World Scientific
  • Search
  •   
Skip main navigation
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

THE DIMENSIONAL FACT MODEL: A CONCEPTUAL MODEL FOR DATA WAREHOUSES

    https://doi.org/10.1142/S0218843098000118Cited by:261 (Source: Crossref)

    Data warehousing systems enable enterprise managers to acquire and integrate information from heterogeneous sources and to query very large databases efficiently. Building a data warehouse requires adopting design and implementation techniques completely different from those underlying operational information systems. Though most scientific literature on the design of data warehouses concerns their logical and physical models, an accurate conceptual design is the necessary foundations for building a DW which is well-documented and fully satisfies requirements. In this paper we formalize a graphical conceptual model for data warehouses, called Dimensional Fact model, and propose a semi-automated methodology to build it from the pre-existing (conceptual or logical) schemes describing the enterprise relational database. The representation of reality built using our conceptual model consists of a set of fact schemes whose basic elements are facts, measures, attributes, dimensions and hierarchies; other features which may be represented on fact schemes are the additivity of fact attributes along dimensions, the optionality of dimension attributes and the existence of non-dimension attributes. Compatible fact schemes may be overlapped in order to relate and compare data for drill-across queries. Fact schemes should be integrated with information of the conjectured workload, to be used as the input of logical and physical design phases; to this end, we propose a simple language to denote data warehouse queries in terms of sets of fact instances.

    This work was partially supported by the INTERDATA project from the Italian Ministry of University and Scientific Research and by Olivetti Sanità.