Skip to main content
Log in

Regulation of Fatty Acid Production and Release in Benthic Algae: Could Parallel Allelopathy Be Explained with Plant Defence Theories?

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Many organisms produce chemical compounds, generally referred as secondary metabolites, to defend against predators and competitors (allelopathic compounds). Several hypotheses have been proposed to explain the interaction between environmental factors and secondary metabolites production. However, microalgae commonly use simple metabolites having a role in primary metabolism as allelopathic compounds. The aim of this study was to determine whether classical theories of plant chemical defences could be applied to microalgae producing allelochemicals derived from the primary metabolism. Our study was designed to investigate how growth phase, algal population density, nutrient limitation and carbon assimilation affect the production and release of allelopathic free fatty acids (FFAs) among other FFAs. The model species used was Uronema confervicolum, a benthic filamentous green alga that produces two allelopathic FFAs (linoleic and α-linolenic acids) inhibiting diatom growth. FFAs have been quantified in algal biomass and in culture medium. Our results were analysed according to two classical plant defence theories: the growth-differentiation balance hypothesis (GDBH) and the optimal defence theory (ODT), based on the metabolic capacities for defence production and on the need for defence, respectively. While a higher production of allelopathic compounds under increased light conditions supports the use of GDBH with this microalga, the observation of a negative feedback mechanism mostly supports ODT. Therefore, both theories were insufficient to explain all the observed effects of environmental factors on the production of these allelochemicals. This highlights the needs of new theories and models to better describe chemical interactions of microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rice EL (1984) Allelopathy. Academic Press, New York

    Google Scholar 

  2. Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  3. Keating KI (1977) Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196:885–887

    Article  CAS  PubMed  Google Scholar 

  4. Graneli E, Salomon PS (2010) Factors influencing allelopathy and toxicity in Prymnesium parvum. J Am Water Resour Assoc 46:108–120. https://doi.org/10.1111/j.1752-1688.2009.00395.x

    Article  CAS  Google Scholar 

  5. Barreiro A, Hairston NG (2013) The influence of resource limitation on the allelopathic effect of Chlamydomonas reinhardtii on other unicellular freshwater planktonic organisms. J Plankton Res 35:1339–1344. https://doi.org/10.1093/plankt/fbt080

    Article  CAS  Google Scholar 

  6. Leflaive J, Ten-Hage L (2009) Allelopathic interactions in benthic biofilms: effects of abiotic conditions on production of and sensitivity to allelochemicals. J N Am Benthol Soc 28:271–280

    Article  Google Scholar 

  7. Antunes JT, Leao PN, Vasconcelos VM (2012) Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii strain LEGE 99043. Microb Ecol 64:584–592. https://doi.org/10.1007/s00248-012-0061-7

    Article  CAS  PubMed  Google Scholar 

  8. Ray S, Bagchi SN (2001) Nutrients and pH regulate algicide accumulation in culture of the cyanobacterium Oscillatoria laetevirens. New Phytol 149:455–460

    Article  CAS  Google Scholar 

  9. Pavia H, Toth G (2008) Macroalgal models in testing and extending defence theories. In: Amsler D (ed) Algal chemical ecology. Springer, Berlin, pp 147–172

  10. Herms DA, Mattson WJ (1992) The dilemma of plants—to grow or defend. Q Rev Biol 67:283–335. https://doi.org/10.1086/417659

    Article  Google Scholar 

  11. Stamp N (2004) Can the growth-differentiation balance hypothesis be tested rigorously? Oikos 107:439–448. https://doi.org/10.1111/j.0030-1299.2004.12039.x

    Article  Google Scholar 

  12. Loomis W (1932) Growth-differentiation balance vs. carbohydrate-nitrogen ratio. Proc Am Soc Hortic Sci 29:240–245

    CAS  Google Scholar 

  13. Bauer N, Blaschke U, Beutler E, Gross EM, Jenett-Siems K, Siems K, Hilt S (2009) Seasonal and interannual dynamics of polyphenols in Myriophyllum verticillatum and their allelopathic activity on Anabaena variabilis. Aquat Bot 91:110–116. https://doi.org/10.1016/j.aquabot.2009.03.005

    Article  CAS  Google Scholar 

  14. Gross EM (2003) Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogen. Oikos 103:497–504. https://doi.org/10.1034/j.1600-0706.2003.12666.x

    Article  CAS  Google Scholar 

  15. Wackers FL, Bonifay C (2004) How to be sweet? Extrafloral nectar allocation by Gossypium hirsutum fits optimal defense theory predictions. Ecology 85:1512–1518. https://doi.org/10.1890/03-0422

    Article  Google Scholar 

  16. Ianora A, Bentley MG, Caldwell GS, Casotti R, Cembella AD, Engstrom-Ost J, Halsband C, Sonnenschein E, Legrand C, Llewellyn CA, Paldaviciene A, Pilkaityte R, Pohnert G, Razinkovas A, Romano G, Tillmann U, Vaiciute D (2011) The relevance of marine chemical ecology to plankton and ecosystem function: an emerging field. Mar Drugs 9:1625–1648. https://doi.org/10.3390/md9091625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55. https://doi.org/10.1086/367580

    Article  PubMed  Google Scholar 

  18. Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95. https://doi.org/10.1046/j.1461-0248.2001.00192.x

    Article  Google Scholar 

  19. Leao PN, Vasconcelos M, Vasconcelos VM (2009) Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35:271–282. https://doi.org/10.3109/10408410902823705

    Article  CAS  PubMed  Google Scholar 

  20. Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214

    Article  CAS  Google Scholar 

  21. Ikawa M (2004) Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms. UNH Ctr Freshw Biol Res 6:17–44

    Google Scholar 

  22. Della Greca M, Zarrelli A, Fergola P, Cerasuolo M, Pollio A, Pinto G (2010) Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: experiments and modelling. J Chem Ecol 36:339–349. https://doi.org/10.1007/s10886-010-9753-y

    Article  CAS  Google Scholar 

  23. Jüttner F (2001) Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acid from lipids as a grazer defence reaction in epilithic diatom biofilm. J Phycol 37:744–755

    Article  Google Scholar 

  24. Allen JL, Ten-Hage L, Leflaive J (2015) Impairment of benthic diatom adhesion and photosynthetic activity by allelopathic compounds from a green alga: involvement of free fatty acids? Environ Sci Pollut Res 22:13669–13680. https://doi.org/10.1007/s11356-014-3873-9

    Article  CAS  Google Scholar 

  25. Sinkkonnen A (2006) Ecological relationships and allelopathy. In: Reigosa MJ, Pedrol N, Gonzales L (eds) Allelopathy. Springer, New York, pp. 373–393

    Google Scholar 

  26. Kim DG, Hur SB (2013) Growth and fatty acid composition of three heterotrophic Chlorella species. Algae 28:101–109. https://doi.org/10.4490/algae.2013.28.1.101

    Article  CAS  Google Scholar 

  27. Sliwinska-Wilczewska S, Pniewski F, Latala A (2016) Allelopathic activity of the picocyanobacterium Synechococcus sp under varied light, temperature, and salinity conditions. Int Rev Hydrobiol 101:69–77. https://doi.org/10.1002/iroh.201501819

    Article  Google Scholar 

  28. Solovchenko AE (2012) Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russ J Plant Physiol 59:167–176. https://doi.org/10.1134/s1021443712020161

    Article  CAS  Google Scholar 

  29. Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5:731–740. https://doi.org/10.3390/en5030731

    Article  Google Scholar 

  30. Sabia A, Baldisserotto C, Biondi S, Marchesini R, Tedeschi P, Maietti A, Giovanardi M, Ferroni L, Pancaldi S (2015) Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids. Appl Microbiol Biotechnol 99:10597–10609. https://doi.org/10.1007/s00253-015-6908-3

    Article  CAS  PubMed  Google Scholar 

  31. Hill WR, Rinchard J, Czesny S (2011) Light, nutrients and the fatty acid composition of stream periphyton. Freshw Biol 56:1825–1836. https://doi.org/10.1111/j.1365-2427.2011.02622.x

    Article  CAS  Google Scholar 

  32. Chiang I-Z, Huang W-Y, Wu J-T (2004) Allelochemicals of Botryococcus braunii (Chlorophyceae). J Phycol 40:474–480

    Article  CAS  Google Scholar 

  33. Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159

    Article  CAS  Google Scholar 

  34. Lang IK, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11. https://doi.org/10.1186/1471-2229-11-124

  35. Danger M, Leflaive J, Oumarou C, Ten-Hage L, Lacroix G (2007) Control of phytoplankton-bacteria interactions by stoichiometric constraints. Oikos 116:1079–1086

    CAS  Google Scholar 

  36. Pohnert G (2012) How to explore the sometimes unusual chemistry of aquatic defence chemicals. In: Brönmark C, Hansson L-A (eds) Chemical ecology in aquatic systems. Oxford University Press, Oxford, pp. 184–195

    Chapter  Google Scholar 

  37. Pinna A, Pezzolesi L, Pistocchi R, Vanucci S, Ciavatta S, Polimene L (2015) Modelling the stoichiometric regulation of C-rich toxins in marine dinoflagellates. PLoS One 10. https://doi.org/10.1371/journal.pone.0139046

  38. Fu M, Koulman A, van Rijssel M, Lutzen A, de Boer MK, Liebezeit G (2004) Chemical characterisation of three haemolytic compounds from the microalgal species Fibrocapsa japonica (Raphidophyceae). Toxicon 43:355–363

    Article  CAS  PubMed  Google Scholar 

  39. Wu YH, He JZ, Yang LZ (2010) Evaluating adsorption and biodegradation mechanisms during the removal of microcystin-RR by periphyton. Environ Sci Technol 44:6319–6324

    Article  CAS  PubMed  Google Scholar 

  40. Gross EM, Von Elert E, Jüttner F (1994) Production of allelochemicals in Fischerella muscicola under different environmental conditions. Verh Inter Verein Limnol 25:2231–2233

    CAS  Google Scholar 

  41. Andras TD, Alexander TS, Gahlena A, Parry RM, Fernandez FM, Kubanek J, Wang MD, Hay ME (2012) Seaweed allelopathy against coral: surface distribution of a seaweed secondary metabolite by imaging mass spectrometry. J Chem Ecol 38:1203–1214. https://doi.org/10.1007/s10886-012-0204-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lane AL, Nyadong L, Galhena AS, Shearer TL, Stout EP, Parry RM, Kwasnik M, Wang MD, Hay ME, Fernandez FM, Kubanek J (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Natl Acad Sci U S A 106:7314–7319. https://doi.org/10.1073/pnas.0812020106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu J-T, Chiang IR, Huang WY, Jane WN (2006) Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquat Toxicol 80:338–345

    Article  CAS  PubMed  Google Scholar 

  44. Van de Waal DB, Verspagen JMH, Lurling M, Van Donk E, Visser PM, Huisman J (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12:1326–1335. https://doi.org/10.1111/j.1461-0248.2009.01383.x

    Article  PubMed  Google Scholar 

  45. Hardison DR, Sunda WG, Shea D, Litaker RW (2013) Increased toxicity of Karenia brevis during phosphate limited growth: ecological and evolutionary Implications. PLoS One 8. https://doi.org/10.1371/journal.pone.0058545

  46. von Elert E, Jüttner F (1996) Factors influencing the allelopathic activity of the planktonic cyanobacterium Trichormus doliolum. Phycologia 35:68–73

    Article  Google Scholar 

  47. Flynn KJ, Raven JA, Rees TAV, Finkel Z, Quigg A, Beardall J (2010) Is the growth rate hypothesis applicable to microalgae? J Phycol 46:1–12. https://doi.org/10.1111/j.1529-8817.2009.00756.x

    Article  CAS  Google Scholar 

  48. Rasher DB, Hay ME (2014) Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed. Proc R Soc B Biol Sci 281. https://doi.org/10.1098/rspb.2013.2615

Download references

Acknowledgements

This work was supported by a grant from the Scientific Council of the University Paul Sabatier. Lipidomic analyses were performed on the Toulouse INSERM Metatoul-Lipidomique Core Facility-MetaboHub ANR-11-INBS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joséphine Leflaive.

Electronic supplementary material

ESM 1

(DOCX 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, J.L., Ten-Hage, L. & Leflaive, J. Regulation of Fatty Acid Production and Release in Benthic Algae: Could Parallel Allelopathy Be Explained with Plant Defence Theories?. Microb Ecol 75, 609–621 (2018). https://doi.org/10.1007/s00248-017-1082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1082-z

Keywords

Navigation