Skip to main content
Log in

EDXRF as an analytical tool in art: Case studies from pigment identification and treatment assessment

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Energy dispersive X-ray fluorescence (EDXRF) was employed for the identification of pigments decorating Hellenistic figurines, and the assessment of the efficiency of a treatment with barium hydroxide applied to stone. Elements present in the colored areas of the figurines, as well as the treated stone was identified by EDXRF. These data together with complementary information obtained by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) led to the identification of several precious pigments. As far as the treatment efficiency is concerned, EDXRF analysis revealed that barium is unevenly distributed on the treated surface and reaches a maximum depth of 2.5 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mantler, M. Schreiner, J. Radioanal. Nucl. Chem., 247 (2001) 635.

    Google Scholar 

  2. Special Millennium Issue on Cultural Heritage, X-ray Spectrom., 29 (2000).

  3. P. Leutenegger, A. Longoni, C. Fiorini, L. Studer, J. Kemmer, P. Lechner, S. Sciuti, R. Cesareo, Nucl. Instr. Meth. Phys. Res., A439 (2000) 458.

    Article  Google Scholar 

  4. M. Ferretti, G. Guidi, P. Moioli, R. Scafe, C. Seccaronni, Stud. Conserv., 36 (1991) 235.

    Article  CAS  Google Scholar 

  5. J. L. Ferrero, C. Roldan, M. Ardid, E. Navarro, Nucl. Instr. Meth. Phys. Res., A422 (1999) 868.

    Article  Google Scholar 

  6. T. Cechak, J. Gerndt, L. Musslek, I. Kopecka, Radiat. Phys. Chem., 61 (2001) 717.

    Article  CAS  Google Scholar 

  7. M. Mantler, M. Schreiner, X-ray Spectrom., 29 (2000) 3.

    Article  CAS  Google Scholar 

  8. E. Aloupi, A. G. Karydas, T. Paradellis, X-ray Spectrom., 29 (2000) 18.

    Article  CAS  Google Scholar 

  9. R. KlockenkÄmper, M. Becker, H. Otto, Spectrochim. Acta, B45 (1990) 1043.

    Google Scholar 

  10. P. L. Leung, Hongjie Luo, X-ray Spectrom., 29 (2000) 34.

    Article  CAS  Google Scholar 

  11. J. L. Ferrero, C. Roldan, D. Juanes, E. Rollano, C. Morera, X-ray Spectrom., 31 (2002) 441.

    Article  CAS  Google Scholar 

  12. R. Cesareo, A. Castellano, G. Buccolieri, S. Quarta, M. Marabelli, P. Santopadre, 7th Intern. Conf. on Non-Destructive Testing and Microanalysis for the Diagnostics and Conservation of Cultural and Environmental Heritage, Antwerp, Belgium, 2002, Book of Extended Abstracts, p. 13.

  13. S. Bichlmeier, K. Janssens, J. Heckel, D. Gibson, P. Hoffmann, H. M. Ortner, X-ray Spectrom., 30 (2001) 8.

    Article  CAS  Google Scholar 

  14. R. KlockenkÄmper, A. Von bohlen, L. Moens, X-ray Spectrom., 29 (2000) 119.

    Article  Google Scholar 

  15. S. Z. Lewin, N. S. Baer, Stud. Conserv., 19 (1974) 24.

    Article  CAS  Google Scholar 

  16. S. Markoulaki, V. Niniou-kindeli, Archaeol. Bull., 37 (1990) 7.

    Google Scholar 

  17. P. Maravelaki-kalaitzaki, N. Kallithrakas-kontos, Anal. Chim. Acta, 497 (2003) 209.

    Article  CAS  Google Scholar 

  18. V. C. Farmer, Infrared Spectra of Minerals, Mineralogical Society, London, 1974, p. 331.

    Google Scholar 

  19. R. G. Milkey, Am. Mineral., 45 (1960) 990.

    CAS  Google Scholar 

  20. P. Mirti, L. Appolonia, A. Casoli, R. P. Ferrari, E. Laurenti, A. Amisano, A. Canesi, G. Chiari, Spectrochim. Acta, 51A (1995) 437.

    CAS  Google Scholar 

  21. S. Bruni, F. Cariati, F. Casadio, L. Toniolo, Vib. Spectr., 20 (1999) 15.

    Article  CAS  Google Scholar 

  22. L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman & Hall, London, 1975, p. 375.

    Google Scholar 

  23. J. Winter, Stud. Conserv., 28 (1983) 49.

    Article  CAS  Google Scholar 

  24. D. S. Reese, Ann. Br. Sch. Athens, 82 (1987) 201.

    Google Scholar 

  25. M. Andreadaki-vlazaki, AD Chronika, 2004, in press.

  26. P. E. Mcgovern, R. H. Michel, Acc. Chem. Res., 23 (1990) 152.

    Article  CAS  Google Scholar 

  27. R. J. H. Clark, C. J. Cooksey, New J. Chem., 1 (1999) 323.

    Article  Google Scholar 

  28. J. Riederer, Archaeometry, 16 (1974) 102.

    Google Scholar 

  29. L. Leroux, V. Verges-Belmin, D. Costa, J. Delgado Rodrigues, P. Tiano, R. Snethlage, B. Singer, S. Massey, E. De Witte, 9th Intern. Congress on Deterioration and Conservation of Stone, V. Fassina (Ed.), Elsevier, Venice, 2000, p. 361.

    Google Scholar 

  30. P. Maravelaki-kalaitzaki, N. Kallithrakas-kontos, Science and Cultural Heritage, Vol. XIX, Reversibility in Restorations: Thoughts, Experiences, Research Routes, Arcadia Ricerche, Venice, 2003, p. 307.

    Google Scholar 

  31. C. A. Price, Stone Conservation, An Overview of Current Research, The Getty Conservation Institute, Santa Monica, 1996, p. 25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallithrakas-Kontos, N., Maravelaki-Kalaitzaki, P. EDXRF as an analytical tool in art: Case studies from pigment identification and treatment assessment. Journal of Radioanalytical and Nuclear Chemistry 262, 713–719 (2004). https://doi.org/10.1007/s10967-004-0498-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-004-0498-3

Keywords

Navigation