Skip to main content

Nutrient Availability and Management in the Rhizosphere by Microorganisms

  • Chapter
  • First Online:
Bacteria in Agrobiology: Stress Management

Abstract

Crop nutrition is frequently inadequate as a result of the expansion of cropping into marginal lands, elevated crop yields placing increasing demands on soil nutrient reserves, and environmental and economic concerns about applying fertilizers. Plants exposed to nutrient deficiency activate a range of mechanisms that result in increased nutrient availability in the rhizosphere compared with the bulk soil. Rhizosphere microorganisms influence nutrient availability; adding beneficial microorganisms may result in enhanced the availability of nutrients to crops. Understanding the role of plant–microbe–soil interactions in governing nutrient availability in the rhizosphere enhances the economic and environmental sustainability of crop production. The availability of nutrients in the rhizosphere is controlled by the combined effects of soil properties, plant characteristics, and the interaction of roots with microorganisms (Jones et al. New Phytol 163: 459–480, 2004). Nutrients with limited mobility in soils [P, potassium (K), iron (Fe), zinc (Zn), Mn, and copper (Cu)] are transported to roots by diffusion, which is a slow process. A number of possible mechanisms of plant adaptation to soils with low nutrient availability have been suggested. PGPR had also been classified according to their beneficial effects (1) biofertilizers which fix nitrogen, subsequently used by plants, thereby improving plant growth and development, (2) phytostimulators that can directly promote growth, usually by production of plant hormones indole acetic acid, etc., (3) nutrient cyclers to solubilize and mobilize insoluble phosphorus, zinc, potassium, sulfur, etc., that enrich soil and increase its fertility for better growth and support; and (4) biocontrol agents which are able to protect the plants from infection by deleterious pathogens and pest. Several mechanisms are used by PGPR to enhance plant growth. It is important to provide a balanced nutrition and at the time when the nutrient can be most effective for higher yield and disease control. Integrated nutrient management (INM) maintains soils as storehouses of plant nutrients that are essential for vegetative growth. INM’s goal is to integrate the use of all natural and man-made sources of plant nutrients, so that crop productivity increases in an efficient and environmentally benign manner, without sacrificing soil productivity for future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic, London

    Google Scholar 

  • Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in Agrobiology: Crop Ecosystems. Springer-Verlag, Heidelberg, Germany, pp 1–36

    Google Scholar 

  • Agrios NG (2005) Plant pathology, 5th edn. Elsevier-Academic, London, p 635

    Google Scholar 

  • Ahemad M, Khan MS (2011) Functional aspects of plant growth promoting rhizobacteria: recent advancements. Insight Microbiol 1(3):39–54

    Article  Google Scholar 

  • Arshad M, Frankenberger WT (2002) Ethylene: agricultural sources and applications. Kluwer Academic/Plenum, New York, pp 450

    Google Scholar 

  • Atkinson D, McKinlay RG (1997) Crop protection and its integration within sustainable farming systems. Agric Ecosyst Environ 64:87–93

    Article  Google Scholar 

  • Ayala S, Rao EVSP (2002) Perspective of soil fertility management with a focus on fertilizer use of crop productivity. Curr Sci 82:797–807

    Google Scholar 

  • Barber SA, Cushman JH (1981) Nitrogen uptake model for agronomic crops. In: Iskandar IR (ed) Modeling wastewater renovation-land treatment. Wiley-Interscience, New York, pp 382–409

    Google Scholar 

  • Barber SA, Silverbush M (1984) In: Kaul DM, Hawkins SL, Barber SA, Boulodin DR (eds) Plant root morphology and nutrient uptake. Soil Science Society of America, Madrid, USA, pp 65–89

    Google Scholar 

  • Barker A, Corey K (1990) Ethylene evolution by tomato plants receiving nitrogen nutrition from urea. Hortic Sci 119:706–710

    Google Scholar 

  • Baruah TC, Barthakur HP (1999) A text book of soil analysis. Vikas, New Delhi, p 334

    Google Scholar 

  • Becking JH (1995) Pleomorphic in Azospirillum. In: Klingmuller W (ed) Azospirillum III Genetics physiology ecology. Springer, Berlin, pp 243–262

    Google Scholar 

  • Bio-Gro’s complete fertility system – The rhizosphere. http://www.biogro.com

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  PubMed  CAS  Google Scholar 

  • Brennan RF (1992) The role of manganese and nitrogen nutrition in the susceptibility of wheat plants to take-all in western Australia. Fertil Res 31:35–41

    Article  CAS  Google Scholar 

  • Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Cakmak IM (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmakci R, Donmez F, Aydin A, Sahin F (2006) Growth promotion of plants by plant growth promoting rhizobacteria under green house and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Cambardella LA, Eliott ET (1992) Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 46:777–783

    Article  Google Scholar 

  • Collins CH, Lyne PM, Granze JM (1992) Microbiological methods. Read Educational and Professional, Gauteng, pp 117

    Google Scholar 

  • Corey KA, Barker AV (1989) Ethylene evolution and polyamine accumulation by tomato subjected to interactive stresses of ammonium toxicity and potassium deficiency. Am Soc Hortic Sci 114:651–655

    Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomona phaseolina causing charcoal rot of peanut. Curr Sci 83(3):443–448

    Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of Zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94

    Article  Google Scholar 

  • Dordas C (2007) Role of nutrients in controlling plant diseases in sustainable agriculture: a review. Agron Sustain Dev 28:33–46

    Article  CAS  Google Scholar 

  • Dragun J (1988) The soil chemistry of hazardous materials, 2nd edn. Amherst Scientific, Amherst, p 862

    Google Scholar 

  • Dubey DC, Maheshwari DK (2011) Role of PGPR in Integrated Nutrient Management of Oil Seed Crops. In: Maheshwari DK (ed) Bacteria in Agrobiology: Plant Nutrient Management. Springer-Verlag, Heidelberg, Germany, pp 1–17

    Google Scholar 

  • Else MA, Hall KC, Arnold GM, Davies WJ, Jackson MB (1995) Export of abscisic acid,1-aminocyclopropane-1-carboxylic acid, phosphate and nitrate from roots to shoots of flooded tomato plants. Accounting for effects of xylem sap flow rate on concentration and delivery. Plant Physiol 107:377–384

    PubMed  CAS  Google Scholar 

  • Finck A (1994) From the fertilization of crops to the management of plant nutrients in crop rotation and farming systems. Expert consultation on integrated plant nutrition systems, Rome

    Google Scholar 

  • Gahoonia TS, Nielsen NE, Joshi PA, Jahoor A (2001) A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant Soil 235:211–219

    Article  CAS  Google Scholar 

  • George TS, Simpson RJ, Hadobas PA, Richardson AE (2005) Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils. Plant Biotechnol J 3:129–140

    Article  PubMed  CAS  Google Scholar 

  • Gherardi MJ, Rengel Z (2003) Genotypes of lucerne (Medicago sativa L.) show differential tolerance to manganese deficiency and toxicity when grown in bauxite residue sand. Plant Soil 249:287–296

    Article  CAS  Google Scholar 

  • Giris MGZ, Khalil HMA, Shreaf MS (2008) In vitro Evaluation of rock phosphate and potassium solubilising potential of some Bacillus cereus strains. Aust J Basic Appl Sci 2:68–81

    Google Scholar 

  • Glick BR, Chenz Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC-deaminase producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Graham DR (1983) Effects of nutrients stress on susceptibility of plants to disease with particular reference to the trace elements. Adv Bot Res 10:221–276

    Article  CAS  Google Scholar 

  • Graham DR, Webb MJ (1991) Micronutrients and disease resistance and tolerance in plants. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture, 2nd edn. Soil Science Society of America, Madison, WI, pp 329–370

    Google Scholar 

  • Grewal HS, Graham RD, Rengel Z (1996) Genotypic variation in zinc efficiency and resistance to crown rot disease (Fusarium graminearum Schw. Group 1) in wheat. Plant Soil 186:219–226

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Naresh MG, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hammerschmidt R, Nicholson RL (2000) A survey of plant defense responses to pathogens. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. APS, Minneapolis, p 390

    Google Scholar 

  • Heckman JR, Clarke BB, Murphy JA (2003) Optimizing manganese fertilization for the suppression of take-all patch disease on creeping bentgrass. Crop Sci 43:1395–1398

    Article  CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants – to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P starvation. Plant Soil 113:161–165

    Article  CAS  Google Scholar 

  • Hoffland E, van Beusichem ML, Jegger MJ (1999) Nitrogen availability and susceptibility of tomato leaves to Botrytis cinerea. Plant Soil 210:263–272

    Article  CAS  Google Scholar 

  • Hoffland E, Jegger MJ, van Beusichem ML (2000) Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant Soil 218:239–247

    Article  CAS  Google Scholar 

  • Huber DM (1980) The role of mineral nutrition in defense. In: Horsfall JG, Cowling EB (eds) Plant disease, an advanced treatise, vol 5, How plants defend themselves. Academic, New York, pp 381–406

    Google Scholar 

  • Huber MD (1996a) Introduction. In: Engelhard WA (ed) Management of diseases with macro- and microelements. APS, Minneapolis, p 217

    Google Scholar 

  • Huber MD (1996b) The role of nutrition in the take-all disease of wheat and other small grains. In: Engelhard WA (ed) Management of diseases with macro- and microelements. APS, Minneapolis, pp 46–74

    Google Scholar 

  • Huber DM, Graham RD (1999) The role of nutrition in crop resistance and tolerance to disease. In: Rengel Z (ed) Mineral nutrition of crops fundamental mechanisms and implications. Food Products, New York, pp 205–226

    Google Scholar 

  • Huber DM, McCay-Buis TS (1993) A multiple component analysis of the take-all disease of cereals. Plant Dis 77:437–447

    Article  Google Scholar 

  • Jackson MB (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol 36:145–174

    Article  CAS  Google Scholar 

  • Jaegar CH, Lindow SE, Miller W, Clark E, Firestne MK (1999) Mapping of sugars and amino acids availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    Google Scholar 

  • Jha CK, Saraf M (2011) In vitro evaluation of indigenous plant growth promoting rhizobacteria isolated from Jatropha curcas rhizosphere. Int J Genet Eng Biotechnol 2(1):91–100

    Google Scholar 

  • Joshi KK, Kumar V, Dubey RC, Maheshwari DK (2006) Effect of chemical fertilizer adaptive variants, Pseudomonas aeruginosa GRC2 and Azotobacter chroococcum AC1 on Macrophomina phaseolina causing charcoal rot of Brassica juncea. Kor J Environ Agric 25:228–235

    Article  Google Scholar 

  • Kantochote D, Naidu R, Singleton I, McClure N, Harch BD (2001) Resistance of microbial populations in DDT-contaminated and uncontaminated soils. Appl Soil Ecol 16:85–90

    Article  Google Scholar 

  • Kaymak HC (2011) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiology monographs, vol. 18. Springer, Heidelberg, pp 45–79 10.1007/978-3-642-13612-2_3

    Google Scholar 

  • Keinath PA, Loria R (1996) Management of common scab of potato with plant nutrients. In: Engelhard WA (ed) Management of diseases with macro- and microelements. APS, Minneapolis, pp 152–166

    Google Scholar 

  • Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55:1939–1945

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Ahemed M, Oves M, Wani A (2010) Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch Agron Soil Sci 56(1):73–98

    Article  CAS  Google Scholar 

  • Kiraly Z (1976) Plant disease resistance as influenced by biochemical effects of nutrients and fertilizers. In: Fertilizer use and plant health, Proceedings of Colloquium 12. International Potash Institute, Atlanta, GA, pp 33–46

    Google Scholar 

  • Kolattukudy EP, Kämper J, Kämper U, González-Candelas L, Guo W (1994) Fungus-induced degradation and reinforcement of defensive barriers of plants. In: Petrini O, Guellete GB (eds) Host wall alterations by parasitic fungi. APS, Minneapolis, pp 67–79

    Google Scholar 

  • Krauss A (1999) Balanced nutrition and biotic stress. In: IFA Agricultural Conference on Managing Plant Nutrition, 29 June–2 July 1999, Barcelona, Spain

    Google Scholar 

  • Kumar T, Wahla V, Pandey P, Dubey RC, Maheshwari DK (2009) Rhizosphere competent Pseudomonas aeruginosa in the management of Heterodera cajani on Sesame. World J Microbiol Biotechnol 25:277–285

    Article  Google Scholar 

  • Kumar S, Kumar P, Dubey RC, Maheshwari DK (2011) Ecofriendly economically viable integrated nutrient management for sustainable agriculture. In: Bioremediation of Pollutants. I.K. International House, New Delhi

    Google Scholar 

  • Kumar S, Dubey RC, Maheshwari DK (2011) Role of PGPR in integrated nutrient management of oil seed crops. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Heidelberg

    Google Scholar 

  • Kumwenda JDT, Waddington SR, Snapp SS, Jones RB, Blackie MJ (1996) Soil fertility management research for the maize cropping systems of smallholders in southern Africa: Natural Resources Group Paper 96–02. International Maize and Wheat Improvement Center (CIMMYT), Mexico City

    Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu JQ, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM, Bragg E (1985) Microrganisms and soil aggregate stability. Adv Soil Sci 2:133–171

    Article  Google Scholar 

  • Maheshwari DK (2010) Plant growth and health promoting bacteria. Microbiology monograph, vol. 18. Springer, Heidelberg

    Google Scholar 

  • Maheshwari DK, Gupta M (1991a) Influence of two carbamate nematicides on growth, oxygen uptake in Rhizobium japonicum 2002 and nodulation in Glycine max. Zentrablat Microbiol 146:407–412

    CAS  Google Scholar 

  • Maheshwari DK, Gupta M (1991b) Diverse effect of two organocarabamate nematicides on nitrogen assimilation of Rhizobium japonicum. Biochem Pflanzen Physiol 187:316–322

    CAS  Google Scholar 

  • Maheshwari DK, Nishimura Y (1994) Lipid variations at different temperatures on two species of Xenorhabdus. J Basic Microbiol 34:329–334

    Article  CAS  Google Scholar 

  • Maheshwari DK, Saraf M (1994) Effect of carbaryl and 2,4-D nitrogenase and uptake hydrogenase activity in agar culture and root nodules formed by Rhizobium leguminosarum. J Gen Appl Microbiol 40:563–568

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889

    Google Scholar 

  • Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R (2002) Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246:167–174

    Article  CAS  Google Scholar 

  • Marschner P, Fu QL, Rengel Z (2003) Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. J Plant Nutr Soil Sci 166:712–718

    Article  CAS  Google Scholar 

  • Marschner P, Crowley DE, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Mattoo A, Suttle J (1991) The plant hormone ethylene. CRC, Boca Raton, FL

    Google Scholar 

  • Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 83(2):137–145

    CAS  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  • Nigussie D, Schenk MK, Claassen N, Steingrobe B (2003) Phosphorus efficiency of cabbage (Brassica oleracea L. var. capitata), carrot (Daucus carota L.), and potato (Solanum tuberosum L.). Plant Soil 250:215–224

    Article  Google Scholar 

  • Oborn I, Edwards AC, Witter E, Oenema O, Ivarsson K, Withers PJA, Nilsson SI, Richert SA (2003) Element balances as a toll for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. Eur J Agron 20:211–225

    Article  CAS  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372

    Article  PubMed  CAS  Google Scholar 

  • Osborne LD, Rengel Z (2002) Growth and P uptake by wheat genotypes supplied with phytate as the only P source. Aust J Agric Res 53:845–850

    Article  CAS  Google Scholar 

  • Pandey P, Kang SC, Gupta CP, Maheshwari DK (2005) Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophores and enhances growth of Indian mustard (Brassica compestris). Curr Microbiol 51(5):303–309

    Article  PubMed  CAS  Google Scholar 

  • Pandya U, Saraf M (2010) Role of single fungal isolates and consortia as plant growth promoters under saline conditions. Res J Biotechnol 5(3):5–9

    Google Scholar 

  • Patel D, Jha CK, Tank N, Saraf M (2011) Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. J Plant Growth Regul. doi:10.1007/s00344-011-9219-7

    Google Scholar 

  • Paul IK, Savitri KE (2003) Effect of biofertilizer vs. perfected chemical fertilization for sesame grown in summer rice fallow. J Trop Agric 41:47–49

    Google Scholar 

  • Radersma S, Grierson PF (2004) Phosphorus mobilization in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizosphere. Plant Soil 259:209–219

    Article  CAS  Google Scholar 

  • Rengel Z (2000) Uptake and transport of manganese in plants. In: Sigel A, Sigel H (eds) Metal ions in biology systems. Marcel Dekker, New York, pp 57–87

    Google Scholar 

  • Rengel Z (2001) Genotypic differences in micronutrient use efficiency in crops. Commun Soil Sci Plant Anal 32:1163–1186

    Article  CAS  Google Scholar 

  • Rengel Z (2002) Genetic control of root exudation. Plant Soil 245:59–70

    Article  CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    Article  PubMed  CAS  Google Scholar 

  • Reuveni R, Reuveni M (1998) Foliar-fertilizer therapy – a concept in integrated pest management. Crop Prot 17:111–118

    Article  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  PubMed  CAS  Google Scholar 

  • Rioux D, Biggs AR (1994) Cell wall changes and non-host systems: microscopic Aspects. In: Pertini O, Quellette B (eds) Host wall alterations by parasitic fungi. APS, Minneapolis, pp 31–44

    Google Scholar 

  • Römheld V, Marschner H (1991) Function of micronutrients in plants In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, WI, pp 297–328

    Google Scholar 

  • Rovira AD, Graham RD, Ascher JS (1983) Reduction in infection of wheat roots by Gaeumanomyces graminis var. tritici with application of manganese to soil. In: Parker CA, Rovira AD, Moore KJ, Wong PTW, Kollmorgen JF (eds) Ecology and management of soilborne plant pathogens. APS, Minneapolis

    Google Scholar 

  • Sahin F, Cakmacki R, Kantar F (2004) Sugarbeet and barley in relation to inoculation with nitrogen fixing and phosphate solubilising bacteria. Plant Soil 265:123–129

    Article  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  PubMed  CAS  Google Scholar 

  • Schunmann PHD, Richardson AE, Smith FW, Delhaize E (2004) Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot 55:855–865

    Article  PubMed  CAS  Google Scholar 

  • Sharma RC, Duveiller E (2004) Effect of helminthosporium leaf blight on performance of timely and late-seeded wheat under optimal and stressed levels of soil fertility and moisture. Field Crop Res 89:205–218

    Article  Google Scholar 

  • Sharma S, Duveiller E, Basnet R, Karki CB, Sharma RC (2005) Effect of potash fertilization on helminthosporium leaf blight severity in wheat, and associated increases in grain yield and kernel weight. Field Crop Res 93:142–150

    Article  Google Scholar 

  • Simoglou K, Dordas C (2006) Effect of foliar applied boron, manganese and zinc on tan spot in winter durum wheat. Crop Prot 25:657–663

    Article  CAS  Google Scholar 

  • Singh MV (2001) Evaluation of current micronutrient stocks in different agro ecological zones of India for sustainable crop production. Fertil News 46:25–28

    CAS  Google Scholar 

  • Singh N, Pandey P, Dubey RC, Maheshwari DK (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24:1669–1679

    Article  Google Scholar 

  • Smaling EMA, Braun AR (1996) Soil fertility research in Sub-Saharan Africa: new dimensions, new challenges. Commun Soil Sci Plant Anal 27:365–386

    Article  CAS  Google Scholar 

  • Smiley RW (1981) Non-target effects of pesticides on turf grasses. Plant Dis 65:17–23

    Article  CAS  Google Scholar 

  • Smith FW (2002) Sulphur and phosphorus transport systems in plants. In: Powlson DS (ed) Interactions in the root environment: an integrated approach. Proceedings of the millennium conference on rhizosphere interactions, IACR-Rothamsted, 10–12 Apr 2001. Kluwer Academic, Dordrecht, pp 109–118

    Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacteria signaling: a love parade beneath our feet. Crit Rev Microbiol 304:205–240

    Article  CAS  Google Scholar 

  • Spaepen S, Das F, Luyten E, Michelis J, Vandeleyden J (2009) Indole-3-acetic acid regulated genes in Rhizobium etli CNPAF 12. FEMS Microbiol Lett 291:195–2000

    Article  PubMed  CAS  Google Scholar 

  • Sperberg JI (1958) The incidence of apatite solubilising organisms in the rhizosphere and oil. Aust J Agric Res 9:778–781

    Article  Google Scholar 

  • Strzeleowa A (1970) The effect of urea on spheroplast formation in Rhizobium. Acta Microbiol Polan 2:23–24

    Google Scholar 

  • Tank N, Saraf M (2010) Salinity resistant PGPR ameliorates NaCl stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Timonin ME (1965) Interaction of higher plants and soil microorganisms. In: Gilmore CM, Allen ON, Corvallis OR (eds) Microbiology and soil fertility. Oregon State University Press, Corvallis, OR, pp 135–138

    Google Scholar 

  • Vertapelian BB, Jackson MB (1977) Plant adaptation to anaerobic stress. Ann Bot 79:3–20

    Google Scholar 

  • Vidhyasekaran P (1997) Fungal pathogenesis in plants and crops., Molecular biology and host defense mechanisms. Marcel Dekker, New York, p 568

    Google Scholar 

  • Vidhyasekaran P (2004) Concise encyclopaedia of plant pathology. Food Products, The Haworth Reference, New York, p 619

    Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Article  PubMed  CAS  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thalaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  PubMed  CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere and rhizoplane in response to crop species, soil type and crop development. Appl Environ Microbiol 73:1079–1088

    Google Scholar 

  • Wilkens RT, Spoerke JM, Stamp NE (1996) Differential response of growth and two soluble phenolics of tomato to resource availability. Ecology 77:247–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh K. Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maheshwari, D.K., Kumar, S., Maheshwari, N.K., Patel, D., Saraf, M. (2012). Nutrient Availability and Management in the Rhizosphere by Microorganisms. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Stress Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23465-1_15

Download citation

Publish with us

Policies and ethics