Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbor distinct strains of the bacterial symbiont “Candidatus Endobugula sertula”. Biol Bull 196:273–280

    Article  CAS  PubMed  Google Scholar 

  • Davidson SK, Allen SW, Um GE, Anderson CM, Haygood MG (2001) Evidence for the biosynthesis of bryostatins by the bacterial symbiont “Candidatus Endobugula sertula” of the bryozoan Bugula neritina. Appl Environ Microbiol 67:4531–4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayton PK (1979) Observations of growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. In: Levi N, Bourny-Esnault (eds) Sponge biology. Centre de recherché Scientifique, Paris, pp 271–282

    Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecosyst 16:215–245

    Article  Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Monogr 44:105–128

    Article  Google Scholar 

  • Dayton PK, Mordida BJ, Bacon F (1994) Polar marine communities. Am Zool 34:90–99

    Article  Google Scholar 

  • De Broyer C, Jazdzewski K (1996) Biodiversity of the Southern Ocean: towards a new synthesis for the Amphipoda (Crustacea). Boll Mus Civ Stor Nat Verona 20:547–568

    Google Scholar 

  • De Broyer C, Scailteur Y, Chapelle G, Rauschert M (2001) Diversity of epibenthic habitats of gammaridean amphipods in the eastern Weddell Sea. Polar Biol 24(10):744–753

    Article  Google Scholar 

  • De Broyer C, Lowry JK, Jazdzewski K, Robert H (2007) Part 1. Catalogue of the Gammaridean and Corophiidean Amphipoda (Crustacea) of the Southern Ocean with distribution and ecological data. Bull Inst R Sci Nat Belg Biol 77(Suppl 1):1–325

    Google Scholar 

  • De Bruyn C, De Ridder C, Rigaud T, David B (2011) Chemical host detection and differential attraction in a parasitic pea crab infecting two echinoids. J Exp Mar Biol Ecol 397:173–178

    Article  Google Scholar 

  • de la Haye KL, Spicer JI, Widdicombe S, Briffa M (2011) Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. Anim Behav 82:495–501

    Article  Google Scholar 

  • Dearborn JH (1977) Foods and feeding characteristics of Antarctic asteroids and ophiuroids. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington, DC, pp 293–326

    Google Scholar 

  • Denno RF, McClure MS (1983) Variable plants and herbivores in natural and managed systems. Academic, New York

    Google Scholar 

  • Dietl GP, Kelley PH (2002) The fossil record of predator–prey arms races: coevolution and escalation hypotheses. Paleontol Soc Pap 8:353–374

    Article  Google Scholar 

  • Dobretsov S, Qian PY (2002) Effect of bacteria associated with the green alga Ulva reticulata on marine micro-and macrofouling. Biofouling 18(3):217–228

    Article  Google Scholar 

  • Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427

    Article  CAS  PubMed  Google Scholar 

  • Dobretsov S, Abed RM, Teplitski M (2013) Mini-review: inhibition of biofouling by marine microorganisms. Biofouling 29:423–441

    Article  CAS  PubMed  Google Scholar 

  • Ducklow HW, Fraser WR, Meredith MP, Stammerjohn SE, Doney SC, Martinson DG, Sailley SF (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26(3):190–203

    Article  Google Scholar 

  • Duckworth AR, Battershill CN (2001) Population dynamics and chemical ecology of New Zealand Demospongiae Latrunculia sp. nov. and Polymastia croceus (Poecilosclerida: Latrunculiidae: Polymastiidae). NZ J Mar Freshw Res 35:935–949

    Article  Google Scholar 

  • Duffy JE, Hay ME (1991) Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology 72(4):1286–1298

    Article  Google Scholar 

  • Duffy JE, Hay ME (1994) Herbivore resistance to seaweed chemical defense: the roles of mobility and predation risk. Ecology 75(5):1304–1319

    Article  Google Scholar 

  • Duffy JE, Hay ME (2000) Strong impacts of grazing amphipods on the organization of a benthic community. Ecol Monogr 70(2):237–263

    Article  Google Scholar 

  • Dussourd DE, Denno RF (1991) Deactivation of plant defense: correspondence between insect behavior and secretory canal architecture. Ecology 72:1383–1396

    Article  Google Scholar 

  • Ebel R, Brenzinger M, Kunze A, Gross HJ, Proksch P (1997) Wound activation of protoxins in marine sponge Aplysina aerophoba. J Chem Ecol 23:1451–1462

    Article  CAS  Google Scholar 

  • Eisner T, Meinwald J (1995) Chemical ecology: the chemistry of biotic interaction. National Academy Press, Washington, DC

    Google Scholar 

  • Elner RW, Vadas RL Jr (1990) Inference in ecology: the sea urchin phenomenon in the northwest Atlantic. Am Nat 136:108–125

    Article  Google Scholar 

  • Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985

    Article  CAS  PubMed  Google Scholar 

  • Estes JA, Duggins DO (1995) Sea otter and kelp forests in Alaska: generality and variation in a community ecological paradigm. Ecol Monogr 65:75–100

    Article  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87(19):7713–7716. https://doi.org/10.1073/pnas.87.19.7713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134. https://doi.org/10.1105/tpc.4.2.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkner DJ (1994) Marine natural products. Nat Prod Rep 11:355–394

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (1998) Marine natural products. Nat Prod Rep 15:113–158

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2000) Highlights of marine natural products chemistry (1972–1999). ChemInform 31

    Google Scholar 

  • Faulkner DJ, Ghiselin M (1983) Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar Ecol Prog Ser 13:295–301

    Article  Google Scholar 

  • Ferretti C, Vacca S, De Ciucis C, Marengo B, Duckworth AR, Manconi R, Pronzato R, Domenicotti C (2009) Growth dynamics and bioactivity variation of the Mediterranean demosponges Agelas oroides (Agelasida, Agelasidae) and Petrosia ficiformis (Haplosclerida, Petrosiidae). Mar Ecol 30(3):1–10. https://doi.org/10.1111/j.1439-0485.2008.00278.x

    Article  Google Scholar 

  • Figuerola B, Núñez-Pons L, Vázquez J, Taboada S, Cristobo FJ, Ballesteros M, Avila C (2012) Chemical interactions in Antarctic marine benthic ecosystems. In: Cruzado A (ed) Marine ecosystems. InTech, Croatia, pp 105–126

    Google Scholar 

  • Figuerola B, Núñez-Pons L, Moles J, Avila C (2013a) Feeding repellence in Antarctic bryozoans. Naturwiss 100:1069–1081. https://doi.org/10.1007/s00114-013-1112-8

    Article  CAS  PubMed  Google Scholar 

  • Figuerola B, Taboada S, Monleón-Getino T, Vázquez J, Avila C (2013b) Cytotoxic activity of Antarctic benthic organisms against the common sea urchin Sterechinus neumayeri. Oceanography 1:107. https://doi.org/10.4172/2332-2632.1000107

    Article  Google Scholar 

  • Figuerola B, Núñez-Pons L, Monleón-Getino T, Avila C (2014) Chemo-ecological interactions in Antarctic bryozoans. Polar Biol 37(7):1017–1030

    Article  Google Scholar 

  • Firn RD, Jones CG (2009) A Darwinian view of metabolism: molecular properties determine fitness. J Exp Bot 60:719–726

    Article  CAS  PubMed  Google Scholar 

  • Fleury BG, Lages BG, Barbosa JP, Kaiser CR, Pinto AC (2008) New hemiketal steroid from the introduced soft coral Chromonephthea braziliensis is a chemical defense against predatory fishes. J Chem Ecol 34:987–993

    Article  CAS  PubMed  Google Scholar 

  • Frazao B, Vasconcelos V, Antunes A (2012) Sea Anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs 10:1812–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederik JE, Snell HE, Haywood EK (1989) Solar ultraviolet radiation at the Earth’s surface. Photochem Photobiol 50:443–450. https://doi.org/10.1111/j.1751-1097.1989.tb05548.x

    Article  Google Scholar 

  • Fuerst JA (2014) Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl Microbiol Biotechnol 98(17):7331–7347

    Article  CAS  PubMed  Google Scholar 

  • Furrow FB, Amsler CD, McClintock JB, Baker JB (2003) Surface sequestration of chemical feeding deterrents in the antarctic sponge Latrunculia apicalis as an optimal defense against sea star spongivory. Mar Biol 143(3):443–449

    Article  Google Scholar 

  • Gage JD (1996) Why are there so many species in deep-sea sediments? J Exp Mar Biol Ecol 200:257–286

    Article  Google Scholar 

  • Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms of the deep sea floor. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • García-Arredondo A, Rojas-Molina A, Ibarra-Alvarado C, Iglesias-Prieto R (2011) Effects of bleaching on the pharmacological and toxicological activities elicited by the aqueous extracts prepared from two “fire corals” collected in the Mexican Caribbean. J Exp Mar Biol Ecol 396:171–176

    Article  Google Scholar 

  • Gavagnin M, de Napoli A, Cimino G, Iken K, Avila C, Garcia FJ (1999) Absolute configuration of diterpenoid diacylglycerols from the Antarctic nudibranch Austrodoris kerguelenensis. Tetr Asym 10:2647–2650

    Article  CAS  Google Scholar 

  • Genta-Jouve G, Thomas OP (2012) Sponge chemical diversity: from biosynthetic pathways to ecological roles. In: Becerro A, Uriz MJ, Maldonado M, Turon X (eds) Advances in sponge science, physiology, chemical and microbial diversity, pp 183–219

    Google Scholar 

  • Gili JM, Arntz WE, Palanques A, Orejas C, Clarke A, Dayton PK, Isla E, Teixidó N, Rossi S, López-González PJ (2006) A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep-Sea Res II Top Stud Oceanogr 53:1029–1052. https://doi.org/10.1016/j.dsr2.2005.10.021

    Article  Google Scholar 

  • Goad LJ (1981) Sterol biosynthesis and metabolism in marine invertebrates. Pure Appl Chem 53(4):837–852

    Article  CAS  Google Scholar 

  • Goecke F, Labes A, Wiese J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–300

    Article  CAS  Google Scholar 

  • Göransson U, Jacobsson E, Strand M, Andersson HS (2019) The toxins of nemertean worms. Toxins 11(120):1–36. https://doi.org/10.3390/toxins11020120

    Article  CAS  Google Scholar 

  • Gordon BR, Leggat W (2010) Symbiodinium-invertebrate symbioses and the role of metabolomics. Mar Drugs 8:2546–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassle JF, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341

    Article  Google Scholar 

  • Gray J (2001) Marine diversity: the paradigms in patterns of species richness examined. Sci Mar 65:41–56

    Article  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175(4023):776–777

    Article  CAS  PubMed  Google Scholar 

  • Hadfield MG, Paul VJ (2001) Natural chemical cues for settlement and metamorphosis of marine-invertebrate larvae. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, p 431

    Chapter  Google Scholar 

  • Hamilton PB, Poulin M, Yang J-R (1997) A new diatom genus Porannulus (Bacillariophyta), associated with marine sponges around King George Island, South Shetland Islands, Antarctica. Diat Res 12:229–242

    Article  Google Scholar 

  • Händeler K, Grzymbowski YP, Krug PJ, Wägele H (2009) Functional chloroplasts in metazoan cells—a unique evolutionary strategy in animal life. Front Zool 6:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18:361–379

    Article  CAS  PubMed  Google Scholar 

  • Hardege JD, Bartels-Hardege HD, Fletcher N, Terschak JA, Harley M, Smith MA, Davidson L, Hayden D, Müller CU, Lorch M, Welham K, Walther T, Bublitz R (2011) Identification of a female sex pheromone in Carcinus maenas. Mar Ecol Prog Ser 436:177–189

    Article  CAS  Google Scholar 

  • Harder T, Lau SC, Dobretsov S, Fang TK, Qian PY (2003) A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMS Microbiol Ecol 43:337–347

    Article  CAS  PubMed  Google Scholar 

  • Harder T, Tebben J, Möller M, Schupp PJ (2018) Chemical ecology of marine invertebrate larval settlement. In: Puglisi-Weening M, Becerro M (eds) Chemical ecology: the ecological impacts of marine natural products. CRC Press and Taylor and Francis, New York, pp 329–356

    Chapter  Google Scholar 

  • Harper MK, Bugni TS, Copp BR, James RD, Lindsay BS, Richardson AD, Schnabel PC, Tasdemir D, VanWagoner RM, Verbitseki SM, Ireland CM (2001) Introduction to the chemical ecology of marine natural products. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 3–69

    Google Scholar 

  • Harvell CD (1990) The ecology and evolution of inducible defenses. Q Rev Biol 65:323–340

    Article  CAS  PubMed  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134

    Article  CAS  Google Scholar 

  • Hay ME, Fenical W (1996) Chemical ecology and marine biodiversity: insights and products from the sea. Oceanography 9:10–20

    Article  Google Scholar 

  • Hay ME, Steinberg PD (1992) The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, vol II. Academic, New York

    Google Scholar 

  • Hay ME, Duffy JE, Pfister CA, Fenical W (1987) Chemical defense against different marine herbivores: are amphipods insect equivalents? Ecology 68(6):1567–1580

    Article  CAS  PubMed  Google Scholar 

  • Hay ME, Kappel QE, Fenical W (1994) Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality. Ecology 75:1714–1726

    Article  Google Scholar 

  • Haygood MG, Davidson SK (1997) Small subunit ribosomal RNA genes and in situ hybridization of the bacterial symbionts in the larvae of the bryozoan Bugula neritina and proposal of “Candidatus Endobugula sertula”. Appl Env Microbiol 63:4612–4616

    Article  CAS  Google Scholar 

  • Heine JN, McClintock JB, Slattery M, Weston J (1991) Energetic composition, biomass, and chemical defense in the common Antarctic nemertean Parborlasia corrugatus. J Exp Mar Biol Ecol 153:15–25

    Article  Google Scholar 

  • Hemmi A, Honkanen T, Jormalainen V (2004) Inducible resistance to herbivory in Fucus vesiculosus–duration, spreading and variation with nutrient availability. Mar Ecol Progr Ser 273:109–120. https://doi.org/10.3354/meps273109

    Article  CAS  Google Scholar 

  • Henrikson AA, Pawlik JR (1995) A new antifouling assay method: results from field experiments using extracts of four marine organisms. J Exp Mar Biol Ecol 194:157–165

    Article  Google Scholar 

  • Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35(3):305–312

    Article  CAS  PubMed  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68(9):4431–4440. https://doi.org/10.1128/AEM.68.9.4431-4440.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10(9):641–654. https://doi.org/10.1038/nrmicro2839

    Article  CAS  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:285–335

    Article  Google Scholar 

  • Hewson I, Sullivan B, Jackson EW, Xu Q, Long H, Lin C, Quijano Cardé EM, Seymour J, Siboni N, Jones MRL, Sewell MA (2019) Perspective: something old, something new? Review of wasting and other mortality in Asteroidea (Echinodermata). Front Mar Sci 6:406. https://doi.org/10.3389/fmars.2019.00406

    Article  Google Scholar 

  • Hildebrand M, Waggoner LE, Liu H, Sudek S, Allen S, Anderson C, Sherman DH, Haygood M (2004a) bryA: an unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina. Chem Biol 11(11):1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand M, Waggoner LE, Lim GE, Sharp KH, Ridley CP, Haygood M (2004b) Approaches to identify, clone, and express symbiont bioactive metabolite genes. Nat Prod Rep 21:122–142. https://doi.org/10.1039/B302336M

    Article  CAS  PubMed  Google Scholar 

  • Hines DE, Pawlik JR (2012) Assessing the antipredatory defensive strategies of Caribbean non-scleractinian zoantharians (Cnidaria): is the sting the only thing? Mar Biol 159:389–398. https://doi.org/10.1007/s00227-011-1816-2

    Article  Google Scholar 

  • Huang YSM, McClintock JB, Amsler CD, Peters KJ, Baker BJ (2006) Feeding rates of common Antarctic gammarid amphipods on ecologically important sympatric macroalgae. J Exp Mar Biol Ecol 329:55–65

    Article  Google Scholar 

  • Huang YM, Amsler MO, McClintock JB, Amsler CD, Baker BJ (2007) Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 30:1417–1430

    Article  Google Scholar 

  • Hunting ER, van der Geest HG, Krieg AJ, van Mierlo ML, van Soest RWM (2010) Mangrove-sponge associations: a possible role for tannins. Aquat Ecol 44(4):679–684

    Article  CAS  Google Scholar 

  • Ianora A, Boersma M, Casotti R, Fontana A, Harder J, Hoffman F, Pavia H, Potin P, Poulet SA, Toth G (2006) The HT Odum synthesis essay. New trends in marine chemical ecology. Est Coasts 29:531–551

    Article  CAS  Google Scholar 

  • Iken K, Avila C, Ciavatta ML, Fontana A, Cimino G (1998) Hodgsonal, a new drimane sesquiterpene from the mantle of the Antarctic nudibranch Bathydoris hodgsoni. Tetr Lett 39:5635–5638

    Article  CAS  Google Scholar 

  • Iken K, Avila C, Fontana A, Gavagnin M (2002) Chemical ecology and origin of defensive compounds in the Antarctic nudibranch Austrodoris kerguelenensis (Opisthobranchia: Gastropoda). Mar Biol 141:101–109

    Article  Google Scholar 

  • IPCC (2018) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, 32 pp

    Google Scholar 

  • Iyengar EV, Harvell CD (2001) Predator deterrence of early developmental stages of temperate lecithotrophic asteroids and holothuroids. J Exp Mar Biol Ecol 264:171–188

    Article  Google Scholar 

  • Jackson SA, Kennedy J, Morrissey JP, O’Gara F, Dobson AD (2012) Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microb Ecol 64(1):105–116

    Article  PubMed  Google Scholar 

  • Jazdzewski K, Teodorczyk W, Siciński J, Kontek B (1991) Amphipod crustaceans as an important component of zoobenthos of the shallow Antarctic sublittoral. Hydrobiology 223(1):105–117. https://doi.org/10.1007/BF00047632

    Article  Google Scholar 

  • Jormalainen V, Honkanen T, Koivikko R, Eränen J (2003) Induction of phlorotannin production in a brown alga: defense or resource dynamics? Oikos 103(3):640–650. https://doi.org/10.1034/j.1600-0706.2003.12635.x

    Article  CAS  Google Scholar 

  • Karban R, Meyers JH (1989) Induced plant responses to herbivory. Annu Rev Ecol Evol Syst 20:331–348

    Article  Google Scholar 

  • Karentz D (2001) Chemical defences of marine organisms against solar radiation exposure: UV-absorbing mycosporine-like amino acids and scytonemin. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 481–520

    Chapter  Google Scholar 

  • Karentz D, Bosch I (2001) Influence of ozone-related increases in ultraviolet radiation on Antarctic marine organisms. Am Zool 41:3–16

    CAS  Google Scholar 

  • Kelly SR, Jensen PR, Henkel TP, Fenical W, Pawlik JR (2003) Effects of Caribbean sponge extracts on bacterial attachment. Aquat Microb Ecol 31:175–182

    Article  Google Scholar 

  • Kelman D, Benayahu Y, Kashman Y (1999) Chemical defense of the soft coral Parerythropadium fulvum fulvum (Forskal) in the Red Sea against generalist reef fish. J Exp Mar Biol Ecol 238:127–137

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511):2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kicklighter CE, Kubanek J, Barsby T, Hay ME (2003) Palatability and defense of some tropical infaunal worms: alkylpyrrole sulfamates as deterrents to fish feeding. Mar Ecol Prog Ser 263:299–306

    Article  Google Scholar 

  • Kim K, Harvell CD (2002) Aspergillosis of sea fan corals: disease dynamics in the Florida keys. The everglades, Florida Bay, and coral reefs of the Florida keys: an ecosystem sourcebook, pp 813–824

    Google Scholar 

  • Kline DI, Kuntz NM, Breitbart M, Knowlton N, Rohwer F (2006) Role of elevated organic carbon levels and microbial activity in coral mortality. Mar Ecol Prog Ser 314:119–125

    Article  CAS  Google Scholar 

  • Klöppel A, Brümmer F, Schwabe D, Morlock G (2013) Detection of bioactive compounds in the mucus nets of Dendropoma maxima, Sowerby 1825 (Prosobranch gastropod Vermetidae, Mollusca). J Mar Biol 283506:9. https://doi.org/10.1155/2013/283506

    Article  Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162(S4):S51–S62

    Article  PubMed  Google Scholar 

  • Kobayashi J, Ishibashi M (1993) Bioactive secondary metabolites from Okinawan sponges and tunicates. Stud Nat Prod Chem 23(2000):185–231

    Google Scholar 

  • Koplovitz G, McClintock JB, Amsler CD, Baker BJ (2009) Palatability and chemical anti-predatory defenses in common ascidians from the Antarctic Peninsula. Aquat Biol 7:81–92

    Article  Google Scholar 

  • Koplovitz G, McClintock JB, Amsler CD, Baker BJ (2011) A comprehensive evaluation of the potential chemical defenses of Antarctic ascidians against sympatric fouling microorganisms. Mar Biol 158:2661–2671

    Article  CAS  Google Scholar 

  • Krediet CJ, Ritchie KB, Paul VJ, Teplitski MJ (2013) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc R Soc B 280(1755):20122328. https://doi.org/10.1098/rspb.2012.2328

    Article  PubMed  PubMed Central  Google Scholar 

  • Krug PJ (2006) Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race. In: Antifouling compounds. Springer, Berlin, pp 1–53

    Google Scholar 

  • Kunzmann K (1996) Associated fauna of selected sponges (Hexactinellida and Demospongiae) from the Weddell Sea, Antarctica. Ber Polarforsch 210:1–93

    Google Scholar 

  • Kwan JC, Donia MS, Han AW, Hirose E, Haygood MG, Schmidt EW (2012) Genome streamlining and chemical defense in a coral reef symbiosis. Proc Natl Acad Sci USA 109(50):20655–20660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasker HR (1985) Prey preferences and browsing pressure of the butterflyfish Chaetodon capistratus on Caribbean gorgonians. Mar Ecol Prog Ser 21:213–220

    Article  Google Scholar 

  • Lawrence JM (1975) On the relationships between marine plants and sea urchins. Oceanogr Mar Biol Annu Rev 13:213–286

    Google Scholar 

  • Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774–797

    Article  CAS  PubMed  Google Scholar 

  • Lecchini D, Waqalevu VP, Parmetier E, Radford CA, Banaigs B (2013) Fish larvae prefer coral over algal water cues: implications of coral reef degradation. Mar Ecol Prog Ser 475:303–307

    Article  Google Scholar 

  • Lecchini D, Miura T, Lecellier G, Banaigs B, Nakamura Y (2014) Transmission distance of chemical cues from coral habitats: implications for marine larval settlement in context of reef degradation. Mar Biol 161:1677

    Article  CAS  Google Scholar 

  • Lee YK, Lee JH, Lee HK (2001) Microbial symbiosis in marine sponges. J Microbiol Seoul 39:254–264

    Google Scholar 

  • Leong W, Pawlik JR (2011) Comparison of reproductive patterns among 7 Caribbean sponge species does not reveal a resource trade-off with chemical defenses. J Exp Mar Biol Ecol 401:80–84

    Article  Google Scholar 

  • Leys SP, Mackie GO, Reiswig HM (2007) The biology of glass sponges. Adv Mar Biol 52:1–145

    Article  CAS  PubMed  Google Scholar 

  • Lim-Fong GE, Kabir R (2018) Chemical ecology of marine bryozoans. In: Puglisi-Weening M, Becerro M (eds) Chemical ecology: the ecological impacts of marine natural products. CRC Press, Taylor and Francis, pp 357–372

    Chapter  Google Scholar 

  • Lindquist N, Hay ME (1995) Can small rare prey be chemically defended? The case for marine larvae. Ecology 76(4):1347–1358

    Article  Google Scholar 

  • Lindquist N, Hay ME, Fenical W (1992) Defense of ascidians and their conspicuous larvae: adult vs larval chemical defenses. Ecol Monogr 62:547–568

    Article  Google Scholar 

  • Lippert H, Brinkmeyer R, Mulhaupt T, Iken K (2003) Antimicrobial activity in sub-Arctic marine invertebrates. Polar Biol 26:591–600

    Article  Google Scholar 

  • Lippert H, Iken K, Volk C, Köck M, Rachor E (2004) Chemical defence against predators in a sub-Arctic fjord. J Exp Mar Biol Ecol 310:131–146

    Article  CAS  Google Scholar 

  • Lo Giudice A, Azzaro M, Schiaparelli S (2019) Microbial symbionts of Antarctic marine benthic invertebrates. In: Castro-Sowinski S (ed) The ecological role of micro-organisms in the Antarctic environment. Springer Polar Sciences. https://doi.org/10.1073/978-3-030-02786-513

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lockhart SJ, Jones CD (2008) Biogeographic patterns of benthic invertebrate megafauna on shelf areas within the Southern Ocean Atlantic sector. CCAMLR Sci 15:167–192

    Google Scholar 

  • Loh TL, Pawlik JR (2014) Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc Natl Acad Sci USA 111:4151–4156. https://doi.org/10.1073/pnas.1321626111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopanik N, Lindquist N, Targett N (2004) Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia 139:131–139

    Article  PubMed  Google Scholar 

  • López-Legentil S, Dieckmann R, Bontemps-Subielos N, Turon X, Banaigs B (2005) Qualitative variation of alkaloids in color morphs of Cystodytes (Ascidiacea). Biochem Syst Ecol 33:1107–1119. https://doi.org/10.1016/j.bse.2005.03.011

    Article  CAS  Google Scholar 

  • Luchner M (1984) Secondary metabolism in microorganisms, plants and animals. Springer, Berlin

    Book  Google Scholar 

  • Lyle M, Gibbs S, Moore TC, Rea DK (2007) Late Oligocene initiation of the Antarctic circumpolar current: evidence from the South Pacific. Geology 35:691–694

    Article  Google Scholar 

  • Macaya EC, Rothäusler E, Thiel M, Molis M, Wahl M (2005) Induction of defenses and within-alga variation of palatability in two brown algae from the northern-central coast of Chile: effects of mesograzers and UV radiation. J Exp Mar Biol Ecol 325(2):214–227

    Article  Google Scholar 

  • Mangano S, Michaud L, Caruso C, Brilli M, Bruni V, Fani R, Lo Giudice A (2009) Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis. Res Microbiol 160(1):27–37. https://doi.org/10.1016/j.resmic.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  • Mangano S, Michaud L, Caruso C, Lo Giudice A (2014) Metal and antibiotic resistance in psychrotrophic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biol 37:227–235. https://doi.org/10.1007/s00300-013-1426-1

    Article  Google Scholar 

  • Mangano S, Caruso C, Michaud L, Lo Giudice A (2018) First evidence of quorum sensing activity in bacteria associated with Antarctic sponges. Polar Biol 41:1435–1445. https://doi.org/10.1007/s00300-018-2296-3

    Article  Google Scholar 

  • Mann KH (1982) Ecology of coastal waters. A systems approach. University of California Press, Berkeley

    Google Scholar 

  • Margalef R (1977) Comunicación y engaño. Aspectos e implicaciones de la cripsis, advertencia y mimetismo. Graellsia 31:341–356

    Google Scholar 

  • Margalef R (1982) Ecologia. Ed. Omega, Barcelona, pp 1–951

    Google Scholar 

  • MarinLit Database, John Blunt and Murray Munro at the University of Canterbury, New Zealand. http://pubs.rsc.org/marinlit

  • Martín Ledo R (2010) Simbiosis en ofiuroideos antárticos. Master Thesis, Máster Universitario en Investigación Biológica. Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, p 72

    Google Scholar 

  • McClintock JB (1987) Investigation of the relationship between invertebrate predation and biochemical composition, energy content, spicule armament and toxicity of benthic sponges at McMurdo Sound, Antarctica. Mar Biol 94(3):479–487

    Article  CAS  Google Scholar 

  • McClintock JB (1994) Trophic biology of antarctic echinoderms. Mar Ecol Prog Ser 11(1):191–202

    Article  Google Scholar 

  • McClintock JB, Baker BJ (1997) A review of the chemical ecology of shallow-water antarctic marine invertebrates. Am Zool 37:329–342

    Article  CAS  Google Scholar 

  • McClintock JB, Baker BJ (1998) Chemical ecology in Antarctic seas. Am Sci 86:254–263

    Article  Google Scholar 

  • McClintock JB, Baker BJ (2001) Marine chemical ecology. CRC Marine Science Series Press, Boca Raton

    Book  Google Scholar 

  • McClintock JB, Janssen J (1990) Pteropod abduction as a chemical defense in a pelagic antarctic amphipod. Nature 346:424–426

    Article  Google Scholar 

  • McClintock JB, Heine J, Slattery M, Weston J (1990) Chemical bioactivity in common shallow-water Antarctic marine invertebrates. Antarct J US 25(5):204–206

    Google Scholar 

  • McClintock JB, Slattery M, Heine J, Weston J (1992) Chemical defense, biochemical composition and energy content of three shallow-water Antarctic gastropods. Polar Biol 11:623–629

    Article  Google Scholar 

  • McClintock JB, Baker BJ, Baumiller TK, Messing CG (1999) Lack of chemical defense in two species of stalked crinoids: support for the predation hypothesis for mesozoic bathymetric restriction. J Exp Mar Biol Ecol 232(1):1–7

    Article  Google Scholar 

  • McClintock JB, Mahon AR, Peters KJ, Amsler CD, Baker BJ (2003) Chemical defenses in embryos and juveniles of two common Antarctic Sea stars and an isopod. Antarct Sci 15:339–344

    Article  Google Scholar 

  • McClintock JB, Amsler CD, Baker BJ, Van Soest R (2005) Ecology of Antarctic marine sponges: an overview. Integr Comp Biol 45:359–368

    Article  PubMed  Google Scholar 

  • McClintock JB, Amsler MO, Koplovitz G, Amsler CD, Baker BJ (2009) Observations on an association between the dexaminid amphipod Polycheria antarctica f. acanthopoda and its ascidian host Distaplia cylindrica. J Crustac Biol 29:605–608

    Article  Google Scholar 

  • McClintock JB, Amsler CD, Baker BJ (2010) Overview of the chemical ecology of benthic marine invertebrates along the Western Antarctic Peninsula. Integr Comp Biol 50:967–980

    Article  PubMed  Google Scholar 

  • McGovern TM, Hellberg ME (2003) Cryptic species, cryptic endosymbionts, and geographical variation in chemical defences in the bryozoan Bugula neritina. Mol Ecol 12(5):1207–1215

    Article  CAS  PubMed  Google Scholar 

  • McKey D (1974) Adaptive patterns in alkaloid physiology. Am Nat 108:305–320

    Article  Google Scholar 

  • McKey D (1979) The distribution of secondary metabolites within plants. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 55–133

    Google Scholar 

  • Menna M (2009) Antitumor potential of natural products from Mediterranean ascidians. Phytochem Rev 8(2):461–472

    Article  CAS  Google Scholar 

  • Menna M, Fattorusso E, Imperatore C (2011) Alkaloids from marine ascidians. Molecules 16(10):8694–8732

    Article  CAS  PubMed Central  Google Scholar 

  • Mercado JM, Carmona R, Niell FX (1998) Bryozoans increase available CO2 for photosynthesis in Gelidium sesquipedale (Rhodophyceae). J Phycol 34:925–927

    Article  Google Scholar 

  • Meyer DL, Macurda DB (1977) Adaptive radiation of the comatulid crinoids. Paleobiology 3:74–82

    Article  Google Scholar 

  • Miyamoto T, Yamada K, Ikeda N, Komori T, Higuchi R (1994) Bioactive terpenoids from Octocorallia. 1. Bioactive diterpenoids – litophynol A and litophynol B from the mucus of the soft coral Litophyton sp. J Nat Prod 57:1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Moles J, Núñez-Pons L, Taboada S, Figuerola S, Cristobo J, Avila C (2015) Anti-predatory chemical defences in Antarctic benthic fauna. Mar Biol 162(9):1813–1821

    Article  CAS  Google Scholar 

  • Moon B, Park YC, McClintock JB, Baker BJ (2000) Structure and bioactivity of erebusinone, a pigment from the Antarctic sponge Isodictya erinacea. Tetrahedron 56:9057–9062. https://doi.org/10.1016/S0040-4020(00)00760-2

    Article  CAS  Google Scholar 

  • Moran Y, Genikhovich Y, Gordon D, Wienkoop S, Zenkert C, Özbek S, Technau U, Gurevitz M (2012) Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones. Proc R Soc B 279:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Mouchka ME, Hewson I, Harvell CD (2010) Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr Comp Biol 50(4):662–674

    Article  PubMed  Google Scholar 

  • Mutalipassi M, Mazzella V, Zupo V (2019) Ocean acidification influences plant-animal interactions: the effect of Cocconeis scutellum parva on the sex reversal of Hippolyte inermis. PLoS One 14(6):e0218238. https://doi.org/10.1371/journal.pone.0218238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nappo M, Berkov S, Codina C, Avila C, Messina P, Zupo V, Bastida J (2009) Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. J Appl Phycol 21(3):295–306. https://doi.org/10.1007/s10811-008-9367-8

    Article  CAS  Google Scholar 

  • Nelson WG (1980) A comparative study of amphipods in seagrasses from Florida to Nova Scotia. Bull Mar Sci 30:80–89

    Google Scholar 

  • Núñez-Pons L, Avila C (2014) Deterrent activities in the crude lipophilic fractions of Antarctic benthic organisms: chemical defences against keystone predators. Polar Res 33(21624):1–12

    Google Scholar 

  • Núñez-Pons L, Avila C (2015) Natural products mediating ecological interactions in Antarctic benthic communities: a mini-review of the known molecules. Nat Prod Rep 32:1114–1130. https://doi.org/10.1039/C4NP00150H

    Article  PubMed  Google Scholar 

  • Núñez-Pons L, Forestieri R, Nieto RM, Varela M, Nappo M, Rodríguez J, Jiménez C, Castelluccio F, Carbone M, Ramos-Espla A, Gavagnin M, Avila C (2010) Chemical defenses of tunicates of the genus Aplidium from the Weddell Sea (Antarctica). Polar Biol 33:1319–1329

    Article  Google Scholar 

  • Núñez-Pons L, Carbone M, Vazquez J, Rodríguez J, Nieto RM, Varela MM, Gavagnin M, Avila C (2012a) Natural products from Antarctic colonial ascidians of the genera Aplidium and Synoicum: variability and defensive role. Mar Drugs 10:1741–1764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Núñez-Pons L, Rodríguez-Arias M, Gómez-Garreta A, Ribera-Siguán A, Avila C (2012b) Feeding deterrence in Antarctic marine organisms: bioassays with the omnivore amphipod Cheirimedon femoratus. Mar Ecol Prog Ser 462:163–174. https://doi.org/10.3354/meps09840

    Article  Google Scholar 

  • Núñez-Pons L, Carbone M, Paris D, Melck D, Ríos P, Cristobo J, Castelluccio F, Gavagnin M, Avila C (2012c) Chemo-ecological studies on hexactinellid sponges from the Southern Ocean. Naturwiss 99(5):353–368

    Article  PubMed  CAS  Google Scholar 

  • Núñez-Pons L, Carbone M, Vázquez J, Gavagnin M, Avila C (2013) Lipophilic defenses from Alcyonium soft corals of Antarctica. J Chem Ecol 39(5):675–685

    Article  PubMed  CAS  Google Scholar 

  • Núñez-Pons L, Avila C, Romano G, Verde C, Giordano D (2018a) UV-protective compounds in marine organisms from the Southern Ocean. Mar Drugs 16:336. https://doi.org/10.3390/md16090336

    Article  CAS  PubMed Central  Google Scholar 

  • Núñez-Pons L, Work TM, Angulo-Preckler C, Moles J, Avila C (2018b) Exploring the pathology of an epidermal disease affecting a circum-Antarctic Sea star. Sci Rep 8:12. https://doi.org/10.1038/s41598-018-29684-0

    Article  CAS  Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS One 7:e1000178. https://doi.org/10.1371/journal.pbio.1000178

    Article  CAS  Google Scholar 

  • O’Connor MI, Gilbert B, Brown CJ (2011) Theoretical predictions for how temperature affects the dynamics of interacting herbivores and plants. Am Nat 178:626–638

    Article  PubMed  Google Scholar 

  • Ohsawa N, Ogata Y, Okada N, Itoh N (2001) Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry 58:683–692

    Article  CAS  PubMed  Google Scholar 

  • Opitz SEW, Muller C (2009) Plant chemistry and insect sequestration. Chemoecology 19(3):117–154. https://doi.org/10.1007/s00049-009-0018-6

    Article  CAS  Google Scholar 

  • Orejas C, Gili JM, Arntz WE, Ros JD, López PJ, Teixido N, Filipe P (2000) Benthic suspension feeders, key players in Antarctic marine ecosystems? Contrib Sci 1(3):299–311

    Google Scholar 

  • Page JL, Dickman BD, Webster DR, Weissburg MJ (2011a) Getting ahead: context-dependent responses to odorant filaments drive along-stream progress during odor tracking in blue crabs. J Exp Biol 214:1498–1512

    Article  PubMed  Google Scholar 

  • Page JL, Dickman BD, Webster DR, Weissburg MJ (2011b) Staying the course: chemical signal spatial properties and concentration mediate cross-stream motion in turbulent plumes. J Exp Biol 214:1513–1522

    Article  PubMed  Google Scholar 

  • Papaleo MC, Fondi M, Maida I, Perrin E, Lo Giudice A, Michaud L, Mangano S, Bartolucci G, Romoli R, Fani R (2012) Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnol Adv 30(1):272–293

    Article  CAS  PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121(2):325–332. https://doi.org/10.1104/pp.121.2.325

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul VJ (1992) Ecological roles of marine natural products. Cornell University Press and Comstock, Ithaca

    Google Scholar 

  • Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209

    Article  CAS  PubMed  Google Scholar 

  • Paul VJ, Van Alstyne KL (1992) Activation of chemical defenses in the tropical green algae Halimeda spp. J Exp Mar Biol Ecol 160:191–203

    Article  CAS  Google Scholar 

  • Paul VJ, Cruz-Rivera E, Thacker RW (2001) Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 227–265

    Google Scholar 

  • Paul VJ, Arthur KE, Ritson-Williams R, Ross C, Sharp K (2007) Chemical defenses: from compounds to communities. Biol Bull 213(3):226–251

    Article  CAS  PubMed  Google Scholar 

  • Paul VJ, Ritson-Williams R, Sharp K (2011) Marine chemical ecology in benthic environments. Nat Prod Res 28:345–387

    CAS  Google Scholar 

  • Pavia H, Brock E (2000) Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar Ecol Progr Ser 193:285–294. https://doi.org/10.3354/meps193285

    Article  CAS  Google Scholar 

  • Pavia H, Toth GB (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225

    Article  Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Aberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Progr Ser 157:139–146. https://doi.org/10.3354/meps157139

    Article  CAS  Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol Annu Rev 30:273–335

    Google Scholar 

  • Pawlik JR (1993) Marine invertebrate chemical defenses. Chem Rev 93:1911–1922

    Article  CAS  Google Scholar 

  • Pawlik JR (2011) The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. BioScience 61:888–902. https://doi.org/10.1525/bio.2011.61.11.8

    Article  Google Scholar 

  • Pawlik JR, Chanas B, Toonen RJ, Fenical W (1995) Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar Ecol Prog Ser 127:183–194

    Article  CAS  Google Scholar 

  • Pearse JS, Giese AC (1966) Food, reproduction and organic constitution of the common antarctic echinoid Sterechinus neumayeri (Meissner). Biol Bull 130:387–401

    Article  CAS  PubMed  Google Scholar 

  • Peck LS (2018) Antarctic marine biodiversity: adaptations, environments and responses to change. Oceanogr Mar Biol: Annu Rev 56:105–236

    Google Scholar 

  • Peckol P, Yates JL (1997) Inducible phlorotannins in brown algae from backreef sites. In: Lessios HA, Macintyre IG (eds) Proceedings of 8th international coral reef symposium, vol 2, pp 1259–1262

    Google Scholar 

  • Peckol P, Krane JM, Yates JL (1996) Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar Ecol Progr Ser 138:209–217

    Article  CAS  Google Scholar 

  • Peters L, Wright AD, Krick A, König GM (2004) Variation of brominated indoles and terpenoids within single and different colonies of the marine bryozoan Flustra foliacea. J Chem Ecol 30:1165–1182

    Article  CAS  PubMed  Google Scholar 

  • Peters KJ, Amsler CD, McClintock JB, van Soest RWM, Baker BJ (2009) Palatability and chemical defenses of sponges from the western Antarctic Peninsula. Mar Ecol Prog Ser 385:77–85

    Article  CAS  Google Scholar 

  • Peters KJ, Amsler CD, McClintock JB, Baker BJ (2010) Potential chemical defenses of Antarctic sponges against sympatric microorganisms. Polar Biol 33:649–658

    Article  Google Scholar 

  • Pettit GR (1991) The bryostatins. In: Herz W, Kirby GW, Steglich W, Tamm C (eds) Fortschritte der Chemie organischer Naturstoffe/Progress in the chemistry of organic natural products, vol 57. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9119-4_3

    Chapter  Google Scholar 

  • Pettit GR, Herald CL, Doubek DL, Herald DL, Arnold E, Clardy J (1982) Isolation and structure of bryostatin 1. J Am Chem Soc 104(24):6846–6848. https://doi.org/10.1021/ja00388a092

    Article  CAS  Google Scholar 

  • Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538

    Article  CAS  PubMed  Google Scholar 

  • Piel J (2006) Bacteria symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13:39–50

    Article  CAS  PubMed  Google Scholar 

  • Piepenburg D, Archambault P, Ambrose W, Blanchard A, Bluhm B (2011) Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas. Mar Biodivers 41:51–70

    Article  Google Scholar 

  • Pietra F (2002) Biodiversity and natural product diversity. Pergamon, Oxford

    Google Scholar 

  • Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19(1):108–122

    Article  CAS  PubMed  Google Scholar 

  • Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ (2014) Marine chemical ecology in benthic environments. Nat Prod Rep 28:345–387. https://doi.org/10.1039/c0np00040j

    Article  CAS  Google Scholar 

  • Puglisi MP, Sneed JM, Ritson-Williams R, Young R (2018) Natural product reports marine chemical ecology in benthic environments. Nat Prod Rep 0:1–20

    Google Scholar 

  • Putz A, König GM, Wägele H (2010) Defensive strategies of Cladobranchia (Gastropoda, Opisthobranchia). Nat Prod Rep 27:1386–1402

    Article  CAS  PubMed  Google Scholar 

  • Rasch JA, O’Connor NJ (2012) Development and behavior of megalopae of the non-native crab Hemigrapsus sanguineus in response to chemical cues from coastal fishes. J Exp Mar Biol Ecol 416–417:196–201

    Article  Google Scholar 

  • Rasher DB, Hay ME (2014) Competition induces allelopathy but suppresses growth and anti-herbivore defense in a chemically rich seaweed. Proc R Soc B:281–20132615

    Google Scholar 

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Env Microbiol 8(12):2068–2073. https://doi.org/10.1111/j.1462-2920.2006.01148.x

    Article  CAS  Google Scholar 

  • Rhoades D (1979) Evolution of plant chemical defenses against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores. Academic, New York, pp 4–54

    Google Scholar 

  • Rhoades DF (1985) Offensive-defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory. Am Nat 125:205–238

    Article  Google Scholar 

  • Rhoades DF, Gates RG (1976) Toward a general theory of plant antiherbivore chemistry. Recent Adv Phytochem 10:168–213

    CAS  Google Scholar 

  • Rhode S, Nietzer S, Schupp PJ (2015) Prevalence and mechanisms of dynamic chemical defenses in tropical sponges. PLoS One 10:e0132236

    Article  CAS  Google Scholar 

  • Ribeiro SM, Bianco EM, Rogers R, Teixeira VL, Pereira RC (2010) Chemical defense of Hymeniacidon heliophila (Porifera: Halichondrida) against tropical predators. Braz J Oceanogr 58:315–321

    Article  Google Scholar 

  • Richardson MG (1975) The dietary composition of some Antarctic fish. Br Antarct Surv Bull 41-42:113–120

    Google Scholar 

  • Ricklefs RE (1990) Ecology, 3rd edn. WH Freeman, New York

    Google Scholar 

  • Rideout JA, Smith NB, Sutherland MD (1979) Chemical defense of crinoids by polyketide sulphates. Experientia 35:1273–1274

    Article  CAS  PubMed  Google Scholar 

  • Riguera R (1997) Isolating bioactive compounds from marine organisms. J Mar Biotechnol 5:187–193

    CAS  Google Scholar 

  • Rittschof D (2001) Natural product antifoulants and coatings development. In: McClintock J, Baker P (eds) Marine chemical ecology. CRC Press, New York, pp 543–557

    Chapter  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312(5773):543–547

    Article  CAS  PubMed  Google Scholar 

  • Robinson EM, Lunt J, Marshall CD, Smee DL (2014) Eastern oysters Crassostrea virginica deter crab predators by altering their morphology in response to crab cues. Aquat Biol 20:111

    Article  Google Scholar 

  • Rocha J, Peixe L, Gomes NCM, Calado R (2011) Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar Drugs 9(10):1860–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Marconi S, De la Iglesia R, Díez B, Fonseca CA, Hajdu E, Trefault N (2015) Characterization of bacterial, archaeal and eukaryote symbionts from Antarctic sponges reveals a high diversity at a three-domain level and a particular signature for this ecosystem. PLoS One 10(9):e0138837. https://doi.org/10.1371/journal.pone.0138837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roitberg BD, Isman MB (1992) Insect chemical ecology. Chapman & Hall, New York

    Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. mBio 7:e01395–e01315. https://doi.org/10.1128/mBio.01395-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2018) The hologenome concept of evolution after 10 years. Microbiome 6:78. https://doi.org/10.1186/s40168-018-0457-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of micro-organisms in coral health, disease and evolution. Nat Rev Microbiol 5(5):355–362

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Bramanti L, Gori A, Orejas C (2017a) An overview of the animal forests of the world. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. The ecology of benthic biodiversity hotspots. Springer International, Berlin

    Google Scholar 

  • Rossi S, Bramanti L, Gori A, Orejas C (eds) (2017b) Marine animal forests, the ecology of benthic biodiversity hotspots. Springer International, Berlin

    Google Scholar 

  • Rowell-Rahier M, Pasteels JM (1990) Chemical specialization on toxic plants provides increased protection from natural enemies. Symp Biol Hung 39:343–347

    Google Scholar 

  • Rowell-Rahier M, Pasteels JM (1992) Third trophic level influences of plant allelochemicals. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, San Diego, pp 243–277

    Chapter  Google Scholar 

  • Ruzicka R, Gleason DF (2009) Sponge community structure and anti-predator defenses on temperate reefs of the South Atlantic Bight. J Exp Mar Biol Ecol 380(1–2):36–46

    Article  Google Scholar 

  • Ryan CA, Pearce G (1998) Systemin: a polypeptide signal for plant defensive genes. Annu Rev Cell Dev Biol 14:1–17

    Article  CAS  PubMed  Google Scholar 

  • Sacristán-Soriano O, Angulo-Preckler C, Vázquez J, Avila C (2017) Potential chemical defenses of Antarctic benthic organisms against marine bacteria. Pol Res 36(1):1390385

    Article  CAS  Google Scholar 

  • Sagi A (1988) The androgenic gland in crustacea with emphasis on the cultured freshwater prawn Macrobrachium rosenbergii – a review. Israeli J Aquacult Bamidgeh 40:9–16

    Google Scholar 

  • Scheuer PJ (1990) Some marine ecological phenomena: chemical basis and biochemical potential. Science 248:173–177

    Article  CAS  PubMed  Google Scholar 

  • Schiaparelli S, Albertelli G, Cattaneo-Vietti R (2003) The epibiotic assembly on the sponge Haliclona dancoi (Topsent, 1901) at Terra Nova Bay (Antarctica, Ross Sea). Polar Biol 26(5):342–347. https://doi.org/10.1007/s00300-003-0481-4

    Article  Google Scholar 

  • Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102(20):7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt S, Weisz JB, Lindquist N, Hentschel U (2007) Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl Environ Microbiol 73:2067–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schram JB, McClintock JB, Amsler CD, Baker BJ (2015) Impacts of acute elevated seawater temperature on the feeding preferences of an Antarctic amphipod toward chemically deterrent macroalgae. Mar Biol 162:425–433

    Article  CAS  Google Scholar 

  • Schubert N, Brown D, Rossi S (2017) Symbiotic versus non-symbiotic Octocorals: physiological and ecological implications. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests, the ecology of benthic biodiversity hotspots. Springer International, Berlin

    Google Scholar 

  • Schultz JC (1992) Factoring natural enemies into plant tissue availability to herbivores. In: Hunter MD, Ohgushi T, Price PW (eds) Effects of resource distribution on animal plant interactions. Academic, San Diego

    Google Scholar 

  • Schwab DB, Allen JD (2014) Size-specific maternal effects in response to predator cues in an intertidal snail. Mar Ecol Prog Ser 499:127

    Article  Google Scholar 

  • Sharp KH, Ritchie KB (2012) Multi-partner interactions in corals in the face of climate change. Biol Bull 223(1):66–77

    Article  PubMed  Google Scholar 

  • Sharp JH, Winson MK, Porter JS (2007) Bryozoan metabolites: an ecological perspective. Nat Prod Rep 24:659–673

    Article  CAS  PubMed  Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res Part II (Top Stud Oceanogr) 45:517–567

    Article  Google Scholar 

  • Silchenko AS, Kalinovsky AI, Avilov SA, Andryjashchenko PV, Dmitrenok PS, Kalinin VI, Taboada S, Avila C (2013) Triterpene glycosides from Antarctic Sea cucumbers IV. Turquetoside A, a 3-O-methylquinovose containing disulfated tetraoside from the sea cucumber Staurocucumis turqueti (Vaney, 1906) (= Cucumaria spatha). Biochem Syst Ecol 51(1):45–49

    Article  CAS  Google Scholar 

  • Simister R, Taylor MW, Tsai P, Fan L, Bruxner TJ, Crowe ML, Webster N (2012a) Thermal stress responses in the bacterial biosphere of the great barrier reef sponge, Rhopaloeides odorabile. Environ Microbiol 14(12):3232–3246

    Article  CAS  PubMed  Google Scholar 

  • Simister R, Taylor MW, Tsai P, Webster N (2012b) Sponge-microbe associations survive high nutrients and temperatures. PLoS One 7(12):e52220. https://doi.org/10.1371/journal.pone.0052220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skropeta D (2008) Deep-sea natural products. Nat Prod Rep 25:1131–1166

    Article  CAS  PubMed  Google Scholar 

  • Slattery M (2010) Bioactive compounds from echinoderms: ecological and evolutionary perspectives. In: Harris LG, Boettger SA, Walker CW, Lesser MP (eds) Echinoderms. CRC Press, London, pp 591–600

    Google Scholar 

  • Slattery M, McClintock JB (1995) Population structure and feeding deterrence in three shallow-water Antarctic soft corals. Mar Biol 122:461–470

    Article  Google Scholar 

  • Slattery M, McClintock JB, Heine JN (1995) Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J Exp Mar Biol Ecol 190:61–77

    Article  CAS  Google Scholar 

  • Slattery M, Hamann MT, McClintock JB, Perry TL, Puglisi MP, Yoshida WY (1997) Ecological roles for water-borne metabolites from Antarctic soft corals. Mar Evol Prog Ser 161:133–144

    Article  CAS  Google Scholar 

  • Slattery M, Avila C, Starmer J, Paul VJ (1998) A sequestered soft coral diterpene in the aeolid nudibranch Phyllodesmium guamensis. J Exp Mar Biol Ecol 226:33–49

    Article  CAS  Google Scholar 

  • Sneed JM, Sharp KH, Ritchie KB, Paul VJ (2014) The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc R Soc B 281:20133086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Snelgrove PVR, Smith CR (2002) A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor. Oceanogr Mar Biol Ann Rev 40:311–342

    Google Scholar 

  • Soldatou S, Baker BJ (2017) Cold-water marine natural products, 2006 to 2016. Nat Prod Rep 34(6):585–626. https://doi.org/10.1039/c6np00127k

    Article  CAS  PubMed  Google Scholar 

  • Sotka EE, Forbey J, Horn M, Poore AGB, Raubenheimer D, Whalen KE (2009) The emerging role of pharmacology in understanding consumer−prey interactions in marine and freshwater systems. Integr Comp Biol 49:291–313

    Article  CAS  PubMed  Google Scholar 

  • Stachowicz JJ (2001) Chemical ecology of Mobile marine invertebrates: predators and prey, allies and competitors. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp p153–p190

    Google Scholar 

  • Stachowicz JJ, Hay ME (1999) Reducing predation through chemically-mediated camouflage: indirect effects of plant defenses on herbivores. Ecology 80:495–509

    Article  Google Scholar 

  • Steinberg PD, de Nys R (2002) Chemical mediation of colonisation of seaweed surfaces. J Phycol 38:621–629

    Article  CAS  Google Scholar 

  • Steinberg PD, Schneider R, Kjelleberg S (1997) Chemical defenses of seaweeds against microbial colonization. Biodegradation 8:211–220

    Article  CAS  Google Scholar 

  • Steinberg PD, de Nys R, Kjelleberg S (2001) Chemical mediation of surface colonisation. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, FL, pp 355–387

    Google Scholar 

  • Steinberg PD, De Nys R, Kjelleberg S (2002) Chemical cues for surface colonization. J Chem Ecol 28(10):1935–1951

    Article  CAS  PubMed  Google Scholar 

  • Steinberg PD, Rice SA, Campbell AH, McDougald D, Harder T (2011) Interfaces between bacterial and eukaryotic “neuroecology”. Integr Comp Biol 51:794–806

    Article  CAS  PubMed  Google Scholar 

  • Sudek S, Lopanik NB, Waggoner LE, Hildebrand M, Anderson C, Liu H, Patel A, Sherman DH, Haygood MG (2007) Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J Nat Prod 70(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Swanson RL, Byrne M, Prowse TAA, Mos B, Dworjanyn SA, Steinberg PD (2012) Dissolved histamine: a potential habitat marker promoting settlement and metamorphosis in sea urchin larvae. Mar Biol 159(4):915–925

    Article  CAS  Google Scholar 

  • Swearingen D III, Pawlik J (1998) Variability in the chemical defense of the sponge Chondrilla nucula against predatory reef fishes. Mar Biol 131:619–627

    Article  Google Scholar 

  • Taboada S, Núñez-Pons L, Avila C (2013) Feeding repellence of Antarctic and sub-Antarctic benthic invertebrates against the omnivorous sea star Odontaster validus. Polar Biol 36(1):13–25

    Article  Google Scholar 

  • Tadesse M, Gulliksen B, Strom MB, Styrvold OB, Haug T (2008) Screening for antibacterial and antifungal activities in marine benthic invertebrates from northern Norway. J Invertebr Pathol 99:286–293

    Article  CAS  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Molec Biol Rev 71(2):295–347

    Article  CAS  Google Scholar 

  • Teeyapant B, Woerdenbag HJ, Gross HJ, Proksch P (1993) Biotransformation of the brominated compounds in the marine sponge Verongia aerophoba: evidence for an induced chemical defense? Planta Med 59(A):641

    Article  Google Scholar 

  • Thistle D (2003) The deep-sea floor: an overview. In: Tyler PA (ed) Ecosystems of the world: ecosystems of the deep oceans. Elsevier, Amsterdam

    Google Scholar 

  • Thorton RS, Kerr R (2002) Induction of pseudopterosin biosynthesis in the gorgonian Pseudopterogorgia elisabethae. J Chem Ecol 28(10):2083–2090

    Article  Google Scholar 

  • Torssel KGB (1983) Natural product chemistry. A mechanistic and biosynthetic approach to secondary metabolism. Wiley, New York

    Google Scholar 

  • Toth GB, Pavia H (2000) Lack of phlorotannin induction in the brown seaweed Ascophyllum nodosum in response to increasing copper concentrations. Mar Ecol Prog Ser 192:119–126

    Article  CAS  Google Scholar 

  • Toth GB, Karlsson M, Pavia H (2007) Mesoherbivores reduce net growth and induce chemical resistance in natural seaweed populations. Oecologia 152:245–255

    Article  PubMed  Google Scholar 

  • Tremblay N, Abele D (2016) Response of three krill species to hypoxia and warming: an experimental approach to oxygen minimum zones expansion in coastal ecosystems. Mar Ecol 37:179–199

    Article  CAS  Google Scholar 

  • Tricaricoa E, Breithauptb T, Gherardia F (2011) Interpreting odours in hermit crabs: a comparative study. Estuar Coastal Shelf Sci 91:211–215

    Article  Google Scholar 

  • Tullrot A (1994) The evolution of unpalatability and warning coloration in soft-bodied marine invertebrates. Evolution 48(3):925–928

    Article  PubMed  Google Scholar 

  • Tullrot A, Sundberg P (1991) The conspicuous nudibranch Polycera quadrilineata: aposematic coloration and individual selection. Anim Behav 41(1):175–176

    Article  Google Scholar 

  • Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewsky P, Summerhayes C (2009) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, Scott Polar Research Institute, Cambridge, p 526

    Google Scholar 

  • Turon X, Becerro MA, Uriz MJ (1996) Seasonal patterns of toxicity in benthic invertebrates: the encrusting sponge Crambe crambe (Poecilosclerida). Oikos 75:33–40

    Article  Google Scholar 

  • Ueoka R, Uria AR, Reiter S, Mori T, Karbaum P, Peters EE, Helfrich EJ, Morinaka BI, Gugger M, Takeyama H, Matsunaga S, Piel J (2015) Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. Nat Chem Biol 11(9):705–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Alstyne KL (1988) Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69(3):655–663. https://doi.org/10.2307/1941014

    Article  Google Scholar 

  • Van Alstyne KL, McCarthy JJ, Hustead CL, Kearns LJ (1999) Phlorotannin allocation among tissues of northeastern Pacific kelps and rockweeds. J Phycol 35:483–492

    Article  Google Scholar 

  • Van Dyck S, Caulier G, Todesco M, Gerbaux P, Fournier I, Wisztorski M, Flammang P (2011) The triterpene glycosides of Holothuria forskali: usefulness and efficiency as a chemical defense mechanism against predatory fish. J Exp Biol 214:1347–1356. https://doi.org/10.1242/jeb.050930

    Article  CAS  PubMed  Google Scholar 

  • Vance RR (1978) A mutualistic interaction between a sessile marine clam and its epibionts. Ecology 59:679–685

    Article  Google Scholar 

  • Vaughn D (2010) Why run and hide when you can divide? Evidence for larval cloning and reduced larval size as an adaptive inducible defense. Mar Biol 157(6):1301–1312. https://doi.org/10.1007/s00227-010-1410-z

    Article  Google Scholar 

  • Vaughn D, Strathmann RR (2008) Predators induce cloning in echinoderm larvae. Science 319(5869):1503. https://doi.org/10.1126/science.1151995

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74. https://doi.org/10.1126/science.1093857

    Article  PubMed  Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Vermeij GJ (1994) The evolutionary interaction among species: selection, escalation, and coevolution. Annu Rev Ecol Syst 25:219–236

    Article  Google Scholar 

  • von Salm JL, Schoenrock KM, McClintock JB, Amsler CD, Baker BJ (2018) The status of marine chemical ecology in Antarctica. Form and function of unique high-latitude chemistry. In: Puglisi MP, Becerro MA (eds) Chemical ecology: the ecological impacts of marine natural products. CRC Press, Taylor and Francis, pp 27–69

    Chapter  Google Scholar 

  • Voss J, Richardson L (2006) Nutrient enrichment enhances black band disease progression in corals. Coral Reefs 25:569–576

    Article  Google Scholar 

  • Vrolijk NH, Targett NM (1992) Biotransformation enzymes in Cyphoma gibbosum (Gastropoda: Ovulidae): implications for detoxification of gorgonian allelochemicals. Mar Ecol Prog Ser 88:237–246

    Article  CAS  Google Scholar 

  • Wägele H (2004) Potential key characters in Opisthobranchia (Gastropoda, Mollusca) enhancing adaptive radiation. Org Divers Evol 4(3):175–188. https://doi.org/10.1016/j.ode.2004.03.002

    Article  Google Scholar 

  • Wagele H, Ballesteros M, Avila C (2006) Defensive glandular structures in opisthobranch molluscs: from histology to ecology. Oceanogr Mar Biol 44:197–276

    Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189

    Article  Google Scholar 

  • Wahl M, Mark O (1999) The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar Ecol Prog Ser 187:59–66

    Article  Google Scholar 

  • Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F (2012) The second skin: ecological role of epibiotic biofilms of marine organisms. Front Microbiol 3:1–21

    Article  CAS  Google Scholar 

  • Walls J, Ritz D, Blackman A (1993) Fouling, surface bacteria and antibacterial agents of four bryozoan species found in Tasmania, Australia. J Exp Mar Biol Ecol 169:1–13

    Article  CAS  Google Scholar 

  • Wang W, Namikoshi M (2007) Bioactive nitrogenous metabolites from ascidians. Heterocycles 74:53–88

    Article  CAS  Google Scholar 

  • Wang C, Liu H, Shao C, Wang Y, Li L, Guan H (2008) Chemical defensive substances of soft corals and gorgonians. Acta Ecol Sinica 28:2320–2328

    Article  CAS  Google Scholar 

  • Webster NS, Bourne D (2007) Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol Ecol 59(1):81–94

    Article  CAS  PubMed  Google Scholar 

  • Webster NS, Negri AP, Munro MMHG, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  • Weidner K, Lages BG, da Gama BAP, Molis M, Wahl M, Pereira RC (2004) Effect of mesograzers and nutrient levels on induction of defenses in several Brazilian macroalgae. Mar Ecol Progr Ser 283:113–125. https://doi.org/10.3354/meps283113

    Article  Google Scholar 

  • Weil E, Rogers CS, Croquer A (2017) Octocoral diseases in a changing ocean. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests, the ecology of benthic biodiversity hotspots. Springer International, Berlin

    Google Scholar 

  • Weiss B, Ebel R, Elbrächter M, Kirchner M, Proksch P (1996) Defense metabolites from the marine sponge Verongia aerophoba. Biochem Syst Ecol 24:1–12

    Article  CAS  Google Scholar 

  • Weissburg M, Atkins L, Berkenkamp K, Mankin D (2012) Dine or dash? Turbulence inhibits blue crab navigation in attractive–aversive odor plumes by altering signal structure encoded by the olfactory pathway. J Exp Biol 215:4175–4182

    Article  PubMed  Google Scholar 

  • Whalan S, Webster NS, Negri AP (2012) Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges. PLoS One 7:e30386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TCR (1984) The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105

    Article  CAS  PubMed  Google Scholar 

  • Wiebring A, Helmholz H, Sötje I, Lassen S, Prange A, Tiemann H (2010) A new method for the separation of different types of nematocysts from Scyphozoa and investigation of proteinaceous toxins utilizing laser catapulting and subsequent mass spectrometry. J Mar Biotechnol 12:308–317. https://doi.org/10.1007/s10126-010-9261-7

    Article  CAS  Google Scholar 

  • Wilkinson CR (1978) Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar Biol 49(2):161–167

    Article  Google Scholar 

  • Williamson JE, Gleeson C, Bell JE, Vaïtilingon D (2012) The role of visual and chemical cues in host detection by the symbiotic shrimp Gnathophylloides mineri. J Exp Mar Biol Ecol 414(415):38–43

    Article  CAS  Google Scholar 

  • Wilson NG, Schrödl M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic Sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18(5):965–984. https://doi.org/10.1111/j.1365-294X.2008.04071.x

    Article  PubMed  Google Scholar 

  • Wilson NG, Maschek JA, Baker BJ (2013) A species flock driven by predation? Secondary metabolites support diversification of slugs in Antarctica. PLoS One 8:e80277. https://doi.org/10.1371/journal.pone.0080277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woollacott RM (1981) Association of bacteria with bryozoan larvae. Mar Biol 65:155–158

    Article  Google Scholar 

  • Woollacott RM, Zimmer RL (1975) A simplified placenta-like system for the transport of extraembryonic nutrients during embryogenesis of Bugula neritina (Bryozoa). J Morphol 147:355–377. https://doi.org/10.1002/jmor.1051470308

    Article  PubMed  Google Scholar 

  • Woollacott RM, Zimmer RL (eds) (1977) The biology of bryozoans. Academic, New York, pp 57–89

    Google Scholar 

  • Wright PC, Westacott RE, Burja AM (2003) Piezotolerance as a metabolic engineering tool for the biosynthesis of natural products. Biomol Eng 20(4–6):325–331

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Liu Y (2010) Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl Microbiol Biotechnol 86:825–837

    Article  CAS  PubMed  Google Scholar 

  • Yates JL, Peckol P (1993) Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74(6):1757–1766. https://doi.org/10.2307/1939934

    Article  Google Scholar 

  • Yoshida W, Bryan P, Baker BJ, McClintock JB (1995) Pteroenone: a defensive metabolite of the abducted antarctic pteropod Clione antarctica. J Org Chem 60:780–782

    Article  CAS  Google Scholar 

  • Zhang D, Terschak JA, Harley MA, Lin J, Hardege JD (2011) Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones. PLoS One 6:e17720. https://doi.org/10.1371/journal.pone.0017720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer RK, Butman CA (2000) Chemical signaling processes in the marine environment. Biol Bull 198:168–187

    Article  CAS  PubMed  Google Scholar 

  • Zubía E, Ortega MJ, Salvá J (2005) Natural products chemistry in marine ascidians of the genus Aplidium. Mini Rev Org Chem 2:389–399

    Article  Google Scholar 

  • Zupo V, Messina P (2007) How do dietary diatoms cause the sex reversal of the shrimp Hippolyte inermis Leach (Crustacea, Decapoda). Mar Biol 151:907–917

    Article  Google Scholar 

  • Zupo V, Messina P, Buttino I, Sagi A, Avila C, Nappo M, Bastida J, Codina C, Zupo S (2007) Do benthic and planktonic diatoms produce equivalent effects in crustaceans? Mar Fresh Behav Physiol 40(3):169–181

    Article  Google Scholar 

Download references

Acknowledgments

I wish to thank all my co-workers, who helped during many years to improve our understanding of chemically mediated interactions in the marine benthos, as well as those collaborating in the study on the taxonomy, biology, and ecology of marine benthic invertebrates. All the advances in the field made by our group would not have been possible without all their effort. Thanks are also due to Júlia and Laura Sardà-Avila for their continuous support at all times. Support was provided by BLUEBIO grant from the Spanish Government (CTM2016-78901/ANT). This is an Ant-ECO (SCAR) contribution. This work is dedicated to C. Puigdemont, J. Cuixart, C. Forcadell, J. Sànchez, D. Bassa, A. Comín, R. Romeva, J. Rull, J. Turull, O. Junqueras, J. Forn, C. Ponsati, M. Rovira, A. Gabriel, L. Puig, and M. Serret, Catalan Political Prisoners and Exiles, who are unfairly in jail or exile while I write this chapter, and to all the Catalan people for their resilience against repression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Avila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avila, C. (2020). Chemical War in Marine Animal Forests: Natural Products and Chemical Interactions. In: Rossi, S., Bramanti, L. (eds) Perspectives on the Marine Animal Forests of the World. Springer, Cham. https://doi.org/10.1007/978-3-030-57054-5_9

Download citation

Publish with us

Policies and ethics