ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

DNA Origami–Graphene Hybrid Nanopore for DNA Detection

View Author Information
Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
Cite this: ACS Appl. Mater. Interfaces 2017, 9, 1, 92–100
Publication Date (Web):December 1, 2016
https://doi.org/10.1021/acsami.6b11001

Copyright © 2016 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access
  • Editors Choice

Article Views

7775

Altmetric

-

Citations

84
LEARN ABOUT THESE METRICS
PDF (5 MB)
Supporting Info (1)»

Abstract

DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami–graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami–graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

Introduction

ARTICLE SECTIONS
Jump To

Biological and solid-state nanopores have great potential for DNA sequencing as they provide label-free and fast single-molecule detection. (1, 2) In nanopore devices, the ionic current modulated during DNA translocation reveals the nucleotide type. (3, 4) Noise in the electric current readout can mask the detection signal, making detection erroneous and difficult. (5-7) To overcome this challenge, practical solutions such as using thin 2D material membranes, (8-16) slowing down DNA translocation, (17-19) employing flexible biological nanopores, (20) pore functionalization, and hybrid nanopores were developed. (21-23) Among these solutions, hybrid nanopores constructed with biological and synthetic materials and chemically and synthetically functionalized pores offer two advantages. First, they can be programmed to yield specific interactions improving the noisy currents or even yielding ancillary detection signals. (24, 25) Second, functionalization may be tuned and engineered with nanometer scale precision at the pore mouth. (26, 27)
Programmable nanoboxes, (28-32) plates, (24) and channels in bilayers (33, 34) are some of the structures constructed using DNA origami techniques. It has been shown that DNA origami (28) can be used for selective detection of biomolecules. (24, 35) The self-assembly property and nanometer precision engineering of DNA origami nanostructures are attractive for creating heterostructure and hybrid nanopores. (24, 35) Using experimental techniques, DNA origami was inserted into a silicon nitride nanopore and used for detection of λ-DNA. (24) In another work, (24, 35) DNA origami nanoplate with some single-stranded DNA (ssDNA) overhangs attached to the pore mouth were deposited on the surface of a solid-state nanopore, and the hybrid nanopore was used for selective detection of proteins and ssDNAs. The “bait–prey” mechanism (24) was used by taking advantage of DNA origami plate on a nanopore to create specific interactions with a translocating target molecule. (24) The specific interactions between the nanopore and the prey molecule increase the translocation time and give rise to a distinguishable signal for selective detection, facilitating single-molecule studies and protein recognition. (36) Molecular dynamics simulations were also used to explore and investigate the stability and structural properties of DNA origami shapes. (37) Recently, the dependence of conductivity on the number of DNA origami layers with different applied biases was characterized. (38) In addition, the packing of origami plates in the presence of Mg2+ ions was explored. (38)
With advances in fabrication technologies, deposition and alignment of DNA origami on top of substrates and patterned surfaces, (39-43) chemically modified graphene, (44) and MoS2 (45) are feasible. Considering these advances and the benefits that DNA origami offer to nanopore functionalization, (46) we investigate DNA translocation through a nanopore in a heterostructure of graphene and DNA origami nanoplate. It is notable that molecular scale interactions between DNA origami and translocating DNA are largely unknown. Furthermore, the stability and structure of DNA origami at the pore edge during DNA translocation needs to be understood. In this work, the DNA origami nanopore is functionalized by dangling T bases; i.e., a DNA origami nanopore with unpaired T bases at the edge of the pore is placed on top of a graphene nanopore. In this study, the graphene substrate was primarily used to restrict the DNA origami motion under a positive applied bias, even though the electronic structure changes in graphene during DNA translocation can provide additional sensing signals. The sticky behavior of DNA to graphene decreases the movement of DNA origami on top of the graphene and maintains the initial alignment of the nanopores. The (hybrid) nanopores with zero, one and two layers of DNA origami were characterized and used for the detection of DNA bases. The interactions between the hybrid nanopore and translocating DNA, the dwell time of each base type, and the stability of hybrid nanopores were investigated.

Methods

ARTICLE SECTIONS
Jump To

We performed all-atom molecular dynamics (MD) simulations with NAMD 2.6 using the petascale Blue Waters machine. (47) Visual molecular dynamics (VMD) (48) is used for the visualization of a typical simulation setup consisting of the DNA origami nanoplate, graphene nanopore, ssDNA, water, and ions (∼118 000–120 000 atoms, as shown in Figure 1a). A pore with a diameter of 2.1 nm is drilled in the center of a 10 nm × 10 nm single-layer graphene (Figure 1b). In all simulations, the carbon atoms of the graphene sheet inside a ring of radius 1.6 nm around the pore have been restrained by a harmonic potential (with a spring constant of k = 5 kcal/(mol Å2)), and the remaining atoms of the graphene sheet were fixed.

Figure 1

Figure 1. (a) Simulation box consisting of a single-layer DNA origami (depicted in red), graphene sheet, water, ions, and translocating ssDNA (depicted in blue). (b) Bare graphene nanopore. (c) Single-layer DNA origami nanopore on top of a graphene nanopore.

A single layer of 8.7 nm × 9.3 nm × 2.6 nm square lattice DNA origami nanoplate has been designed and generated using caDNAno software. (49) Using caDNAno, (49) the sequence of bases was properly assigned to place a number of A–T base pairs in the middle of the plate. The DNA origami nanoplate is then placed on top of the graphene nanopore. At the location of the graphene pore, the structure of the DNA origami was modified to create an aperture in the DNA origami nanoplate by deleting eight A bases of staple strands and leaving eight unpaired T bases in the scaffold strand. The generated DNA origami pore has roughly a circular shape with a diameter of 1.8 nm. By following the same procedure as for a single-layer DNA origami, a double-layer square lattice DNA origami nanoplate of dimensions 9.0 nm × 11.1 nm × 4.4 nm that includes a semicircular aperture with a diameter of 1.7 nm has also been designed and generated. For the double-layer DNA origami hybrid nanopore, a larger graphene nanoplate that measures 12 nm × 12 nm with a pore diameter of 2.1 nm is used. The dangling unpaired T bases of the DNA origami coat the edge of the graphene nanopore (Figure 1c) (see the Supporting Information for more details on construction of the DNA origami nanopore).
To perform simulations on the translocation of different nucleotide types through the hybrid nanopore with single-layer DNA origami, four different systems were constructed: one for each poly(dA), poly(dC), poly(dG), and poly(dT). Each ssDNA consists of 20 bases. In addition, the same simulation systems were built for translocation of ssDNAs consisting of 30 bases through the double-layer DNA origami hybrid nanopore. In each case, the three first bases of the ssDNA were located inside the hybrid nanopore. Then, the entire structure was solvated in an aqueous 1.0 M NaCl solution.
Water molecules were treated to be rigid using the SHAKE algorithm. (50) The CHARMM27 force field (51) parameters were used for nucleic acids, TIP3P water molecules, graphene, and ions. The periodic boundary condition is applied in all the three directions. The cut-off distance for Lennard-Jones and short-range electrostatic interactions is 12.5 Å. The long-range electrostatic interactions were computed by using the particle–mesh–Ewald (PME) method. (52) The integration time step is 1 fs.
Before equilibration, energy minimization was performed for each system for 25 000 steps. Upon minimization, equilibration was performed for 5 ns with harmonically restrained nucleic acids (for both DNA origami and ssDNA with kspring = 100 kcal/(mol Å2)). Following that, we maintained the ssDNA with harmonic constraint (with kspring = 1 kcal/(mol Å2)) and performed equilibration for 2 ns, while the DNA origami nanoplate was free to move with no constraint. Next, another equilibration simulation was performed for 1 ns with no constraint on nucleic acids. All of these equilibration steps were done under NPT ensemble, while pressure was kept constant at 1 atm using the Nosé–Hoover Langevin piston method, (53, 54) and the temperature was maintained at the constant value of 300 K by Langevin thermostat. (55) Before applying an external electric field, the system was further equilibrated for 2 ns with NVT ensemble at 300 K.
All ionic current simulations were performed under NVT ensemble at 300 K. An electric field was applied along the z direction (ssDNA axis). During all ionic current simulations, DNA origami nanoplate was completely free to move. The external electric fields are reported in terms of a transmembrane voltage difference V = −ELz, where E is the electric field strength and Lz is the length of the simulation system along the z direction. (56) We monitored the time-dependent ionic current, I(t), through the pore. We computed the ionic current through the nanopore by using the definition of current, I = dq/dt, as , where the sum is over all the ions; δt is chosen to be 4 ps; zi and qi are the z-coordinate and charge of ion i, respectively; and n is the total number of ions. The ionic current data was block-averaged over intervals of 100 ps. (56)

Results and Discussion

ARTICLE SECTIONS
Jump To

To characterize the conductivity of hybrid nanopores with one and two layers of DNA origami, single-layer DNA origami, and the bare graphene nanopores, we computed the ionic current associated with these pores for different biases (these systems do not contain translocating ssDNA). For the single-layer DNA origami nanopore case, a graphene sheet with a larger nanopore is used to keep the DNA origami in place because of the applied electric field. Because DNA origami is negatively charged, we did not study the negative branch of the IV curve as applying negative biases causes the detachment of DNA origami from the surface of the graphene sheet. (See the Supporting Information for detailed studies on detachment of the DNA origami from graphene under negative applied biases). For each bias point in Figure 2a, we performed a simulation for a duration of 40 ns, and we block-averaged the ionic currents over the simulation time. Although the DNA origami has a porous structure that lets ions permeate through (leakage current), in the hybrid nanopores, these porous areas of DNA origami are blocked by the graphene surface. Consequently, the current is primarily due to the ions passing through the pore. In the case of a single-layer DNA origami nanopore, we only accounted for the current through the nanopore of the nanoplate and not through the gaps and free spaces between DNA strands. For the same bias, the bare graphene nanopore has the largest ionic current followed by a single-layer DNA origami nanopore and then the single-layer DNA origami hybrid nanopore followed by the double-layer DNA origami hybrid nanopore (Figure 2a). For a bias of 0.25 V, the currents for double-layer DNA origami hybrid, single-layer DNA origami hybrid, single-layer DNA origami, and bare (pristine) graphene nanopores are 0.104, 0.52, 1.26, and 1.50 nA, respectively (Figure 2a). The characteristic plots for all the pores denote a linear correlation between the current and the applied bias. The resistance of the bare graphene pore is 0.285 V/nA and for the single-layer DNA origami hybrid nanopore is 0.667 V/nA. Because the DNA origami and the graphene nanopores are connected in series, the resistance of the origami nanopore turns out to be 0.382 V/nA (see the Supporting Information for more details on calculating the resistance of the nanopores). The resistances of the hybrid nanopores are higher than the graphene nanopore, which can be attributed to the higher thickness and polarization of the hybrid pores (35, 46) (see the Supporting Information to find the IV curve of single-layer DNA origami hybrid nanopore solvated in 1 M KCl aqueous solution.)

Figure 2

Figure 2. Characteristics of the hybrid nanopores under external biases. (a) IV curves for the four types of nanopores. Lines are linear fits with the corresponding color for the symbols. (b) Conductance of different pores and their comparison with theoretical predictions. (c) Center-to-center distance of the DNA origami pore to the graphene pore in the xy plane. Interaction between the DNA origami and the external positive bias does not disarrange the alignment of the hybrid nanopore.

We computed the conductance of each nanopore (Figure 2b). The conductance is defined as G = I/V. The highest and lowest conductance is associated with the bare graphene and the double-layer DNA origami hybrid nanopore, respectively. Wannanu et al. (57) proposed the following equation for the conductance(1)where κ is the conductivity of the solution, lpore is the effective thickness of the nanopore, and d is the diameter of the nanopore. The conductivity of the buffer κ is calculated by performing ionic current simulations for a 1 M NaCl solution cell (see the Supporting Information for more details on calculating the conductivity of the buffer). Kowalczyk et al. (58) showed that this model is accurate enough to predict the conductance of nanopores with a thickness of ∼8.5 nm, while it overestimates the conductance of thinner membranes. (58) We evaluated and compared the results from eq 1 to our results obtained from MD simulations (Figure 2b). The higher values from eq 1 in comparison with the simulations results can be due to the small thickness of our nanopores. The pore thickness of bare graphene, single-layer DNA origami, single-layer DNA origami hybrid, and double-layer DNA origami hybrid nanopores is 0.34, 2.6, 2.94, and 5.44 nm, respectively.
When an electric field is applied, the DNA origami can move on top of the graphene nanoplate. To characterize the motion of the DNA origami under different biases, we monitored the distance from the center of the graphene pore to the center of the DNA origami pore in the xy plane for a single-layer DNA origami hybrid nanopore. Figure 2c shows the center-to-center distance averaged over the simulation time for different external biases. Under a positive external bias, the initial alignment of the hybrid nanopore is not significantly changed because the motion of the DNA origami is compensated by the stickiness of DNA origami to graphene. However, under a large negative applied bias, DNA origami detaches from graphene and the interaction between DNA origami and graphene becomes weaker (see the Supporting Information for detailed studies on the detachment of DNA origami from graphene under negative applied biases), and the DNA origami moves on top of the graphene under a negative bias (Figure 2c). The motion of DNA origami under a negative bias can be overcome by sandwiching DNA origami between two graphene nanoplates, i.e., on top and bottom and creating a nanopore in the sandwiched structure (see the Supporting Information for studies on sandwiched DNA origami graphene hybrid nanopore.)
The previous studies (59, 60) have shown that by increasing the external bias beyond a critical value, DNA origami can be pulled inside the solid-state nanopore. In our hybrid nanopores, the pores in graphene and DNA origami have almost the same size, and we did not observe any significant pull in phenomenon for external biases below 2 V. In fact, we did not observe pull in phenomenon in our simulations as the DNA strands that are located near the edges of the pore are completely supported by the graphene sheet.
We characterized the instantaneous electrostatic potential map for the distribution of ions, approximated by Gaussian spheres, (61, 62) in the single-layer DNA origami hybrid nanopore system under an external bias of 2 V. The instantaneous potential is averaged over 9.5 ns of the simulation time to get the mean resulting transmembrane bias. Figure 3a shows the resulting bias for the system in the xz plane. The electrostatic potential map near the graphene nanopore is slightly affected by the presence of negatively charged DNA origami. Also, we averaged the total potential over the pore along x and y axes to find the resulting transmembrane bias in the pore along the direction of the external bias, i.e., the z axis (Figure 3b). This plot shows that the potential drops primarily across the nanopore from zero to −2 V and does not change significantly in the electrolyte (far from the nanopore).

Figure 3

Figure 3. (a) Electrostatic potential map of the single-layer DNA origami hybrid nanopore under an external applied bias of 2 V. Ions and other point charges are approximated by Gaussian spheres with an inverse width of β = 0.25 Å–1. (b) The resulting mean bias across the pore along the z direction, averaged over x and y directions. The cyan and yellow regions approximately show, respectively, the area where the graphene nanopore and the DNA origami nanopore occupy along the z direction during the simulation time. The potential is primarily changing across the graphene nanopore.

The presence of the T bases at the mouth of the pore induces specific interactions with the translocating DNA, especially with its complementary base, i.e., base A. These interactions usually lower the ssDNAs translocation speed and give rise to specific signatures for DNA detection. To investigate the translocation speed of ssDNA in hybrid nanopores and bare graphene, we simulated a poly(dA)20 in a bare graphene nanopore (Figure 4a), 4 poly ssDNAs with 20 bases (A, C, G, and T bases) in single-layer and double-layer DNA origami hybrid nanopores (Figure 4b,c). All of these simulations were performed for a bias of 2.0 V. The most rapid electrophoretic translocation is observed for the bare graphene nanopore, in which 20 DNA bases (type A) passed through the pore in 5 ns (Figure 4d). The lowest translocation is observed for poly(dA)30 through the double-layer DNA origami hybrid nanopore, in which only five bases translocated in 26 ns (Figure 4e). For the single-layer DNA origami hybrid nanopore, poly(dG)20 has the fastest translocation speed followed by poly(dC)20 and poly(dT)20, and poly(dA)20 has the smallest translocation speed. For poly(dA)20, only 15 bases successfully translocated, and the five last bases were stuck in the pore for more than 30 ns. All the base types reside in the double-layer DNA origami hybrid nanopore for a longer time compared to the single-layer DNA origami hybrid nanopore although the capture of A bases is still more stable compared to the other base types (Figure 4e).

Figure 4

Figure 4. (a) Simulation system of DNA translocating through a bare graphene nanopore. The all-atom model contains a graphene nanopore, ssDNA (depicted in blue), water, and ions. (b) Simulation system of DNA translocating through a single-layer DNA origami hybrid nanopore. The all-atom model contains a single-layer DNA origami (depicted in red)–graphene nanopore, ssDNA (depicted in blue), water, and ions. (c) Simulation system of DNA translocating through a double-layer DNA origami hybrid nanopore. The all-atom model contains a double-layer DNA origami (depicted in red)–graphene nanopore, ssDNA (depicted in blue), water, and ions. (d) Translocation history of ssDNA in pristine graphene and single-layer DNA origami hybrid nanopores. (e) Translocation history of ssDNA in double-layer DNA origami hybrid nanopore. (f) Statistical distribution of the dwell times for different base types translocating through single-layer DNA origami hybrid nanopore under an external bias of 2 V. (g) Average residence time of base in single-layer DNA origami hybrid and bare graphene nanopores.

To find the statistical distribution of dwell times, we performed 20 simulations for each translocating ssDNA type, poly(dA)20, poly(dC)20, poly(dG)20, and poly(dT)20 (80 simulations in total), through a single-layer DNA origami hybrid nanopore under an external bias of 2 V with different initial velocities and a total simulation time of ∼1.2 μs. Figure 4f shows that most of the A bases reside inside the pore for longer times compared to the other base types. The expected value of the residence time of base type A is approximately 3 ns, and for base types C, G, and T is 1.6, 0.75, and 0.64 ns, respectively. Although the nonhybridized dangling bases of DNA origami nanopore only allow for efficient interactions with A bases, C bases also have long residence time compared to G and T bases. The reason can be explained by the overall (VdW and electrostatic) interactions between ssDNA and nanopore especially the instantaneous hydrogen bonding between poly(dC) and G bases of G–C base pairs near the nanopore. These interactions are a result of the specific configuration of DNA origami base pairs (see the Supporting Information for detailed studies about the interactions between ssDNAs and nanopore). We also averaged the residence time of bases at the pore mouth and found that the A base resides in the single-layer DNA origami hybrid nanopore about nine times longer than in the bare graphene nanopore (Figure 4g). Furthermore, in the case of single-layer DNA origami hybrid nanopore, A bases dwell in the pore about two times longer than T and C and three times longer than G (Figure 4g). While the residence time of different base types is nearly the same for the graphene nanopore, it varies significantly depending on the base type translocating through the hybrid nanopore. This feature of the hybrid nanopore can be used as an ancillary detection signal for DNA base sensing. Although the dwell time can help distinguish the signal, it cannot be a standalone signature for detection (specifically, if the levels of currents for each base are close to each other).
To obtain more insight into the interactions between the hybrid pore and the translocating DNA strand, we computed the average number of hydrogen bonds (HB) between ssDNA and DNA origami in the nanopore region for the single-layer DNA origami hybrid nanopore. The snapshots of hydrogen bonding during translocation of DNA are shown in Figure 5a,b. The bases of poly(dA)20 create the largest number of hydrogen bonds with the DNA origami, while the bases of poly(dT)20 have the smallest number of hydrogen bonds during the simulation time. Bases of poly(dC)20 and poly(dG)20 create almost the same number of hydrogen bonds during the simulation time (Figure 5c). The A (translocating base type)–T (unpaired dangling bases of the pore) base pairing gives rise to the highest attraction between poly(dA)20 and the hybrid nanopore and the highest number of HBs. However, for translocation of poly(dT), we observed the lowest number of HBs because of the mismatch between ssDNA T bases and the unpaired dangling T bases of the pore (Figure 5c).

Figure 5

Figure 5. (a) Snapshot of hydrogen bonds between poly(dA) and DNA origami (the black dashed lines represent HBs). (b) Snapshot of hydrogen bonds between poly(dT) and DNA origami (the black dashed lines represent HBs). (c) Average number of HBs between ssDNA and DNA origami nanoplates. (d) Time-dependent interaction energy between poly(dA) and DNA origami nanoplate (black). Translocation plot of poly(dA) through hybrid nanopore (red).

To understand the change in the interaction energy during translocation of ssDNA, we computed the interaction energy between the atoms of the translocating poly(dA) and the DNA origami nanoplate in the single-layer DNA origami hybrid nanopore (Figure 5d). There is a high correlation between the interaction energy and the stepwise translocation history (Figure 5d). For example, some bases were stuck in the time window of 7–10 and 14–16 ns (long-lasting flat steps are the signatures of bases being stuck; Figure 5d), and at the same time, we observed a peak (local maxima) in the interaction energy (190 and 210 kcal/mol, respectively). In other words, at time instances in which the DNA origami and the translocating DNA are strongly interacting with each other, the electrophoretic forces could not overcome the friction between the DNA origami and the translocating DNA, which gives rise to a higher residence time. At the time instances in which successive translocation occurs, the average of interaction energies is lower and around 110 kcal/mol.
Figure 6a illustrates the schematic of the system used for ionic current simulations. To explore the ionic current characteristic of the single-layer DNA origami hybrid nanopore, we averaged the current associated with the translocation of each poly ssDNA type (Figure 6b). Bases A and G are distinguishable by their ionic currents, while for bases C and T, the ionic currents are about the same (Figure 6b). In measurements with the nanopore technology, the translocation of DNA chain is performed hundreds of times and the ionic current and the dwell time (bandwidth) of each translocation event are recorded. The combination of dwell time and ionic current in the statistical distribution (data clusters built upon dwell time and ionic current for each base) are used to distinguish nucleotides.

Figure 6

Figure 6. (a) Schematic of the ionic current simulation system showing the interaction of the complementary bases (A–T). (b) Ionic currents for different bases computed from the translocation of poly ssDNAs through the single-layer DNA origami hybrid nanopore. (c) Density of different bases of the DNA origami nanoplate in the vicinity of the pore vs simulation time for translocation of poly(dA) through the single-layer DNA origami hybrid nanopore. (d) Average density of different bases of the DNA origami nanoplate in the vicinity of the pore during poly ssDNAs translocations through the single-layer DNA origami hybrid nanopore.

To understand the stability and arrangement of the dangling unpaired T bases at the pore entrance, we monitored the number of bases of DNA origami nanoplate, which reside around the pore for the translocation of poly(dA)20 through the single-layer DNA origami hybrid nanopore (see the Supporting Information for translocation of other poly ssDNAs). The geometrical space that we examined the bases is within an infinitely long cylinder concentric with the pore center and with a radius of 22.4 Å. The most-prevalent base type of the DNA origami nanoplate around the pore is T, which resides around the pore in a stable manner (Figure 6c). The number of the other base types (i.e., A, C, and G) prevalent at the pore vicinity is approximately one-third of the number of base type T, which implies that the initially functionalized DNA origami with unpaired T bases is stable even in the presence of thermal noise, water and ion permeation, and DNA electrophoretic translocation (Figure 6c).
To investigate the status of pore functionalization during the translocation of other poly ssDNAs, we averaged the number of different base types of the DNA origami residing in the geometrical space, as defined above, over the entire period of DNA translocation (Figure 6d). A total of 10–13 T bases reside around the pore, but only 4–6 bases of A, C, and G types stay near the pore. Interestingly, bases of poly(dA) and poly(dC) attract the T bases of DNA origami nanoplate more than poly(dG) and poly(dT) do (Figure 6d, green line). As a result, more number of T bases of DNA origami line the pore during the simulation of poly(dA) and poly(dC). For the translocation of A bases, the higher number of hydrogen bonds combined with the high density of complementary T bases around the pore create specific interactions resulting in a higher dwell time for base A.
The higher residence time of the single base at the pore would be beneficial for DNA read-out. Longer residence time and slower speed of DNA translocation can ensure a higher resolution signal acquisition. In nanopores, usually, the speed of translocation is fast even at low biases of around 100 mV that the MHz bandwidth of current amplifiers may not be able to resolve the single base readouts. Among the solutions that were proposed for speed reduction are the use of high-viscosity buffer solution, (17) lower temperature, (63) flexible MscL nanopores, (20) pore functionalization, (64) and ionic liquid systems. (65) The presence of DNA origami on top of a graphene nanopore not only creates an additional signature for recognition but also reduces the speed of translocation. To quantify and compare the speed of translocation of poly(dA) in hybrid and bare graphene nanopores, we performed simulations of up to 70 ns at different biases (Figure 7). At biases between 2 and 4 V, the translocation rate for the hybrid pore is 5–7 times slower than that for the bare graphene pore (Figure 7). At lower biases, DNA bases reside for a longer time inside the pore, and hence, the probability increases to form hydrogen bond with the hybrid pore. This gives rise to a longer dwell time.

Figure 7

Figure 7. Comparison of poly(dA) translocation rate through the single-layer DNA origami hybrid nanopore and the bare graphene nanopore.

Conclusions

ARTICLE SECTIONS
Jump To

We demonstrated that the hybrid DNA origami–graphene nanopore can yield a distinguishable dwell time for DNA bases. A total of four different nanopores (i.e., bare graphene, single-layer DNA origami, single-layer DNA origami hybrid, and double-layer DNA origami hybrid nanopores) were characterized in terms of ionic current, conductance, and resistance. The functionalization of a DNA origami nanopore with T bases remains intact during the electrophoretic translocation of ssDNA bases. The combination of distinguishable dwell time and ionic current along with the slower speed of translocation make the hybrid DNA origami–graphene nanopore attractive for selective DNA detection. The hydrogen bonds between translocating ssDNA and DNA origami at the pore contribute to the distinguishable dwell time.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.6b11001.

  • Calculation of resistivity and conductivity of different nanopore architectures, the design and structure of single-layer and double-layer DNA origami nanopore, density of bases around the pore mouth, motion of DNA origami on top of graphene under external biases, sandwiched DNA origami–graphene hybrid nanopore analysis and IV curve of hybrid nanopore solvated in 1 M KCl aqueous solution. (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Narayana R. Aluru - Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States Email: [email protected]
  • Authors
    • Amir Barati Farimani - Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United StatesOrcidhttp://orcid.org/0000-0002-2952-8576
    • Payam Dibaeinia - Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

This work is supported by AFOSR under grant no. FA9550-12-1-0464 and by NSF under grant nos. 1264282, 1420882, 1506619, and 1545907. The authors gratefully acknowledge the use of the parallel computing resource Blue Waters provided by the University of Illinois and the National Center for Supercomputing Applications (NCSA).

References

ARTICLE SECTIONS
Jump To

This article references 65 other publications.

  1. 1
    Venkatesan, B. M.; Bashir, R. Nanopore Sensors for Nucleic Acid Analysis Nat. Nanotechnol. 2011, 6, 615 624 DOI: 10.1038/nnano.2011.129
  2. 2
    Keyser, U. F. Controlling Molecular Transport through Nanopores J. R. Soc., Interface 2011, 8, 1369 1378 DOI: 10.1098/rsif.2011.0222
  3. 3
    Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of Individual Polynucleotide Molecules Using a Membrane Channel Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13770 13773 DOI: 10.1073/pnas.93.24.13770
  4. 4
    Bayley, H.; Cremer, P. S. Stochastic Sensors Inspired by Biology Nature 2001, 413, 226 230 DOI: 10.1038/35093038
  5. 5
    Deamer, D. W.; Branton, D. Characterization of Nucleic Acids by Nanopore Analysis Acc. Chem. Res. 2002, 35, 817 825 DOI: 10.1021/ar000138m
  6. 6
    Dekker, C. Solid-State Nanopores Nat. Nanotechnol. 2007, 2, 209 215 DOI: 10.1038/nnano.2007.27
  7. 7
    Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X. H.; Jovanovich, S. B.; Krstic, P. S.; Lindsay, S.; Ling, X. S. S.; Mastrangelo, C. H.; Meller, A.; Oliver, J. S.; Pershin, Y. V.; Ramsey, J. M.; Riehn, R.; Soni, G. V.; Tabard-Cossa, V.; Wanunu, M.; Wiggin, M.; Schloss, J. A. The Potential and Challenges of Nanopore Sequencing Nat. Biotechnol. 2008, 26, 1146 1153 DOI: 10.1038/nbt.1495
  8. 8
    Farimani, A. B.; Min, K.; Aluru, N. R. DNA Base Detection Using a Single-Layer MoS2 ACS Nano 2014, 8, 7914 22 DOI: 10.1021/nn5029295
  9. 9
    Liu, K.; Feng, J. D.; Kis, A.; Radenovic, A. Atomically Thin Molybdenum Disulfide Nanopores with High Sensitivity for DNA Trans Location ACS Nano 2014, 8, 2504 2511 DOI: 10.1021/nn406102h
  10. 10
    Schneider, G. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. DNA Translocation through Graphene Nanopores Nano Lett. 2010, 10, 3163 3167 DOI: 10.1021/nl102069z
  11. 11
    Traversi, F.; Raillon, C.; Benameur, S. M.; Liu, K.; Khlybov, S.; Tosun, M.; Krasnozhon, D.; Kis, A.; Radenovic, A. Detecting the Translocation of DNA through a Nanopore Using Graphene Nanoribbons Nat. Nanotechnol. 2013, 8, 939 945 DOI: 10.1038/nnano.2013.240
  12. 12
    Saha, K. K.; Drndic, M.; Nikolic, B. K. DNA Base-Specific Modulation of Microampere Transverse Edge Currents through a Metallic Graphene Nanoribbon with a Nanopore Nano Lett. 2012, 12, 50 55 DOI: 10.1021/nl202870y
  13. 13
    Merchant, C. A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M. D.; Venta, K.; Luo, Z. T.; Johnson, A. T. C.; Drndic, M. DNA Translocation through Graphene Nanopores Nano Lett. 2010, 10, 2915 2921 DOI: 10.1021/nl101046t
  14. 14
    Merchant, C. A.; Drndic, M. Graphene Nanopore Devices for DNA Sensing Methods Mol. Biol. (N. Y., NY, U. S.) 2012, 870, 211 226 DOI: 10.1007/978-1-61779-773-6_12
  15. 15
    Heerema, S. J.; Dekker, C. Graphene Nanodevices for DNA Sequencing Nat. Nanotechnol. 2016, 11, 127 136 DOI: 10.1038/nnano.2015.307
  16. 16
    Garaj, S.; Liu, S.; Golovchenko, J. A.; Branton, D. Molecule-Hugging Graphene Nanopores Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12192 12196 DOI: 10.1073/pnas.1220012110
  17. 17
    Fologea, D.; Uplinger, J.; Thomas, B.; McNabb, D. S.; Li, J. L. Slowing DNA Translocation in a Solid-State Nanopore Nano Lett. 2005, 5, 1734 1737 DOI: 10.1021/nl051063o
  18. 18
    Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C. Slowing Down DNA Translocation through a Nanopore in Lithium Chloride Nano Lett. 2012, 12, 1038 1044 DOI: 10.1021/nl204273h
  19. 19
    Wanunu, M.; Sutin, J.; McNally, B.; Chow, A.; Meller, A. DNA Translocation Governed by Interactions with Solid-State Nanopores Biophys. J. 2008, 95, 4716 4725 DOI: 10.1529/biophysj.108.140475
  20. 20
    Farimani, A. B.; Heiranian, M.; Aluru, N. R. Electromechanical Signatures for DNA Sequencing through a Mechanosensitive Nanopore J. Phys. Chem. Lett. 2015, 6, 650 657 DOI: 10.1021/jz5025417
  21. 21
    Luan, B. Q.; Stolovitzky, G.; Martyna, G. Slowing and Controlling the Translocation of DNA in a Solid-State Nanopore Nanoscale 2012, 4, 1068 1077 DOI: 10.1039/C1NR11201E
  22. 22
    Butler, T. Z.; Pavlenok, M.; Derrington, I. M.; Niederweis, M.; Gundlach, J. H. Single-Molecule DNA Detection with an Engineered Mspa Protein Nanopore Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 20647 20652 DOI: 10.1073/pnas.0807514106
  23. 23
    Sint, K.; Wang, B.; Kral, P. Selective Ion Passage through Functionalized Graphene Nanopores J. Am. Chem. Soc. 2008, 130, 16448 16449 DOI: 10.1021/ja804409f
  24. 24
    Wei, R. S.; Martin, T. G.; Rant, U.; Dietz, H. DNA Origami Gatekeepers for Solid-State Nanopores Angew. Chem., Int. Ed. 2012, 51, 4864 4867 DOI: 10.1002/anie.201200688
  25. 25
    Yusko, E. C.; Johnson, J. M.; Majd, S.; Prangkio, P.; Rollings, R. C.; Li, J. L.; Yang, J.; Mayer, M. Controlling Protein Translocation through Nanopores with Bio-Inspired Fluid Walls Nat. Nanotechnol. 2011, 6, 253 260 DOI: 10.1038/nnano.2011.12
  26. 26
    Martin, C. R.; Siwy, Z. S. Learning Nature’s Way: Biosensing with Synthetic Nanopores Science 2007, 317, 331 332 DOI: 10.1126/science.1146126
  27. 27
    Iqbal, S. M.; Akin, D.; Bashir, R. Solid-State Nanopore Channels with DNA Selectivity Nat. Nanotechnol. 2007, 2, 243 248 DOI: 10.1038/nnano.2007.78
  28. 28
    Rothemund, P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns Nature 2006, 440, 297 302 DOI: 10.1038/nature04586
  29. 29
    Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J. Self-Assembly of a Nanoscale DNA Box with a Controllable Lid Nature 2009, 459, 73 75 DOI: 10.1038/nature07971
  30. 30
    Sobczak, J. P. J.; Martin, T. G.; Gerling, T.; Dietz, H. Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature Science 2012, 338, 1458 1461 DOI: 10.1126/science.1229919
  31. 31
    Falconi, M.; Oteri, F.; Chillemi, G.; Andersen, F. F.; Tordrup, D.; Oliveira, C. L. P.; Pedersen, J. S.; Knudsen, B. R.; Desideri, A. Deciphering the Structural Properties That Confer Stability to a DNA Nanocage ACS Nano 2009, 3, 1813 1822 DOI: 10.1021/nn900468y
  32. 32
    Zadegan, R. M.; Jepsen, M. D. E.; Thomsen, K. E.; Okholm, A. H.; Schaffert, D. H.; Andersen, E. S.; Birkedal, V.; Kjems, J. Construction of a 4 Zeptoliters Switchable 3d DNA Box Origami ACS Nano 2012, 6, 10050 10053 DOI: 10.1021/nn303767b
  33. 33
    Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F. C. Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures Science 2012, 338, 932 936 DOI: 10.1126/science.1225624
  34. 34
    Seifert, A.; Gopfrich, K.; Burns, J. R.; Fertig, N.; Keyser, U. F.; Howorka, S. Bilayer-Spanning DNA Nanopores with Voltage-Switching between Open and Closed State ACS Nano 2015, 9, 1117 1126 DOI: 10.1021/nn5039433
  35. 35
    Hernandez-Ainsa, S.; Bell, N. A. W.; Thacker, V. V.; Gopfrich, K.; Misiunas, K.; Fuentes-Perez, M. E.; Moreno-Herrero, F.; Keyser, U. F. DNA Origami Nanopores for Controlling DNA Translocation ACS Nano 2013, 7, 6024 6030 DOI: 10.1021/nn401759r
  36. 36
    Wei, R. S.; Gatterdam, V.; Wieneke, R.; Tampe, R.; Rant, U. Stochastic Sensing of Proteins with Receptor-Modified Solid-State Nanopores Nat. Nanotechnol. 2012, 7, 257 263 DOI: 10.1038/nnano.2012.24
  37. 37
    Yoo, J.; Aksimentiev, A. In Situ Structure and Dynamics of DNA Origami Determined through Molecular Dynamics Simulations Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 20099 20104 DOI: 10.1073/pnas.1316521110
  38. 38
    Li, C. Y.; Hemmig, E. A.; Kong, J. L.; Yoo, J.; Hernandez-Ainsa, S.; Keyser, U. F.; Aksimentiev, A. Ionic Conductivity, Structural Deformation, and Programmable Anisotropy of DNA Origami in Electric Field ACS Nano 2015, 9, 1420 1433 DOI: 10.1021/nn505825z
  39. 39
    Gao, B.; Sarveswaran, K.; Bernstein, G. H.; Lieberman, M. Guided Deposition of Individual DNA Nanostructures on Silicon Substrates Langmuir 2010, 26, 12680 12683 DOI: 10.1021/la101343k
  40. 40
    Teshome, B.; Facsko, S.; Keller, A. Topography-Controlled Alignment of DNA Origami Nanotubes on Nanopatterned Surfaces Nanoscale 2014, 6, 1790 1796 DOI: 10.1039/C3NR04627C
  41. 41
    Pearson, A. C.; Pound, E.; Woolley, A. T.; Linford, M. R.; Harb, J. N.; Davis, R. C. Chemical Alignment of DNA Origami to Block Copolymer Patterned Arrays of 5 Nm Gold Nanoparticles Nano Lett. 2011, 11, 1981 1987 DOI: 10.1021/nl200306w
  42. 42
    Gu, H. Z.; Chao, J.; Xiao, S. J.; Seeman, N. C. Dynamic Patterning Programmed by DNA Tiles Captured on a DNA Origami Substrate Nat. Nanotechnol. 2009, 4, 245 248 DOI: 10.1038/nnano.2009.5
  43. 43
    Kershner, R. J.; Bozano, L. D.; Micheel, C. M.; Hung, A. M.; Fornof, A. R.; Cha, J. N.; Rettner, C. T.; Bersani, M.; Frommer, J.; Rothemund, P. W. K.; Wallraff, G. M. Placement and Orientation of Individual DNA Shapes on Lithographically Patterned Surfaces Nat. Nanotechnol. 2009, 4, 557 561 DOI: 10.1038/nnano.2009.220
  44. 44
    Yun, J. M.; Kim, K. N.; Kim, J. Y.; Shin, D. O.; Lee, W. J.; Lee, S. H.; Lieberman, M.; Kim, S. O. DNA Origami Nanopatterning on Chemically Modified Graphene Angew. Chem., Int. Ed. 2012, 51, 912 915 DOI: 10.1002/anie.201106198
  45. 45
    Zhang, X. N.; Rahman, M.; Neff, D.; Norton, M. L. DNA Origami Deposition on Native and Passivated Molybdenum Disulfide Substrates Beilstein J. Nanotechnol. 2014, 5, 501 506 DOI: 10.3762/bjnano.5.58
  46. 46
    Bell, N. A. W.; Keyser, U. F. Nanopores Formed by DNA Origami: A Review FEBS Lett. 2014, 588, 3564 3570 DOI: 10.1016/j.febslet.2014.06.013
  47. 47
    Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. Namd2: Greater Scalability for Parallel Molecular Dynamics J. Comput. Phys. 1999, 151, 283 312 DOI: 10.1006/jcph.1999.6201
  48. 48
    Humphrey, W.; Dalke, A.; Schulten, K. Vmd: Visual Molecular Dynamics J. Mol. Graphics 1996, 14, 33 38 DOI: 10.1016/0263-7855(96)00018-5
  49. 49
    Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid Prototyping of 3d DNA-Origami Shapes with Cadnano Nucleic Acids Res. 2009, 37, 5001 5006 DOI: 10.1093/nar/gkp436
  50. 50
    Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes J. Comput. Phys. 1977, 23, 327 341 DOI: 10.1016/0021-9991(77)90098-5
  51. 51
    MacKerell, A. D.; Banavali, N. K. All-Atom Empirical Force Field for Nucleic Acids: Ii. Application to Molecular Dynamics Simulations of DNA and Rna in Solution J. Comput. Chem. 2000, 21, 105 120 DOI: 10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P
  52. 52
    Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems J. Chem. Phys. 1993, 98, 10089 10092 DOI: 10.1063/1.464397
  53. 53
    Nose, S. A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods J. Chem. Phys. 1984, 81, 511 519 DOI: 10.1063/1.447334
  54. 54
    Hoover, W. G. Canonical Dynamics - Equilibrium Phase-Space Distributions Phys. Rev. A: At., Mol., Opt. Phys. 1985, 31, 1695 1697 DOI: 10.1103/PhysRevA.31.1695
  55. 55
    Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. Crystallography & Nmr System: A New Software Suite for Macromolecular Structure Determination Acta Crystallogr., Sect. D: Biol. Crystallogr. 1998, 54, 905 921 DOI: 10.1107/S0907444998003254
  56. 56
    Wells, D. B.; Belkin, M.; Comer, J.; Aksimentiev, A. Assessing Graphene Nanopores for Sequencing DNA Nano Lett. 2012, 12, 4117 4123 DOI: 10.1021/nl301655d
  57. 57
    Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J. M.; McReynolds, L.; Drndic, M. Rapid Electronic Detection of Probe-Specific Micrornas Using Thin Nanopore Sensors Nat. Nanotechnol. 2010, 5, 807 814 DOI: 10.1038/nnano.2010.202
  58. 58
    Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Modeling the Conductance and DNA Blockade of Solid-State Nanopores. Nanotechnology 2011, 22. 315101 DOI: 10.1088/0957-4484/22/31/315101
  59. 59
    Plesa, C.; Ananth, A. N.; Linko, V.; Gulcher, C.; Katan, A. J.; Dietz, H.; Dekker, C. Ionic Permeability and Mechanical Properties of DNA Origami Nanoplates on Solid-State Nanopores ACS Nano 2014, 8, 35 43 DOI: 10.1021/nn405045x
  60. 60
    Hernandez-Ainsa, S.; Misiunas, K.; Thacker, V. V.; Hemmig, E. A.; Keyser, U. F. Voltage-Dependent Properties of DNA Origami Nanopores Nano Lett. 2014, 14, 1270 1274 DOI: 10.1021/nl404183t
  61. 61
    Aksimentiev, A.; Schulten, K. Imaging Alpha-Hemolysin with Molecular Dynamics: Ionic Conductance, Osmotic Permeability, and the Electrostatic Potential Map Biophys. J. 2005, 88, 3745 3761 DOI: 10.1529/biophysj.104.058727
  62. 62
    Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method J. Chem. Phys. 1995, 103, 8577 8593 DOI: 10.1063/1.470117
  63. 63
    Meller, A.; Nivon, L.; Brandin, E.; Golovchenko, J.; Branton, D. Rapid Nanopore Discrimination between Single Polynucleotide Molecules Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 1079 1084 DOI: 10.1073/pnas.97.3.1079
  64. 64
    Krishnakumar, P.; Gyarfas, B.; Song, W. S.; Sen, S.; Zhang, P. M.; Krstic, P.; Lindsay, S. Slowing DNA Trans Location through a Nanopore Using a Functionalized Electrode ACS Nano 2013, 7, 10319 10326 DOI: 10.1021/nn404743f
  65. 65
    Feng, J. D.; Liu, K.; Bulushev, R. D.; Khlybov, S.; Dumcenco, D.; Kis, A.; Radenovic, A. Identification of Single Nucleotides in Mos2 Nanopores Nat. Nanotechnol. 2015, 10, 1070 1076 DOI: 10.1038/nnano.2015.219

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 84 publications.

  1. Titas Kumar Mukhopadhyay, Anupam Ghosh, Ayan Datta. Screening 2D Materials for Their Nanotoxicity toward Nucleic Acids and Proteins: An In Silico Outlook. ACS Physical Chemistry Au 2024, 4 (2) , 97-121. https://doi.org/10.1021/acsphyschemau.3c00053
  2. Hemanth H., Sairam S. Mallajosyula. Graphene: From Solid Support for Nucleobase Assisted Self-Assemblies to Functional Material for DNA Sequencing. The Journal of Physical Chemistry C 2024, 128 (8) , 3091-3112. https://doi.org/10.1021/acs.jpcc.3c08041
  3. Hemanth H., Sairam S. Mallajosyula. Unveiling DNA Translocation in Pristine Graphene Nanopores: Understanding Pore Clogging via Polarizable Simulations. ACS Applied Materials & Interfaces 2023, 15 (47) , 55095-55108. https://doi.org/10.1021/acsami.3c12262
  4. Jarrett Anthony Boyd, Zhonglin Cao, Prakarsh Yadav, Amir Barati Farimani. DNA Detection Using a Single-Layer Phosphorene Nanopore. ACS Applied Nano Materials 2023, 6 (9) , 7814-7820. https://doi.org/10.1021/acsanm.3c00937
  5. Ping Zhou, Yingbo Pan, Wei Pan, Sumei Lu, Jiaqi Yin, Na Li, Bo Tang. Dual-AND Logic Gate-Based Strip Assay for Amplified Detection of Four miRNAs and Diagnosis of Lung Cancer. Analytical Chemistry 2023, 95 (2) , 1280-1286. https://doi.org/10.1021/acs.analchem.2c04121
  6. Zhonglin Cao, Prakarsh Yadav, Amir Barati Farimani. Which 2D Material is Better for DNA Detection: Graphene, MoS2, or MXene?. Nano Letters 2022, 22 (19) , 7874-7881. https://doi.org/10.1021/acs.nanolett.2c02603
  7. A. Rita Silva-Santos, Rui Oliveira-Silva, Sara Sousa Rosa, Pedro M. R. Paulo, Duarte Miguel F. Prazeres. Affinity-Based Magnetic Particles for the Purification of Single-Stranded DNA Scaffolds for Biomanufacturing DNA-Origami Nanostructures. ACS Applied Nano Materials 2021, 4 (12) , 14169-14177. https://doi.org/10.1021/acsanm.1c03623
  8. Zhonglin Cao, Greta Markey, Amir Barati Farimani. Ozark Graphene Nanopore for Efficient Water Desalination. The Journal of Physical Chemistry B 2021, 125 (40) , 11256-11263. https://doi.org/10.1021/acs.jpcb.1c06327
  9. Payel Sen, Hiofan Hoi, Manisha Gupta. Low Noise Hybrid Nanopore with Engineered OmpG and Bilayer MoS2. ACS Applied Bio Materials 2021, 4 (7) , 5416-5424. https://doi.org/10.1021/acsabm.1c00095
  10. Prakarsh Yadav, Zhonglin Cao, Amir Barati Farimani. DNA Detection with Single-Layer Ti3C2 MXene Nanopore. ACS Nano 2021, 15 (3) , 4861-4869. https://doi.org/10.1021/acsnano.0c09595
  11. Ramkumar Balasubramanian, Sohini Pal, Anjana Rao, Akshay Naik, Banani Chakraborty, Prabal K. Maiti, Manoj M. Varma. DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore. ACS Applied Bio Materials 2021, 4 (1) , 451-461. https://doi.org/10.1021/acsabm.0c00929
  12. Boxuan Shen, Petteri Piskunen, Sami Nummelin, Qing Liu, Mauri A. Kostiainen, Veikko Linko. Advanced DNA Nanopore Technologies. ACS Applied Bio Materials 2020, 3 (9) , 5606-5619. https://doi.org/10.1021/acsabm.0c00879
  13. Qingxin Li, Haiying Liu, Yigeng Tian, Jinghua Guo, Gang Chen, Jin Yong Lee. Methylation Detection and DNA Sequencing Based on Adsorption of Nucleobases on Silicene Nanoribbon. The Journal of Physical Chemistry C 2020, 124 (20) , 10823-10831. https://doi.org/10.1021/acs.jpcc.0c01734
  14. Wenjuan Ma, Yuxi Zhan, Yuxin Zhang, Xiaoru Shao, Xueping Xie, Chenchen Mao, Weitong Cui, Qian Li, Jiye Shi, Jiang Li, Chunhai Fan, Yunfeng Lin. An Intelligent DNA Nanorobot with in Vitro Enhanced Protein Lysosomal Degradation of HER2. Nano Letters 2019, 19 (7) , 4505-4517. https://doi.org/10.1021/acs.nanolett.9b01320
  15. Ramkumar Balasubramanian, Sohini Pal, Himanshu Joshi, Anjana Rao, Akshay Naik, Manoj Varma, Banani Chakraborty, Prabal K. Maiti. DNA Translocation through Hybrid Bilayer Nanopores. The Journal of Physical Chemistry C 2019, 123 (18) , 11908-11916. https://doi.org/10.1021/acs.jpcc.9b00399
  16. Xiaoxing Chen, Qian Wang, Jin Peng, Qipeng Long, Hanyang Yu, Zhe Li. Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds. ACS Applied Materials & Interfaces 2018, 10 (29) , 24344-24348. https://doi.org/10.1021/acsami.8b09222
  17. Fan Yang, Qian Li, Lihua Wang, Guo-Jun Zhang, Chunhai Fan. Framework-Nucleic-Acid-Enabled Biosensor Development. ACS Sensors 2018, 3 (5) , 903-919. https://doi.org/10.1021/acssensors.8b00257
  18. Jariyanee Prasongkit, Ernane de Freitas Martins, Fábio A. L. de Souza, Wanderlã L. Scopel, Rodrigo G. Amorim, Vittaya Amornkitbamrung, Alexandre R. Rocha, Ralph H. Scheicher. Topological Line Defects Around Graphene Nanopores for DNA Sequencing. The Journal of Physical Chemistry C 2018, 122 (13) , 7094-7099. https://doi.org/10.1021/acs.jpcc.8b00241
  19. Huang Chen, Libo Li, Tao Zhang, Zhiwei Qiao, Jinhui Tang, and Jian Zhou . Protein Translocation through a MoS2 Nanopore:A Molecular Dynamics Study. The Journal of Physical Chemistry C 2018, 122 (4) , 2070-2080. https://doi.org/10.1021/acs.jpcc.7b07842
  20. Fan Hong, Fei Zhang, Yan Liu, and Hao Yan . DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews 2017, 117 (20) , 12584-12640. https://doi.org/10.1021/acs.chemrev.6b00825
  21. Xiangmeng Qu, Fan Yang, Hong Chen, Jiang Li, Hongbo Zhang, Guojun Zhang, Li Li, Lihua Wang, Shiping Song, Yang Tian, and Hao Pei . Bubble-Mediated Ultrasensitive Multiplex Detection of Metal Ions in Three-Dimensional DNA Nanostructure-Encoded Microchannels. ACS Applied Materials & Interfaces 2017, 9 (19) , 16026-16034. https://doi.org/10.1021/acsami.7b03645
  22. Amir Barati Farimani, Mohammad Heiranian, Kyoungmin Min, and Narayana R. Aluru . Antibody Subclass Detection Using Graphene Nanopores. The Journal of Physical Chemistry Letters 2017, 8 (7) , 1670-1676. https://doi.org/10.1021/acs.jpclett.7b00385
  23. Fupeng Qin, Mengqi Sheng, Rongjie Li, Daixin Liu, Meili Ren, Rong Tian, Lyes Douadji, Deqiang Wang, Quan Gan, Liyuan Liang. Construction and applications of hybrid nanochannels with helical foldamers and solid-state nanopores. Chemical Engineering Journal 2024, 489 , 151006. https://doi.org/10.1016/j.cej.2024.151006
  24. Hongyu Ju, Li Cheng, Mengmeng Li, Kunrong Mei, Suhang He, Chuancheng Jia, Xuefeng Guo. Single‐Molecule Electrical Profiling of Peptides and Proteins. Advanced Science 2024, 153 https://doi.org/10.1002/advs.202401877
  25. You-Sheng Yu, Rong-Ri Tan, Hong-Ming Ding. Effect of surface functionalization on DNA sequencing using MXene-based nanopores. RSC Advances 2024, 14 (1) , 405-412. https://doi.org/10.1039/D3RA05432B
  26. Litzy L. García‐Faustino, Stephen M. Morris, Steve J. Elston, Yunuen Montelongo. Detection of Biomarkers through Functionalized Polymers. Small Methods 2024, 8 (1) https://doi.org/10.1002/smtd.202301025
  27. Xiangyi Kong, Peng Gao, Jing Wang, Yi Fang, Kuo Chu Hwang. Advances of medical nanorobots for future cancer treatments. Journal of Hematology & Oncology 2023, 16 (1) https://doi.org/10.1186/s13045-023-01463-z
  28. Yongzheng Xing, Alexia Rottensteiner, Jonah Ciccone, Stefan Howorka. Functional Nanopores Enabled with DNA. Angewandte Chemie 2023, 135 (33) https://doi.org/10.1002/ange.202303103
  29. Yongzheng Xing, Alexia Rottensteiner, Jonah Ciccone, Stefan Howorka. Functional Nanopores Enabled with DNA. Angewandte Chemie International Edition 2023, 62 (33) https://doi.org/10.1002/anie.202303103
  30. Elnaz Ahmadi-Sangachin, Fatima Bazzi, Guobao Xu, Morteza Hosseini. Biosensing using DNA-based structures integrated with nanosheets. Microchemical Journal 2023, 191 , 108779. https://doi.org/10.1016/j.microc.2023.108779
  31. Weiwei Chen, Lin Gan, Jin Huang. Design, Manufacturing and Functions of Pore-Structured Materials: From Biomimetics to Artificial. Biomimetics 2023, 8 (2) , 140. https://doi.org/10.3390/biomimetics8020140
  32. Jing Xu, Xin Jiang, Nianjun Yang. Carbon nanopores for DNA sequencing: a review on nanopore materials. Chemical Communications 2023, 59 (33) , 4838-4851. https://doi.org/10.1039/D2CC06517G
  33. Swarn Lata Singh, Keerti Chauhan, Atul S. Bharadwaj, Vimal Kishore, Peter Laux, Andreas Luch, Ajay Vikram Singh. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges. International Journal of Molecular Sciences 2023, 24 (7) , 6153. https://doi.org/10.3390/ijms24076153
  34. Liyuan Liang, Fupeng Qin, Sen Wang, Ji Wu, Rongjie Li, Zhong Wang, Meili Ren, Daixin Liu, Deqiang Wang, Didier Astruc. Overview of the materials design and sensing strategies of nanopore devices. Coordination Chemistry Reviews 2023, 478 , 214998. https://doi.org/10.1016/j.ccr.2022.214998
  35. Bing Liu, Fan Wang, Jie Chao. Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. Sensors 2023, 23 (6) , 3313. https://doi.org/10.3390/s23063313
  36. Li Cheng, Chuangcheng Jia, Xuefeng Guo. Opportunities and challenges of single molecule science. Chinese Science Bulletin 2023, 10 https://doi.org/10.1360/TB-2022-1112
  37. Muhammad Sajeer P, Simran, Pavan Nukala, Manoj M. Varma. TEM based applications in solid state nanopores: From fabrication to liquid in-situ bio-imaging. Micron 2022, 162 , 103347. https://doi.org/10.1016/j.micron.2022.103347
  38. Naresh Niranjan Dhanasekar, Durairaj Thiyagarajan, Dhiraj Bhatia. DNA Origami in the Quest for Membrane Piercing. Chemistry – An Asian Journal 2022, 17 (19) https://doi.org/10.1002/asia.202200591
  39. A. Rita Silva-Santos, Pedro M.R. Paulo, Duarte Miguel F. Prazeres. Scalable purification of single stranded DNA scaffolds for biomanufacturing DNA-origami nanostructures: Exploring anion-exchange and multimodal chromatography. Separation and Purification Technology 2022, 298 , 121623. https://doi.org/10.1016/j.seppur.2022.121623
  40. Yi Li, Christopher Maffeo, Himanshu Joshi, Aleksei Aksimentiev, Brice Ménard, Rebecca Schulman. Leakless end-to-end transport of small molecules through micron-length DNA nanochannels. Science Advances 2022, 8 (36) https://doi.org/10.1126/sciadv.abq4834
  41. Jue Yin, Mo Xie, Junke Wang, Meirong Cui, Dan Zhu, Shao Su, Chunhai Fan, Jie Chao, Qian Li, Lianhui Wang. Gold‐Nanoparticle‐Mediated Assembly of High‐Order DNA Nano‐Architectures. Small 2022, 18 (22) https://doi.org/10.1002/smll.202200824
  42. Changxiong Huang, Xiaohong Zhu, Zhen Li, Xinyao Ma, Na Li, Jun Luo, Jun Fan. Molecular insights into geometric and electrophoretic effects on DNA translocation speed through graphene nanoslit sensor. Carbon 2022, 191 , 415-423. https://doi.org/10.1016/j.carbon.2022.01.068
  43. Xiaoyu Chen, Xinjia Zhao, Ruiping Ma, Ying Hu, Chengjun Cui, Zhuang Mi, Ruifen Dou, Dun Pan, Xinyan Shan, Lihua Wang, Chunhai Fan, Xinghua Lu. Ionic Current Fluctuation and Orientation of Tetrahedral DNA Nanostructures in a Solid‐State Nanopore. Small 2022, 18 (12) https://doi.org/10.1002/smll.202107237
  44. Yuyang Wang, Zhonglin Cao, Amir Barati Farimani. Efficient water desalination with graphene nanopores obtained using artificial intelligence. npj 2D Materials and Applications 2021, 5 (1) https://doi.org/10.1038/s41699-021-00246-9
  45. Wei Liu, Huaichuan Duan, Derong Zhang, Xun Zhang, Qing Luo, Tao Xie, Hailian Yan, Lianxin Peng, Yichen Hu, Li Liang, Gang Zhao, Zhenjian Xie, Jianping Hu, . Concepts and Application of DNA Origami and DNA Self-Assembly: A Systematic Review. Applied Bionics and Biomechanics 2021, 2021 , 1-15. https://doi.org/10.1155/2021/9112407
  46. Yang Liu, Ye Deng, Yanmei Yang, Yuanyuan Qu, Chao Zhang, Yong-Qiang Li, Mingwen Zhao, Weifeng Li. Spontaneous DNA translocation through a van der Waals heterostructure nanopore for single-molecule detection. Nanoscale Advances 2021, 3 (20) , 5941-5947. https://doi.org/10.1039/D1NA00476J
  47. Luyao Shen, Pengfei Wang, Yonggang Ke. DNA Nanotechnology‐Based Biosensors and Therapeutics. Advanced Healthcare Materials 2021, 10 (15) https://doi.org/10.1002/adhm.202002205
  48. Daohui Zhao, Huang Chen, Yuqing Wang, Bei Li, Chongxiong Duan, Zhixian Li, Libo Li. Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures. Frontiers of Chemical Science and Engineering 2021, 15 (4) , 922-934. https://doi.org/10.1007/s11705-020-2004-z
  49. Tonmoy Ghosh, Aniruddha Mondal, S.V. Vamsi Bharadwaj, Sandhya Mishra. A naturally fluorescent protein C-phycoerythrin and graphene oxide bio-composite as a selective fluorescence ‘turn off/on’ probe for DNA quantification and characterization. International Journal of Biological Macromolecules 2021, 185 , 644-653. https://doi.org/10.1016/j.ijbiomac.2021.06.201
  50. Xuhua Zhao, Suya Zhao, Zhi-Ling Song, Xuanhao Zhang, Shi Zhang, Wenjuan Song, Zhuo Chen. Alkyne functionalized graphene-isolated-Au-nanocrystal for the ratiometric SERS sensing of alkaline phosphatase with acetonitrile solvent as an internal standard. Sensors and Actuators B: Chemical 2021, 331 , 129373. https://doi.org/10.1016/j.snb.2020.129373
  51. Kai Szuttor, Florian Weik, Jean-Noël Grad, Christian Holm. Modeling the current modulation of bundled DNA structures in nanopores. The Journal of Chemical Physics 2021, 154 (5) https://doi.org/10.1063/5.0038530
  52. Shunsuke Takahashi, Masahiko Oshige, Shinji Katsura. DNA Manipulation and Single-Molecule Imaging. Molecules 2021, 26 (4) , 1050. https://doi.org/10.3390/molecules26041050
  53. Changxiong Huang, Xiaohong Zhu, Zhen Li, Xinyao Ma, Na Li, Jun Luo, Jun Fan. Molecular Insights into Geometric and Electrophoretic Effects on DNA Translocation Speed Through Graphene Nanoslit Sensor. SSRN Electronic Journal 2021, 6 https://doi.org/10.2139/ssrn.3957283
  54. Shuang Wang, Zhaoyu Zhou, Ningning Ma, Sichang Yang, Kai Li, Chao Teng, Yonggang Ke, Ye Tian. DNA Origami-Enabled Biosensors. Sensors 2020, 20 (23) , 6899. https://doi.org/10.3390/s20236899
  55. Jing TANG, Sen WANG, Ji WU, Li-Yuan LIANG, Liang WANG, De-Qiang WANG. Applications of Photo-Responsive Molecules in Nanopore-based Devices. Chinese Journal of Analytical Chemistry 2020, 48 (11) , 1458-1466. https://doi.org/10.1016/S1872-2040(20)60058-5
  56. Tonmoy Ghosh, Aniruddha Mondal, Apeksha Vyas, Sandhya Mishra. A ‘one–tube’ synthesis of a selective fluorescence ‘turn off/on’ DNA probe based on a C-phycocyanin-graphene oxide (CPC-GO) bio composite. International Journal of Biological Macromolecules 2020, 163 , 977-984. https://doi.org/10.1016/j.ijbiomac.2020.06.286
  57. Britney A. Shepherd, Md Rubayat-E Tanjil, Yunjo Jeong, Bilgenur Baloğlu, Jingqiu Liao, Michael Cai Wang. Ångström- and Nano-scale Pore-Based Nucleic Acid Sequencing of Current and Emergent Pathogens. MRS Advances 2020, 5 (56) , 2889-2906. https://doi.org/10.1557/adv.2020.402
  58. Onkar Patil, D. Manikandan, Vishal V. R. Nandigana. A molecular dynamics simulation framework for predicting noise in solid-state nanopores. Molecular Simulation 2020, 46 (13) , 1011-1016. https://doi.org/10.1080/08927022.2020.1798004
  59. Lucile Reynaud, Aurélie Bouchet-Spinelli, Camille Raillon, Arnaud Buhot. Sensing with Nanopores and Aptamers: A Way Forward. Sensors 2020, 20 (16) , 4495. https://doi.org/10.3390/s20164495
  60. Xi Li, Linqing Yang, Yunfei Wang, Zhongyu Du, Xuyan Mao, Dezhi Sun, Jun Liu, Yu Zhou, Xiangyu Xu. Studies on binding of single‐stranded DNA with reduced graphene oxide–silver nanocomposites. IET Nanobiotechnology 2020, 14 (4) , 308-313. https://doi.org/10.1049/iet-nbt.2019.0377
  61. Yonghui Zhang, Yujia Zhou, Zhen Li, Huoji Chen, Li Zhang, Jun Fan. Computational investigation of geometrical effects in 2D boron nitride nanopores for DNA detection. Nanoscale 2020, 12 (18) , 10026-10034. https://doi.org/10.1039/C9NR10172A
  62. Taoli Ding, Jing Yang, Victor Pan, Nan Zhao, Zuhong Lu, Yonggang Ke, Cheng Zhang. DNA nanotechnology assisted nanopore-based analysis. Nucleic Acids Research 2020, 48 (6) , 2791-2806. https://doi.org/10.1093/nar/gkaa095
  63. Rui Gao, Yao Lin, Yi-Lun Ying, Yi-Tao Long. Nanopore-based sensing interface for single molecule electrochemistry. Science China Chemistry 2019, 62 (12) , 1576-1587. https://doi.org/10.1007/s11426-019-9509-6
  64. Hong Sun, Fujun Yao, Xiao-Feng Kang. Nanopore biphasic-pulse biosensor. Biosensors and Bioelectronics 2019, 146 , 111740. https://doi.org/10.1016/j.bios.2019.111740
  65. Xiaoyuan Zhang, Coucong Gong, Ozioma Udochukwu Akakuru, Zhiqiang Su, Aiguo Wu, Gang Wei. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chemical Society Reviews 2019, 48 (23) , 5564-5595. https://doi.org/10.1039/C8CS01003J
  66. Nasrin Mohajeri, Mahsa Imani, Abolfazl Akbarzadeh, Alireza Sadighi, Nosratollah Zarghami. An update on advances in new developing DNA conjugation diagnostics and ultra-resolution imaging technologies: Possible applications in medical and biotechnological utilities. Biosensors and Bioelectronics 2019, 144 , 111633. https://doi.org/10.1016/j.bios.2019.111633
  67. Xiangbiao Liao, Baidu Zhang, Takumi Furutani, Youlong Chen, Hang Xiao, Yong Ni, Akio Yonezu, Xi Chen. Strain‐Guided Oxidative Nanoperforation on Graphene. Small 2019, 15 (40) https://doi.org/10.1002/smll.201903213
  68. Xingwei Zhai, Jingwen Li, Ya Cao, Xiaoli Zhu, Yuguo Tang, Guifang Chen, Kun Han. A nanoflow cytometric strategy for sensitive ctDNA detection via magnetic separation and DNA self-assembly. Analytical and Bioanalytical Chemistry 2019, 411 (23) , 6039-6047. https://doi.org/10.1007/s00216-019-01985-x
  69. Cun-Xi Liu, Ya-Jing Zhang, Ying Li. Precisely manipulated origami for consecutive frequency reconfigurable antennas. Smart Materials and Structures 2019, 28 (9) , 095020. https://doi.org/10.1088/1361-665X/ab2e2f
  70. Haipei Zhao, Dekai Ye, Xiuhai Mao, Fan Li, Jiaqiang Xu, Min Li, Xiaolei Zuo. Stepping gating of ion channels on nanoelectrode via DNA hybridization for label-free DNA detection. Biosensors and Bioelectronics 2019, 133 , 141-146. https://doi.org/10.1016/j.bios.2019.03.038
  71. André F. Girão, María C. Serrano, António Completo, Paula A. A. P. Marques. Do biomedical engineers dream of graphene sheets?. Biomaterials Science 2019, 7 (4) , 1228-1239. https://doi.org/10.1039/C8BM01636D
  72. Hyunil Ryu, Ahmed Fuwad, Sunhee Yoon, Huisoo Jang, Jong Lee, Sun Kim, Tae-Joon Jeon. Biomimetic Membranes with Transmembrane Proteins: State-of-the-Art in Transmembrane Protein Applications. International Journal of Molecular Sciences 2019, 20 (6) , 1437. https://doi.org/10.3390/ijms20061437
  73. Hai Le-The, Corentin Tregouet, Michael Kappl, Maren Müller, Katrin Kirchhoff, Detlef Lohse, Albert van den Berg, Mathieu Odijk, Jan C T Eijkel. Engulfment control of platinum nanoparticles into oxidized silicon substrates for fabrication of dense solid-state nanopore arrays. Nanotechnology 2019, 30 (6) , 065301. https://doi.org/10.1088/1361-6528/aaf114
  74. Amir Barati Farimani, Mohammad Heiranian, Narayana R. Aluru. Identification of amino acids with sensitive nanoporous MoS2: towards machine learning-based prediction. npj 2D Materials and Applications 2018, 2 (1) https://doi.org/10.1038/s41699-018-0060-8
  75. Jiemei Ou, Huijun Tan, Xudong Chen, Zhong Chen. DNA-Assisted Assembly of Gold Nanostructures and Their Induced Optical Properties. Nanomaterials 2018, 8 (12) , 994. https://doi.org/10.3390/nano8120994
  76. Yong‐An Ren, Han Gao, Xiangyuan Ouyang. Advances in DNA Origami Nanopores: Fabrication, Characterization and Applications. Chinese Journal of Chemistry 2018, 36 (9) , 875-885. https://doi.org/10.1002/cjoc.201800173
  77. Yuezhou Zhang, Jing Tu, Dongqing Wang, Haitao Zhu, Sajal Kumar Maity, Xiangmeng Qu, Bram Bogaert, Hao Pei, Hongbo Zhang. Programmable and Multifunctional DNA‐Based Materials for Biomedical Applications. Advanced Materials 2018, 30 (24) https://doi.org/10.1002/adma.201703658
  78. Yanfeng Wang, Duoliang Shan, Guofan Wu, Huan Wang, Fan Ru, Xiaohui Zhang, Linfang Li, Yaxuan Qian, Xiaoquan Lu. A novel “dual-potential” ratiometric electrochemiluminescence DNA sensor based on enhancing and quenching effect by G-quadruplex / hemin and Au-Luminol bifunctional nanoparticles. Biosensors and Bioelectronics 2018, 106 , 64-70. https://doi.org/10.1016/j.bios.2018.01.052
  79. Mattia Bramini, Giulio Alberini, Elisabetta Colombo, Martina Chiacchiaretta, Mattia L. DiFrancesco, José F. Maya-Vetencourt, Luca Maragliano, Fabio Benfenati, Fabrizia Cesca. Interfacing Graphene-Based Materials With Neural Cells. Frontiers in Systems Neuroscience 2018, 12 https://doi.org/10.3389/fnsys.2018.00012
  80. Elisa J. Campos, James Yates. Single molecule characterisation of metal nanoparticles using nanopore-based stochastic detection methods. Sensors and Actuators B: Chemical 2018, 255 , 2032-2049. https://doi.org/10.1016/j.snb.2017.09.014
  81. Nianjun Yang, Xin Jiang. DNA Sequencing Using Carbon Nanopores. 2018, 233-271. https://doi.org/10.1007/5346_2018_23
  82. Mingshu Xiao, Xiangmeng Qu, Li Li, Hao Pei. Ultrasensitive Detection of Metal Ions with DNA Nanostructure. 2018, 137-149. https://doi.org/10.1007/978-1-4939-8582-1_9
  83. You-sheng Yu, Xiang Lu, Hong-ming Ding, Yu-qiang Ma. Computational investigation on DNA sequencing using functionalized graphene nanopores. Physical Chemistry Chemical Physics 2018, 20 (14) , 9063-9069. https://doi.org/10.1039/C7CP07462J
  84. Zhen Zhang, Liping Wen, Lei Jiang. Bioinspired smart asymmetric nanochannel membranes. Chemical Society Reviews 2018, 47 (2) , 322-356. https://doi.org/10.1039/C7CS00688H
  • Abstract

    Figure 1

    Figure 1. (a) Simulation box consisting of a single-layer DNA origami (depicted in red), graphene sheet, water, ions, and translocating ssDNA (depicted in blue). (b) Bare graphene nanopore. (c) Single-layer DNA origami nanopore on top of a graphene nanopore.

    Figure 2

    Figure 2. Characteristics of the hybrid nanopores under external biases. (a) IV curves for the four types of nanopores. Lines are linear fits with the corresponding color for the symbols. (b) Conductance of different pores and their comparison with theoretical predictions. (c) Center-to-center distance of the DNA origami pore to the graphene pore in the xy plane. Interaction between the DNA origami and the external positive bias does not disarrange the alignment of the hybrid nanopore.

    Figure 3

    Figure 3. (a) Electrostatic potential map of the single-layer DNA origami hybrid nanopore under an external applied bias of 2 V. Ions and other point charges are approximated by Gaussian spheres with an inverse width of β = 0.25 Å–1. (b) The resulting mean bias across the pore along the z direction, averaged over x and y directions. The cyan and yellow regions approximately show, respectively, the area where the graphene nanopore and the DNA origami nanopore occupy along the z direction during the simulation time. The potential is primarily changing across the graphene nanopore.

    Figure 4

    Figure 4. (a) Simulation system of DNA translocating through a bare graphene nanopore. The all-atom model contains a graphene nanopore, ssDNA (depicted in blue), water, and ions. (b) Simulation system of DNA translocating through a single-layer DNA origami hybrid nanopore. The all-atom model contains a single-layer DNA origami (depicted in red)–graphene nanopore, ssDNA (depicted in blue), water, and ions. (c) Simulation system of DNA translocating through a double-layer DNA origami hybrid nanopore. The all-atom model contains a double-layer DNA origami (depicted in red)–graphene nanopore, ssDNA (depicted in blue), water, and ions. (d) Translocation history of ssDNA in pristine graphene and single-layer DNA origami hybrid nanopores. (e) Translocation history of ssDNA in double-layer DNA origami hybrid nanopore. (f) Statistical distribution of the dwell times for different base types translocating through single-layer DNA origami hybrid nanopore under an external bias of 2 V. (g) Average residence time of base in single-layer DNA origami hybrid and bare graphene nanopores.

    Figure 5

    Figure 5. (a) Snapshot of hydrogen bonds between poly(dA) and DNA origami (the black dashed lines represent HBs). (b) Snapshot of hydrogen bonds between poly(dT) and DNA origami (the black dashed lines represent HBs). (c) Average number of HBs between ssDNA and DNA origami nanoplates. (d) Time-dependent interaction energy between poly(dA) and DNA origami nanoplate (black). Translocation plot of poly(dA) through hybrid nanopore (red).

    Figure 6

    Figure 6. (a) Schematic of the ionic current simulation system showing the interaction of the complementary bases (A–T). (b) Ionic currents for different bases computed from the translocation of poly ssDNAs through the single-layer DNA origami hybrid nanopore. (c) Density of different bases of the DNA origami nanoplate in the vicinity of the pore vs simulation time for translocation of poly(dA) through the single-layer DNA origami hybrid nanopore. (d) Average density of different bases of the DNA origami nanoplate in the vicinity of the pore during poly ssDNAs translocations through the single-layer DNA origami hybrid nanopore.

    Figure 7

    Figure 7. Comparison of poly(dA) translocation rate through the single-layer DNA origami hybrid nanopore and the bare graphene nanopore.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 65 other publications.

    1. 1
      Venkatesan, B. M.; Bashir, R. Nanopore Sensors for Nucleic Acid Analysis Nat. Nanotechnol. 2011, 6, 615 624 DOI: 10.1038/nnano.2011.129
    2. 2
      Keyser, U. F. Controlling Molecular Transport through Nanopores J. R. Soc., Interface 2011, 8, 1369 1378 DOI: 10.1098/rsif.2011.0222
    3. 3
      Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of Individual Polynucleotide Molecules Using a Membrane Channel Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13770 13773 DOI: 10.1073/pnas.93.24.13770
    4. 4
      Bayley, H.; Cremer, P. S. Stochastic Sensors Inspired by Biology Nature 2001, 413, 226 230 DOI: 10.1038/35093038
    5. 5
      Deamer, D. W.; Branton, D. Characterization of Nucleic Acids by Nanopore Analysis Acc. Chem. Res. 2002, 35, 817 825 DOI: 10.1021/ar000138m
    6. 6
      Dekker, C. Solid-State Nanopores Nat. Nanotechnol. 2007, 2, 209 215 DOI: 10.1038/nnano.2007.27
    7. 7
      Branton, D.; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X. H.; Jovanovich, S. B.; Krstic, P. S.; Lindsay, S.; Ling, X. S. S.; Mastrangelo, C. H.; Meller, A.; Oliver, J. S.; Pershin, Y. V.; Ramsey, J. M.; Riehn, R.; Soni, G. V.; Tabard-Cossa, V.; Wanunu, M.; Wiggin, M.; Schloss, J. A. The Potential and Challenges of Nanopore Sequencing Nat. Biotechnol. 2008, 26, 1146 1153 DOI: 10.1038/nbt.1495
    8. 8
      Farimani, A. B.; Min, K.; Aluru, N. R. DNA Base Detection Using a Single-Layer MoS2 ACS Nano 2014, 8, 7914 22 DOI: 10.1021/nn5029295
    9. 9
      Liu, K.; Feng, J. D.; Kis, A.; Radenovic, A. Atomically Thin Molybdenum Disulfide Nanopores with High Sensitivity for DNA Trans Location ACS Nano 2014, 8, 2504 2511 DOI: 10.1021/nn406102h
    10. 10
      Schneider, G. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. DNA Translocation through Graphene Nanopores Nano Lett. 2010, 10, 3163 3167 DOI: 10.1021/nl102069z
    11. 11
      Traversi, F.; Raillon, C.; Benameur, S. M.; Liu, K.; Khlybov, S.; Tosun, M.; Krasnozhon, D.; Kis, A.; Radenovic, A. Detecting the Translocation of DNA through a Nanopore Using Graphene Nanoribbons Nat. Nanotechnol. 2013, 8, 939 945 DOI: 10.1038/nnano.2013.240
    12. 12
      Saha, K. K.; Drndic, M.; Nikolic, B. K. DNA Base-Specific Modulation of Microampere Transverse Edge Currents through a Metallic Graphene Nanoribbon with a Nanopore Nano Lett. 2012, 12, 50 55 DOI: 10.1021/nl202870y
    13. 13
      Merchant, C. A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M. D.; Venta, K.; Luo, Z. T.; Johnson, A. T. C.; Drndic, M. DNA Translocation through Graphene Nanopores Nano Lett. 2010, 10, 2915 2921 DOI: 10.1021/nl101046t
    14. 14
      Merchant, C. A.; Drndic, M. Graphene Nanopore Devices for DNA Sensing Methods Mol. Biol. (N. Y., NY, U. S.) 2012, 870, 211 226 DOI: 10.1007/978-1-61779-773-6_12
    15. 15
      Heerema, S. J.; Dekker, C. Graphene Nanodevices for DNA Sequencing Nat. Nanotechnol. 2016, 11, 127 136 DOI: 10.1038/nnano.2015.307
    16. 16
      Garaj, S.; Liu, S.; Golovchenko, J. A.; Branton, D. Molecule-Hugging Graphene Nanopores Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12192 12196 DOI: 10.1073/pnas.1220012110
    17. 17
      Fologea, D.; Uplinger, J.; Thomas, B.; McNabb, D. S.; Li, J. L. Slowing DNA Translocation in a Solid-State Nanopore Nano Lett. 2005, 5, 1734 1737 DOI: 10.1021/nl051063o
    18. 18
      Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C. Slowing Down DNA Translocation through a Nanopore in Lithium Chloride Nano Lett. 2012, 12, 1038 1044 DOI: 10.1021/nl204273h
    19. 19
      Wanunu, M.; Sutin, J.; McNally, B.; Chow, A.; Meller, A. DNA Translocation Governed by Interactions with Solid-State Nanopores Biophys. J. 2008, 95, 4716 4725 DOI: 10.1529/biophysj.108.140475
    20. 20
      Farimani, A. B.; Heiranian, M.; Aluru, N. R. Electromechanical Signatures for DNA Sequencing through a Mechanosensitive Nanopore J. Phys. Chem. Lett. 2015, 6, 650 657 DOI: 10.1021/jz5025417
    21. 21
      Luan, B. Q.; Stolovitzky, G.; Martyna, G. Slowing and Controlling the Translocation of DNA in a Solid-State Nanopore Nanoscale 2012, 4, 1068 1077 DOI: 10.1039/C1NR11201E
    22. 22
      Butler, T. Z.; Pavlenok, M.; Derrington, I. M.; Niederweis, M.; Gundlach, J. H. Single-Molecule DNA Detection with an Engineered Mspa Protein Nanopore Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 20647 20652 DOI: 10.1073/pnas.0807514106
    23. 23
      Sint, K.; Wang, B.; Kral, P. Selective Ion Passage through Functionalized Graphene Nanopores J. Am. Chem. Soc. 2008, 130, 16448 16449 DOI: 10.1021/ja804409f
    24. 24
      Wei, R. S.; Martin, T. G.; Rant, U.; Dietz, H. DNA Origami Gatekeepers for Solid-State Nanopores Angew. Chem., Int. Ed. 2012, 51, 4864 4867 DOI: 10.1002/anie.201200688
    25. 25
      Yusko, E. C.; Johnson, J. M.; Majd, S.; Prangkio, P.; Rollings, R. C.; Li, J. L.; Yang, J.; Mayer, M. Controlling Protein Translocation through Nanopores with Bio-Inspired Fluid Walls Nat. Nanotechnol. 2011, 6, 253 260 DOI: 10.1038/nnano.2011.12
    26. 26
      Martin, C. R.; Siwy, Z. S. Learning Nature’s Way: Biosensing with Synthetic Nanopores Science 2007, 317, 331 332 DOI: 10.1126/science.1146126
    27. 27
      Iqbal, S. M.; Akin, D.; Bashir, R. Solid-State Nanopore Channels with DNA Selectivity Nat. Nanotechnol. 2007, 2, 243 248 DOI: 10.1038/nnano.2007.78
    28. 28
      Rothemund, P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns Nature 2006, 440, 297 302 DOI: 10.1038/nature04586
    29. 29
      Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J. Self-Assembly of a Nanoscale DNA Box with a Controllable Lid Nature 2009, 459, 73 75 DOI: 10.1038/nature07971
    30. 30
      Sobczak, J. P. J.; Martin, T. G.; Gerling, T.; Dietz, H. Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature Science 2012, 338, 1458 1461 DOI: 10.1126/science.1229919
    31. 31
      Falconi, M.; Oteri, F.; Chillemi, G.; Andersen, F. F.; Tordrup, D.; Oliveira, C. L. P.; Pedersen, J. S.; Knudsen, B. R.; Desideri, A. Deciphering the Structural Properties That Confer Stability to a DNA Nanocage ACS Nano 2009, 3, 1813 1822 DOI: 10.1021/nn900468y
    32. 32
      Zadegan, R. M.; Jepsen, M. D. E.; Thomsen, K. E.; Okholm, A. H.; Schaffert, D. H.; Andersen, E. S.; Birkedal, V.; Kjems, J. Construction of a 4 Zeptoliters Switchable 3d DNA Box Origami ACS Nano 2012, 6, 10050 10053 DOI: 10.1021/nn303767b
    33. 33
      Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F. C. Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures Science 2012, 338, 932 936 DOI: 10.1126/science.1225624
    34. 34
      Seifert, A.; Gopfrich, K.; Burns, J. R.; Fertig, N.; Keyser, U. F.; Howorka, S. Bilayer-Spanning DNA Nanopores with Voltage-Switching between Open and Closed State ACS Nano 2015, 9, 1117 1126 DOI: 10.1021/nn5039433
    35. 35
      Hernandez-Ainsa, S.; Bell, N. A. W.; Thacker, V. V.; Gopfrich, K.; Misiunas, K.; Fuentes-Perez, M. E.; Moreno-Herrero, F.; Keyser, U. F. DNA Origami Nanopores for Controlling DNA Translocation ACS Nano 2013, 7, 6024 6030 DOI: 10.1021/nn401759r
    36. 36
      Wei, R. S.; Gatterdam, V.; Wieneke, R.; Tampe, R.; Rant, U. Stochastic Sensing of Proteins with Receptor-Modified Solid-State Nanopores Nat. Nanotechnol. 2012, 7, 257 263 DOI: 10.1038/nnano.2012.24
    37. 37
      Yoo, J.; Aksimentiev, A. In Situ Structure and Dynamics of DNA Origami Determined through Molecular Dynamics Simulations Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 20099 20104 DOI: 10.1073/pnas.1316521110
    38. 38
      Li, C. Y.; Hemmig, E. A.; Kong, J. L.; Yoo, J.; Hernandez-Ainsa, S.; Keyser, U. F.; Aksimentiev, A. Ionic Conductivity, Structural Deformation, and Programmable Anisotropy of DNA Origami in Electric Field ACS Nano 2015, 9, 1420 1433 DOI: 10.1021/nn505825z
    39. 39
      Gao, B.; Sarveswaran, K.; Bernstein, G. H.; Lieberman, M. Guided Deposition of Individual DNA Nanostructures on Silicon Substrates Langmuir 2010, 26, 12680 12683 DOI: 10.1021/la101343k
    40. 40
      Teshome, B.; Facsko, S.; Keller, A. Topography-Controlled Alignment of DNA Origami Nanotubes on Nanopatterned Surfaces Nanoscale 2014, 6, 1790 1796 DOI: 10.1039/C3NR04627C
    41. 41
      Pearson, A. C.; Pound, E.; Woolley, A. T.; Linford, M. R.; Harb, J. N.; Davis, R. C. Chemical Alignment of DNA Origami to Block Copolymer Patterned Arrays of 5 Nm Gold Nanoparticles Nano Lett. 2011, 11, 1981 1987 DOI: 10.1021/nl200306w
    42. 42
      Gu, H. Z.; Chao, J.; Xiao, S. J.; Seeman, N. C. Dynamic Patterning Programmed by DNA Tiles Captured on a DNA Origami Substrate Nat. Nanotechnol. 2009, 4, 245 248 DOI: 10.1038/nnano.2009.5
    43. 43
      Kershner, R. J.; Bozano, L. D.; Micheel, C. M.; Hung, A. M.; Fornof, A. R.; Cha, J. N.; Rettner, C. T.; Bersani, M.; Frommer, J.; Rothemund, P. W. K.; Wallraff, G. M. Placement and Orientation of Individual DNA Shapes on Lithographically Patterned Surfaces Nat. Nanotechnol. 2009, 4, 557 561 DOI: 10.1038/nnano.2009.220
    44. 44
      Yun, J. M.; Kim, K. N.; Kim, J. Y.; Shin, D. O.; Lee, W. J.; Lee, S. H.; Lieberman, M.; Kim, S. O. DNA Origami Nanopatterning on Chemically Modified Graphene Angew. Chem., Int. Ed. 2012, 51, 912 915 DOI: 10.1002/anie.201106198
    45. 45
      Zhang, X. N.; Rahman, M.; Neff, D.; Norton, M. L. DNA Origami Deposition on Native and Passivated Molybdenum Disulfide Substrates Beilstein J. Nanotechnol. 2014, 5, 501 506 DOI: 10.3762/bjnano.5.58
    46. 46
      Bell, N. A. W.; Keyser, U. F. Nanopores Formed by DNA Origami: A Review FEBS Lett. 2014, 588, 3564 3570 DOI: 10.1016/j.febslet.2014.06.013
    47. 47
      Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. Namd2: Greater Scalability for Parallel Molecular Dynamics J. Comput. Phys. 1999, 151, 283 312 DOI: 10.1006/jcph.1999.6201
    48. 48
      Humphrey, W.; Dalke, A.; Schulten, K. Vmd: Visual Molecular Dynamics J. Mol. Graphics 1996, 14, 33 38 DOI: 10.1016/0263-7855(96)00018-5
    49. 49
      Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid Prototyping of 3d DNA-Origami Shapes with Cadnano Nucleic Acids Res. 2009, 37, 5001 5006 DOI: 10.1093/nar/gkp436
    50. 50
      Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes J. Comput. Phys. 1977, 23, 327 341 DOI: 10.1016/0021-9991(77)90098-5
    51. 51
      MacKerell, A. D.; Banavali, N. K. All-Atom Empirical Force Field for Nucleic Acids: Ii. Application to Molecular Dynamics Simulations of DNA and Rna in Solution J. Comput. Chem. 2000, 21, 105 120 DOI: 10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P
    52. 52
      Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems J. Chem. Phys. 1993, 98, 10089 10092 DOI: 10.1063/1.464397
    53. 53
      Nose, S. A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods J. Chem. Phys. 1984, 81, 511 519 DOI: 10.1063/1.447334
    54. 54
      Hoover, W. G. Canonical Dynamics - Equilibrium Phase-Space Distributions Phys. Rev. A: At., Mol., Opt. Phys. 1985, 31, 1695 1697 DOI: 10.1103/PhysRevA.31.1695
    55. 55
      Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. Crystallography & Nmr System: A New Software Suite for Macromolecular Structure Determination Acta Crystallogr., Sect. D: Biol. Crystallogr. 1998, 54, 905 921 DOI: 10.1107/S0907444998003254
    56. 56
      Wells, D. B.; Belkin, M.; Comer, J.; Aksimentiev, A. Assessing Graphene Nanopores for Sequencing DNA Nano Lett. 2012, 12, 4117 4123 DOI: 10.1021/nl301655d
    57. 57
      Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J. M.; McReynolds, L.; Drndic, M. Rapid Electronic Detection of Probe-Specific Micrornas Using Thin Nanopore Sensors Nat. Nanotechnol. 2010, 5, 807 814 DOI: 10.1038/nnano.2010.202
    58. 58
      Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Modeling the Conductance and DNA Blockade of Solid-State Nanopores. Nanotechnology 2011, 22. 315101 DOI: 10.1088/0957-4484/22/31/315101
    59. 59
      Plesa, C.; Ananth, A. N.; Linko, V.; Gulcher, C.; Katan, A. J.; Dietz, H.; Dekker, C. Ionic Permeability and Mechanical Properties of DNA Origami Nanoplates on Solid-State Nanopores ACS Nano 2014, 8, 35 43 DOI: 10.1021/nn405045x
    60. 60
      Hernandez-Ainsa, S.; Misiunas, K.; Thacker, V. V.; Hemmig, E. A.; Keyser, U. F. Voltage-Dependent Properties of DNA Origami Nanopores Nano Lett. 2014, 14, 1270 1274 DOI: 10.1021/nl404183t
    61. 61
      Aksimentiev, A.; Schulten, K. Imaging Alpha-Hemolysin with Molecular Dynamics: Ionic Conductance, Osmotic Permeability, and the Electrostatic Potential Map Biophys. J. 2005, 88, 3745 3761 DOI: 10.1529/biophysj.104.058727
    62. 62
      Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method J. Chem. Phys. 1995, 103, 8577 8593 DOI: 10.1063/1.470117
    63. 63
      Meller, A.; Nivon, L.; Brandin, E.; Golovchenko, J.; Branton, D. Rapid Nanopore Discrimination between Single Polynucleotide Molecules Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 1079 1084 DOI: 10.1073/pnas.97.3.1079
    64. 64
      Krishnakumar, P.; Gyarfas, B.; Song, W. S.; Sen, S.; Zhang, P. M.; Krstic, P.; Lindsay, S. Slowing DNA Trans Location through a Nanopore Using a Functionalized Electrode ACS Nano 2013, 7, 10319 10326 DOI: 10.1021/nn404743f
    65. 65
      Feng, J. D.; Liu, K.; Bulushev, R. D.; Khlybov, S.; Dumcenco, D.; Kis, A.; Radenovic, A. Identification of Single Nucleotides in Mos2 Nanopores Nat. Nanotechnol. 2015, 10, 1070 1076 DOI: 10.1038/nnano.2015.219
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.6b11001.

    • Calculation of resistivity and conductivity of different nanopore architectures, the design and structure of single-layer and double-layer DNA origami nanopore, density of bases around the pore mouth, motion of DNA origami on top of graphene under external biases, sandwiched DNA origami–graphene hybrid nanopore analysis and IV curve of hybrid nanopore solvated in 1 M KCl aqueous solution. (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect