Please note our website will be undergoing maintenance on Tuesday, May 28, 2024. e-Commerce transactions and new registrations will be temporarily unavailable during this time. We apologize for any inconvenience this may cause.

Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Tree resin flow dynamics during an experimentally induced attack by Ips avulsus, I. calligraphus, and I. grandicollis

Publication: Canadian Journal of Forest Research
4 October 2018

Abstract

The success of tree colonization by bark beetles depends on their ability to overcome host tree defenses, including resin exudation and toxic chemicals, which deter bark beetle colonization. Resin defenses during insect outbreaks are challenging to study in situ, as outbreaks are stochastic events that progress quickly and thus preclude the establishment of baseline observations of non-infested controls. We use synthetic aggregation pheromones to demonstrate that confined Ips bark beetle herbivory can be successfully initiated to provide opportunities for studying interactions between bark beetles and their hosts, including the dynamics of constitutive and induced resin exudation. In Pinus taeda L. plantations between 12 and 19 years old in North and South Carolina, U.S., trees were affixed with pheromone lures, monitored for evidence of bark beetle attacks, and resin samples were collected throughout the growing season. Baiting increased beetle herbivory to an extent sufficient to produce an induced resin response. Attacked trees exuded about three times more resin at some time than control trees. This supports previous work that demonstrated that information on constitutive resin dynamics alone provides an incomplete view of a host tree’s resistance to bark beetle attack.

Résumé

Le succès de la colonisation des scolytes dépend de leur capacité à surmonter les défenses de l’hôte, incluant l’exsudation de résine et de composés chimiques toxiques qui empêchent la colonisation des scolytes. La production de résine comme mécanisme de défense lors des épidémies d’insectes est difficile à étudier in situ étant donné que les épidémies sont des événements aléatoires qui progressent rapidement et excluent par conséquent l’établissement d’observations de référence chez des témoins non infectés. Nous utilisons les phéromones d’agrégation synthétiques pour démontrer que l’herbivorie confinée des scolytes du genre Ips peut être initiée avec succès pour fournir l’occasion d’étudier les interactions entre les scolytes et leurs hôtes, incluant la dynamique de l’exsudation constitutive et induite de résine. Dans des plantations de Pinus taeda L. âgées de 12 à 19 ans, en Caroline du Nord et du Sud aux États-Unis, des arbres ont été munis d’appâts à base de phéromones et suivis pour détecter les signes d’attaques des scolytes; des échantillons de résine ont été prélevés tout au long de la saison de croissance. L’utilisation d’appâts a augmenté l’herbivorie des scolytes suffisamment pour induire la production de résine. À certains moments, les arbres attaqués exsudaient environ trois fois plus de résine que les arbres témoins. Ces résultats concordent avec ceux de travaux antérieurs qui démontrent que l’information sur la dynamique de la résine constitutive seule fournit une vision incomplète de la résistance des arbres hôtes aux attaques des scolytes. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Albaugh T.J., Allen H.L., Dougherty P.M., Kress L.W., and King J.S. 1998. Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. For. Sci. 44: 317–328.
Anderson N.H. and Anderson D.B. 1968. Ips bark beetle attacks and brood development on a lighting-struck pine in relation to its physiological decline. Fla. Entomol. 51(1): 23–30.
Birch M.C. 1978. Chemical communication in pine bark beetles: the interactions among pine bark beetles, their host trees, microorganisms, and associated insects for a system superbly suited for studying the subtlety and diversity of olfactory communication. Am. Sci. 66: 409–419.
Bohlmann J. 2012. Pine terpenoid defences in the mountain pine beetle epidemic and in other conifer pest interactions: specialized enemies are eating holes into a diverse, dynamic and durable defence system. Tree Physiol. 32: 943–945.
Boone C.K., Aukema B.H., Bohlmann J., Carroll A.L., and Raffa K.F. 2011. Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Can. J. For. Res. 41(6): 1174–1188.
Christiansen E., Krokene P., Berryman A.A., Franceschi V.R., Krekling T., Lieutier F., Lönneborg A., and Solheim H. 1999. Mechanical injury and fungal infection induce acquired resistance in Norway spruce. Tree Physiol. 19: 399–403.
Clarke S.R., Evans R.E., and Billings R.F. 2000. Influence of pine bark beetles on the west gulf coastal plain. Tex. J. Sci. 52(4): 105–126.
Cognato, A.I. 2015. Biology, systematics, and evolution of Ips. In Bark beetles: biology and ecology of native and invasive species. Edited by F.E. Vega and R.W. Hofstetter. Academic Press, London. pp. 351–370.
Coleman, M.D., Coyle, D.R., Blake, J., Britton, K., Buford, M., Campbell, B., Cox, J., Cregg, B., Daniels, D., Jacobson, M., Johnson, K., McDonald, T., McLeod, K., Nelson, E., Robison, D., Rummer, R., Sanchez, P., Stanturf, J., Stokes, B., Trettin, C., Tuskan, J., Wright, L., and Wullschleger, S. 2004. Production of short-rotation woody crops grown with a range of nutrient and water availability: establishment report and first year responses. USDA Forest Service, Southern Research Station, Asheville, N.C., Gen. Tech. Rep. SRS-072.
Coley, P.D. 1987. Interspecific variation in plant anti-herbivore properties: the role of habitat quality and rate of disturbance. New Phytol. 106(s1): 251–263.
Connor, M.D., and Wilkinson, R.C. 1983. Ips bark beetles in the south. USDA Forest Service, Washington, D.C., Forest Insect & Disease Leaflet 129.
Coulson, R.N., and Meeker, J.R. 2011. Social and political impact of the southern pine beetle. In Southern pine beetle II. Edited by R.N. Coulson and K.D. Klepzig. USDA Forest Service, Southern Research Station, Asheville, N.C., Gen. Tech. Rep. SRS-140. pp. 235–243.
Coyle D.R., Aubrey D.P., and Coleman M.D. 2016. Growth responses of narrow or broad site adapted tree species to a range of response availability treatments after full harvest rotation. For. Ecol. Manage. 362: 107–119.
Cudmore T.J., Björklund N., Carroll A.L., and Lindgren B.S. 2010. Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populations. J. Appl. Ecol. 47(5): 1036–1043.
Drooz, A. 1985. Insects of eastern forests. USDA Forest Service, Washington, D.C.
Endara M.J. and Coley P.D. 2011. The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25: 389–398.
Fettig C.J., Klepzig K.D., Billings R.F., Munson A.S., Nebeker T.E., Negrón J.F., and Nowak J.T. 2007. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For. Ecol. Manage. 238: 24–53.
Fischer M.J., Waring K.M., Hofstetter R.W., and Kolb T.E. 2010. Ponderosa pine characteristics associated with attack by the roundheaded pine beetle. For. Sci. 56(5): 473–483.
Franceschi V.R., Krokene P., Christiansen E., and Krekling T. 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 167: 353–376.
Gan J. 2004. Risk and damage of southern pine beetle outbreaks under global climate change. For. Ecol. Manage. 191: 61–71.
Gaylord M.L., Kolb T.E., Wallin K.F., and Wagner M.R. 2007. Seasonal dynamics of tree growth, physiology, and resin defenses in a northern Arizona ponderosa pine forest. Can. J. For. Res. 37(7): 1173–1183.
Gaylord M.L., Kolb T.E., Pockman W.T., Plaut J.A., Yepez E.A., Macalady A.K., Pangle R.E., and McDowell N.G. 2013. Drought predisposes piñon–juniper woodlands to insect attacks and mortality. New Phytol. 198: 567–578.
Hain, F.P., Duehl, A.J., Gardner, M.J., and Payne, T.L. 2011. Natural history of the southern pine beetle. In Southern pine beetle II. Edited by R.N. Coulson and K.D. Klepzig. USDA Forest Service, Southern Research Station, Asheville, N.C., Gen. Tech. Rep. SRS-140. pp. 13–24.
Herms D.A. and Mattson W.J. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67: 283–335.
Hodges J.D. and Lorio P.L. Jr 1975. Moisture stress and composition of xylem oleoresin in loblolly pine. For. Sci. 21: 283–290.
Hodges J.D., Elam W.W., and Watson W.F. 1977. Physical properties of the oleoresin system of the four major southern pines. Can. J. For. Res. 7(3): 520–525.
Klepzig, K.D., and Hofstetter, R.W. 2011. From attack to emergence: interactions between southern pine beetle, mites, microbes, and trees. In Southern pine beetle II. Edited by R.N. Coulson and K.D. Klepzig. USDA Forest Service, Southern Research Station, Asheville, N.C., Gen. Tech. Rep. SRS-140. pp. 141–152.
Klepzig K.D., Kruger E.L., Smalley E.B., and Raffa K.F. 1995. Effects of biotic and abiotic stress on induced accumulation of terpenes and phenolics in red pines inoculated with bark beetle-vectored fungus. J. Chem. Ecol. 21(5): 601–626.
Klepzig K.D., Robison D.J., Fowler G., Minchin P.R., Hain F.P., and Allen H.L. 2005. Effects of mass inoculation on induced oleoresin response in intensively managed loblolly pine. Tree Physiol. 25: 681–688.
Knebel L., Robison D.J., Wentworth T.R., and Klepzig K.D. 2008. Resin flow responses to fertilization, wounding and fungal inoculation in loblolly pine (Pinus taeda) in North Carolina. Tree Physiol. 28: 847–853.
Lesk C., Coffel E., D’Amato A.W., Dodds K., and Horton R. 2017. Threats to North American forests from southern pine beetle with warming winters. Nat. Clim. Change, 7: 713–717.
Lombardero M.J., Ayres M.P., Lorio P.L. Jr, and Ruel J.J. 2000. Environmental effects on constitutive and inducible resin defences of Pinus taeda. Ecol. Lett. 3: 329–339.
Lombardero M.J., Ayres M.P., and Ayres B.D. 2006. Effects of fire and mechanical wounding on Pinus resinosa resin defenses, beetle attacks, and pathogens. For. Ecol. Manage. 225: 349–358.
Lorio P.L. Jr. and Sommers R.A. 1986. Evidence of competition for photosynthates between growth processes and oleoresin synthesis in Pinus taeda L. Tree Physiol. 2: 301–306.
Luchi N., Ma R., Capretti P., and Bonello P. 2005. Systemic induction of traumatic resin ducts and resin flow in Austrian pine by wounding and inoculation with Sphaeropsis sapinea and Diplodia scrobiculata. Planta, 221: 75–84.
Martin D., Tholl D., Gershenzon J., and Bohlmann J. 2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol. 129: 1003–1018.
Mason C.J., Villari C., Keefover-Ring K., Jagemann S., Zhu J., Bonello P., and Raffa K.F. 2017. Spatial and temporal components of induced plant responses in the context of herbivore life history and impact on host. Funct. Ecol. 31: 2034–2050.
Meddens A.J., Hicke J.A., and Ferguson C.A. 2012. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol. Appl. 22: 1876–1891.
Moreira X., Zas R., Solla A., and Sampedro L. 2015. Differentiation of persistent anatomical defensive structures is costly and determined by nutrient availability and genetic growth-defence constraints. Tree Physiol. 35: 112–123.
Netherer S., Matthews B., Katzensteiner K., Blackwell E., Henschke P., Hietz P., Pennerstorfer J., Rosner S., Kikuta S., Schume H., and Schopf A. 2015. Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol. 205: 1128–1141.
Novick K.A., Katul G.G., McCarthy H.R., and Oren R. 2012. Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility. Tree Physiol. 32: 752–763.
Paine T.D., Birch M.C., and Švihra P. 1981. Niche breadth and resource partitioning by four sympatric species of bark beetles (Coleoptera: Scolytidae). Oecologia, 48: 1–6.
Phillips M.A. and Croteau R.B. 1999. Resin-based defenses in conifers. Trends Plant Sci. 4(5): 184–190.
Price J.I., McCollum D.W., and Berrens R.P. 2010. Insect infestation and residential property values: a hedonic analysis of the mountain pine beetle epidemic. For. Policy Econ. 12: 415–422.
Pye, J.M., Holmes, T.P., Prestemon, J.P., and Wear, D.N. 2011. Economic impacts of the southern pine beetle. In Southern pine beetle II. Edited by R.N. Coulson and K.D. Klepzig. USDA Forest Service, Southern Research Station, Asheville, N.C., Gen. Tech. Rep. SRS-140. pp. 213–234.
Raffa K.F., Aukema B.H., Bentz B.J., Carroll A.L., Hicke J.A., Turner M.G., and Romme W.H. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience, 58: 501–517.
Raffa, K.F., Grégoire, J.C., and Lindgren, B.S. 2015. Natural history and ecology of bark beetles. In Bark beetles: biology and ecology of native and invasive species. Edited by F.E. Vega and R.W. Hofstetter. Academic Press, London. pp. 1–40.
Riley M.A. and Goyer R.A. 1988. Seasonal abundance of beneficial insects and Ips spp. engraver beetles (Coleoptera: Scolytidae) in felled loblolly and slash pines in Louisiana. J. Entomol. Sci. 23: 357–365.
Ruel J.J., Ayres M.P., and Lorio P.L. Jr 1998. Loblolly pine responds to mechanical wounding with increased resin flow. Can. J. For. Res. 28(4): 596–602.
Sampedro L., Moreira X., Llusia J., Peñuelas J., and Zas R. 2010. Genetics, phosphorus availability, and herbivore-derived induction as sources of phenotypic variation of leaf volatile terpenes in a pine species. J. Exp. Bot. 61: 4437–4447.
Schlyter F. and Anderbrant O. 1989. Mass attack of trees by Ips typographus induced by sex-specific pheromone: a model of attack dynamics. Holarctic Ecol. 12: 415–426.
Schlyter F., Birgersson G., Byers J.A., Löfqvist J., and Bergström G. 1987. Field response of spruce bark beetle, Ips typographus, to aggregation pheromone candidates. J. Chem. Ecol. 13: 701–716.
Schowalter T.D. 2012. Ecology and management of bark beetles (Coleoptera: Curculionidae: Scolytinae) in southern pine forests. J. Integr. Pest Manage. 3(2): A1–A7.
vanAkker L., Alfaro R.I., and Brockley R. 2004. Effects of fertilization on resin canal defences and incidence of Pissodes strobi attack in interior spruce. Can. J. For. Res. 34(4): 855–862.
Vité J.P. and Pitman G.B. 1969. Aggregation behaviour of Dendroctonus brevicomis in response to synthetic pheromones. J. Insect Physiol. 15(9): 1617–1622.
Wallin K.F., Kolb T.E., Skov K.R., and Wagner M.R. 2003. Effects of crown scorch on Ponderosa pine resistance to bark beetles in Northern Arizona. Environ. Entomol. 32(3): 652–661.
Waring R.H. and Pitman G.B. 1983. Physiological stress in lodgepole pine as a precursor for mountain pine beetle attack. J. Appl. Entomol. 96: 265–270.
Warren J.M., Allen H.L., and Booker F.L. 1999. Mineral nutrition, resin flow and phloem phytochemistry in loblolly pine. Tree Physiol. 19: 655–663.
Werner R.A., Holsten E.H., Matsuoka S.M., and Burnside R.E. 2006. Spruce beetles and forest ecosystems in south-central Alaska: a review of 30 years of research. For. Ecol. Manage. 227: 195–206.
Wood D.L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annu. Rev. Entomol. 27: 411–446.

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 49Number 1January 2019
Pages: 53 - 63

History

Received: 24 January 2018
Accepted: 9 September 2018
Accepted manuscript online: 4 October 2018
Version of record online: 4 October 2018

Permissions

Request permissions for this article.

Key Words

  1. bark beetle outbreak
  2. pheromones
  3. Pinus taeda
  4. plant defense
  5. resin flow

Mots-clés

  1. épidémie de scolytes
  2. phéromones
  3. Pinus taeda
  4. mécanisme de défense des plantes
  5. écoulement de résine

Authors

Affiliations

Sander O. Denham* [email protected]
School of Public and Environmental Affairs, 702 N. Walnut Grove Ave., Indiana University – Bloomington, Bloomington, IN 47405, USA.
Department of Forestry and Environmental Resources, 2820 Faucette Dr., North Carolina State University, Raleigh, NC 27695, USA.
David R. Coyle
Department of Forestry and Environmental Conservation, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA.
A. Christopher Oishi
USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Rd., Otto, NC 28763, USA.
Bronson P. Bullock
D.B. Warnell School of Forestry and Natural Resources, 180 East Green St., University of Georgia, Athens, GA 30602, USA.
Kari Heliövaara
Department of Forest Sciences, FI-00014, University of Helsinki, Finland.
Kimberly A. Novick
School of Public and Environmental Affairs, 702 N. Walnut Grove Ave., Indiana University – Bloomington, Bloomington, IN 47405, USA.

Notes

*
Present address: School of Public and Environmental Affairs, 702 N. Walnut Grove Ave., Indiana University – Bloomington, Bloomington, IN 47405, USA.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Bottom-up population regulation of Orthotomicus erosus on irrigated and fertilized Pinus eldarica: A comprehensive field study
2. Reference Gene Selection for Normalizing Gene Expression in Ips Sexdentatus (Coleoptera: Curculionidae: Scolytinae) Under Different Experimental Conditions
3. Vulnerability and responses to bark beetle and associated fungal symbiont attacks in conifers
4. Climate Change Effects on Trophic Interactions of Bark Beetles in Inner Alpine Scots Pine Forests
5. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media