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e 1s irrational and transcendental numbers exist

The irrationality of e is straightforward to prove, and has been known since at least Euler
(who first called e, “e”).

Theorem. e is irrational.
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If e =2, then g!(e — H,) € Z, but

1
0<qgle—H,) < p

a contradiction. O

[Fun fact: H,(x) € Q[z] is irreducible for all n].

The moral of the proof is that H, (a rational number) approximates e too well.
Consider the following

Lemma (Liouville, 1844). If £ is a real algebraic number of degree n > 1, then there is
a constant A > 0 (depending on &) such that
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Proof. Suppose p(z) € Z[z] is irreducible of degree n with p(§) = 0. Then

p(&) —p(h/k) = (§ = h/k)p'(a)

for some « between ¢ and h/k by the mean value theorem. The left hand side is a non-
zero rational number (p(£) = 0 and p is irreducible so h/k is not a root) with denominator
less than k™ so that we get

\s—— sup{p/ () & € (6 — L,E+ 1)},

k"_

The above result can be improved to

Theorem (Thue-Siegel-Roth). For all e > 0, there are only finitely many rational solu-
tions to

h 1
'f - E‘ < L2+e
if & is algebraic and irrational.

The 2 + € exponent is the best possible since we have the following

Proposition. If ¢ € R is irrational then there are infinitely many rationals p/q such
that

€ —p/al <1/¢*.

Proof. This is an application of the pigeonhole principle. Two of the n + 1 numbers
1,{k&} (the fractional part of k£) for 1 < k < n must lie in one of the n subintervals
(i/n,(i4+1)/n],0 <i<n—1of (0,1]. Hence there is a p and 1 < ¢ < n such that

g€ —p| < 1/n, ie | —p/ql <1/ng<1/¢".

Infinitely many of these p/q must be distinct, else | — p/q| takes on a minimum value,
say larger than 1/n for some n, and the above construction gives a contradiction. ]

Transcendental numbers exist (by cardinality arguments - thanks Cantor!), but let’s
exhibit one explicitly (as Liouville did).

Proposition. £ = >7 107 is transcendental.

Proof. Let k; = 107, h; = 107* 327_ 10~ Then (h;,k;) =1 (as h; = 1 mod 10) and
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where A(j) — 0 as j — oo so that ¢ is transcendental by the lemma above. O



e 1s transcendental

We now begin the proof that e is transcendental (Hermite, 1873). We have to be able
to simultaneously approximate e* at different values to obtain a contradiction similar to
that given above for the irrationality of e.

For a polynomial f(z), let F(x) = Y_°, f(z). Integrating by parts a bajillion times,
we get
e:”/ f(t)e 'dt = F(0)e” — F(x) (the “Hermite identity”).
0

Consider the specific polynomial
‘/L*pilx_]_p.....x_np
f(x) = (z—1) ' (x —n)
(p— D!
(n will be the degree of the fictitious minimal polynomial for e over Q and p will be a
large prime).

We have the following estimate for 0 < k < n:

/0 ' f(t)e_tdt‘

< ne" sup {f(t)}

telo,n]
npfl (np)n
(p—1)!

" F(0) — F (k)| = |e*

which goes to zero as p — oo for a fixed n. [Mildly interesting: this proof requires the
existence of infinitely many primes.] We now show that such an estimate is impossible if
e is algebraic by showing that >_,_, F(0)e* — F(k) is an integer between 0 and 1.
1. F(0) € Z\pZ for p > n:
We have f(z) = a(x)b(x) where

so that
N
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Note that a(?(0) = 0 unless i = p — 1 in which case a?~Y(0) = 1. Hence

PO = 3 10 = 3 a0 ()

2

N=0 N=0 =0
= Y o)) N
p—1
N=p—1

=b(0) +p(...) = (=1 nl + p(...) € Z\pZ (remember that p > n).



2. F(k)epZforl<k<n:
We have f(z) = ¢(x)d(x) where

c(a:) _ (x — k)p B P~ (a: —1)P..... (m — n)p
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Note that ¢ (k) = 0 unless i = p in which case ¢P)(k) = p. Hence
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=p> d(Np)(k)( ) € pZ.
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Now, if e were algebraic, say > _, cke® = 0,¢, € Z,co # 0, and p > ||, then

1< chF(k) (because ¢y, F'(0) € Z\pZ, F(k) € pZ)
k=0

=D aF(k) - (Z ckek> F(0)

k=0

— Z cr (F(k) — ekF(O))‘

k=0

< MZ |F(k) — e*F(0)| (where M = ml?x{|ck|})

which is less than 1 for p large as shown above. Hence e is transcendental.

What about 77

Here is a proof that 7 is irrational in the spirit of Hermite.
For a polynomial f(z), let F(z) = Y02 (=1)"f®(z) (this mimics sinz in the way
we mimicked e® before). We have

d ™
. (F'(z)sinx — F(x)cosx) = f(x) sinx,/ f(z)sinzdr = F(0) + F(m).
0
If 7 = a/b were rational, consider the polynomial
bn n n __ 1 n n
f(z) = i (m—2)" = e (a —bx)" € Qlx].

We have bounds

™ b 2n U 2 Qb n
O</ f(z)sinzdx < i / sinzdx = (7°%) — 0 asn — oo.
0 n!  Jo n!

Note that f*)(0) = 0 for 0 < k < n as f has a zero of order n at zero. We also have
f®)(0) € Z for k > n by the following (easy) lemma.



Lemma. For p(z) € Z[z], k! divides all the coefficients of p® ().
Proof. Cg‘i—kkx” = k;'(Z) 2" * for k < n and higher derivatives are zero. ]

Hence f*)(0) € Z for all k. Finally note that

f(x) = f(r =), fO(2) = (-1)* fP (7 — x)

so that f®)(7) = (=1)*f*)(0) € Z for all k. Therefore F(0)+ F(r) € Z, a contradiction,
and 7 is irrational.

We can prove that m is transcendental using the methods we used for e, although
the details are slightly more tedious. We start with the identity e™ + 1 = 0. If 7 were
algebraic (degree n), we would have

n

0= H1+e% = Z Zem—a—i-z i
i=1

€.€{0,1}

where the ~; are the galois conjugates of 7, a = 2" —m are the number of zero exponents
in the first sum (note that ¢ > 1), and the «; are the non-zero exponents in the first sum.
Thinking about symmetric functions for a while (details omitted), we see that

o) = H (35 - ZQ%’) € Qz].
€;€{0,1} i=1

Divide by z* and clear denominators to get a polynomial
= b’ € Zlx], by > 0,bg # 0

whose roots are exactly the a;. Furthermore, assume b,,q; is an algebraic integer for all
7.
Once again we apply the “Hermite identity,” this time to the polynomial
b(m Dp pmp m

fla) = =1 Y (x) = ﬁxp_lg(fﬂ—ai)p~

Plug in x = o; and sum over ¢ to get

—aF(0) = Y Fla) = 3 e /0 " et

Our goal, as before, is to show that the LHS is a non-zero integer but that the RHS can
be made arbitrarily small. We have

F(0) = (=1)"™bj? (H m) € Z\pZ



for large p. We also have

i F(a;) = pb? Z oszl H(O‘i —o,)P € pZ
i=1 ;

J#i
for large p because it is symmetric in «; and the denominator is cleared by bP.
We now estimate the integral on the RHS:

e /Oaif(t)etdt < (lel (B |(leu]))” /(p — 1)t = 0

as p — 00.

Generalizations

Theorem (Lindemann-Weierstrass, 1885). If o, ..., ap are distinct algebraic numbers,
then e, ..., e* are linearly independent over Q.

We also have the solution of Hilbert’s seventh problem

Theorem (Gelfond-Schneider, 1934). For algebraic a ¢ {0,1} and irrational algebraic
b, a’ is transcendental.

So numbers such as 2\/5, i* are transcendental.
Another generalization due to Lang (an axiomatization of Schneider’s methods) is

Theorem. Suppose K is a number field, {f;}"_, meromorphic functions of order < p
such that K({f:}:) has transcendence degree > 2 over K and K[{fi}i] is closed under
differentiation. If {w;}7L, are distinct complex numbers such that fi(w;) € K for all i, j
then m < 20p[K : Q).

Theorem (Hermite-Lindemann). e* is transcendental for all o € Q\{0}.

Proof. The proof that 7 is transcendental directly generalizes to this. Or, take the
meromorphic functions in the theorem above to be z,e* and K to be Q(«, e®). Theses
function take values in K for z any integer multiple of «. [

Theorem (Schneider). If o is a Weierstrass a function with g, g3 algebraic, then p(a)
is transcendental for all Q\{0}.

Sketch. First the relevant definitions. If A C C is a rank two lattice, define

1 1 1
p(z;A) 2T > G- w2 w?
weA\{0}

Then g satisfies the algebraic differential equation

O = 49° — g20 — g3

g2 =60 > %,ggzmo > %

weA\{0} weA\{0}

where



A far-reaching generalization of the theorem of Gelfond-Schneider is

Theorem (Baker, 1966). If {a;}', and {B;}I-, are algebraic (and o; # 0) of degree at
most d and with heights at most A, B (for {a;}"_, and {p;}I, respectively) then

A= Bo+ Pilogar + - + By log ay,
is either zero or |A| > B~Y for an effectively computable constant C' depending only on
n,d, A, and {log;};. [The height of an algebraic number v is max;{|c;|} where y,; c;x"

is the minimal polynomial of v over Z.]

For related results and applications, such as the class number one problem for imag-
inary quadratic fields:

Q(v—d) with d > 0 has class number one iff d € {1,2,3,7,11,19,43,67, 163},

Baker was awarded a Fields medal in 1970.
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