Advertisement
No access
Research Article

Persistent effects of pre-Columbian plant domestication on Amazonian forest composition

C. Levis https://orcid.org/0000-0002-8425-9479 [email protected], F. R. C. Costa https://orcid.org/0000-0002-9600-4625, F. Bongers, M. Peña-Claros, C. R. Clement https://orcid.org/0000-0002-8421-1029, A. B. Junqueira https://orcid.org/0000-0003-3681-1705, E. G. Neves https://orcid.org/0000-0002-2830-2735, E. K. Tamanaha https://orcid.org/0000-0001-9400-0682, F. O. G. Figueiredo https://orcid.org/0000-0002-9333-0708, R. P. Salomão https://orcid.org/0000-0003-0947-0132, C. V. Castilho https://orcid.org/0000-0002-1064-2758, W. E. Magnusson https://orcid.org/0000-0003-1988-3950, O. L. Phillips https://orcid.org/0000-0002-8993-6168, J. E. Guevara, D. Sabatier https://orcid.org/0000-0003-0883-1530, J.-F. Molino https://orcid.org/0000-0001-8853-7133, D. Cárdenas López, A. M. Mendoza, N. C. A. Pitman https://orcid.org/0000-0002-9211-2880, A. Duque https://orcid.org/0000-0001-5464-2058, P. Núñez Vargas, C. E. Zartman https://orcid.org/0000-0001-8481-9782, R. Vasquez https://orcid.org/0000-0002-2282-5009, A. Andrade, J. L. Camargo https://orcid.org/0000-0003-0370-9878, T. R. Feldpausch https://orcid.org/0000-0002-6631-7962, S. G. W. Laurance https://orcid.org/0000-0002-2831-2933, W. F. Laurance, T. J. Killeen https://orcid.org/0000-0002-2711-1646, H. E. Mendonça Nascimento, J. C. Montero, B. Mostacedo, I. L. Amaral, I. C. Guimarães Vieira https://orcid.org/0000-0003-1233-318X, R. Brienen, H. Castellanos, J. Terborgh, M. de Jesus Veiga Carim https://orcid.org/0000-0002-8576-7002, J. R. da Silva Guimarães https://orcid.org/0000-0003-2055-7642, L. de Souza Coelho https://orcid.org/0000-0001-6710-7660, F. D. de Almeida Matos, F. Wittmann, H. F. Mogollón, G. Damasco, N. Dávila, R. García-Villacorta, E. N. H. Coronado https://orcid.org/0000-0003-2314-590X, T. Emilio https://orcid.org/0000-0001-5415-1822, D. de Andrade Lima Filho, J. Schietti https://orcid.org/0000-0002-1687-4373, P. Souza https://orcid.org/0000-0002-5657-3401, N. Targhetta https://orcid.org/0000-0003-1778-4051, J. A. Comiskey, B. S. Marimon, B.-H. Marimon Jr., D. Neill https://orcid.org/0000-0002-5143-9430, A. Alonso https://orcid.org/0000-0001-6860-8432, L. Arroyo, F. A. Carvalho https://orcid.org/0000-0002-3485-0797, F. C. de Souza https://orcid.org/0000-0002-3919-4493, F. Dallmeier, M. P. Pansonato https://orcid.org/0000-0003-3365-2382, J. F. Duivenvoorden https://orcid.org/0000-0001-6133-2015, P. V. A. Fine, P. R. Stevenson, A. Araujo-Murakami, G. A. Aymard C., C. Baraloto, D. D. do Amaral https://orcid.org/0000-0002-3546-5719, J. Engel https://orcid.org/0000-0002-8078-9309, T. W. Henkel, P. Maas, P. Petronelli, J. D. Cardenas Revilla, J. Stropp https://orcid.org/0000-0002-2831-4066, D. Daly, R. Gribel https://orcid.org/0000-0002-0850-5578, M. Ríos Paredes, M. Silveira https://orcid.org/0000-0003-0485-7872, R. Thomas-Caesar, T. R. Baker, N. F. da Silva https://orcid.org/0000-0002-9820-3599, L. V. Ferreira https://orcid.org/0000-0001-9674-0238, C. A. Peres https://orcid.org/0000-0002-1588-8765, M. R. Silman, C. Cerón, F. C. Valverde, A. Di Fiore, E. M. Jimenez https://orcid.org/0000-0002-8610-1771, M. C. Peñuela Mora, M. Toledo, E. M. Barbosa, L. C. de Matos Bonates, N. C. Arboleda https://orcid.org/0000-0003-2892-1074, E. de Sousa Farias https://orcid.org/0000-0001-5949-877X, A. Fuentes https://orcid.org/0000-0003-4848-4182, J.-L. Guillaumet, P. Møller Jørgensen https://orcid.org/0000-0002-8891-4493, Y. Malhi, I. P. de Andrade Miranda, J. F. Phillips, A. Prieto, A. Rudas, A. R. Ruschel, N. Silva https://orcid.org/0000-0003-4068-2432, P. von Hildebrand https://orcid.org/0000-0002-3635-4199, V. A. Vos https://orcid.org/0000-0002-0388-8530, E. L. Zent, S. Zent, B. B. L. Cintra https://orcid.org/0000-0002-5116-2654, M. T. Nascimento, A. A. Oliveira https://orcid.org/0000-0001-5526-8109, H. Ramirez-Angulo, J. F. Ramos, G. Rivas, J. Schöngart, R. Sierra, M. Tirado, G. van der Heijden, E. V. Torre, O. Wang https://orcid.org/0000-0002-3758-4332, K. R. Young, C. Baider https://orcid.org/0000-0002-2203-2076, A. Cano https://orcid.org/0000-0002-5090-7730, W. Farfan-Rios https://orcid.org/0000-0002-3196-0317, C. Ferreira, B. Hoffman https://orcid.org/0000-0003-4847-5163, C. Mendoza, I. Mesones, A. Torres-Lezama, M. N. U. Medina, T. R. van Andel https://orcid.org/0000-0002-4951-1894, D. Villarroel https://orcid.org/0000-0002-8794-4121, R. Zagt, M. N. Alexiades, H. Balslev, K. Garcia-Cabrera, T. Gonzales https://orcid.org/0000-0002-1885-2362, L. Hernandez, I. Huamantupa-Chuquimaco https://orcid.org/0000-0002-4153-5875, A. G. Manzatto https://orcid.org/0000-0002-6414-8966, W. Milliken, W. P. Cuenca, S. Pansini, D. Pauletto https://orcid.org/0000-0003-1855-6077, F. R. Arevalo, N. F. Costa Reis https://orcid.org/0000-0003-2833-7126, A. F. Sampaio, L. E. Urrego Giraldo, E. H. Valderrama Sandoval, L. Valenzuela Gamarra, C. I. A. Vela, and H. ter Steege https://orcid.org/0000-0002-8738-2659 [email protected]Authors Info & Affiliations
Science
3 Mar 2017
Vol 355, Issue 6328
pp. 925-931

Past human influences on Amazonian forest

The marks of prehistoric human societies on tropical forests can still be detected today. Levis et al. performed a basin-wide comparison of plant distributions, archaeological sites, and environmental data. Plants domesticated by pre-Columbian peoples are much more likely to be dominant in Amazonian forests than other species. Furthermore, forests close to archaeological sites often have a higher abundance and richness of domesticated species. Thus, modern-day Amazonian tree communities across the basin remain largely structured by historical human use.
Science, this issue p. 925

Abstract

The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Author Affiliations
Materials and Methods
Supplementary Text
Figs. S1 to S13
Tables S1 to S3
References (4379)
Databases S1 and S2
Custom R Scripts

Resources

File (aal0157_levis_database-s1.xlsx)
File (aal0157_levis_database-s2.xlsx)
File (levis-sm.pdf)

References and Notes

1
C. R. Clement, W. M. Denevan, M. J. Heckenberger, A. B. Junqueira, E. G. Neves, W. G. Teixeira, W. I. Woods, The domestication of Amazonia before European conquest. Proc. R. Soc. London Ser. B 282, 20150813 (2015).
2
M. B. Bush, C. H. McMichael, D. R. Piperno, M. R. Silman, J. Barlow, C. A. Peres, M. Power, M. W. Palace, Anthropogenic influence on Amazonian forests in pre-history: An ecological perspective. J. Biogeogr. 42, 2277–2288 (2015).
3
C. H. McMichael, D. R. Piperno, M. B. Bush, M. R. Silman, A. R. Zimmerman, M. F. Raczka, L. C. Lobato, Sparse pre-Columbian human habitation in western Amazonia. Science 336, 1429–1431 (2012).
4
P. W. Stahl, Interpreting interfluvial landscape transformations in the pre-Columbian Amazon. Holocene 25, 1598–1603 (2015).
5
D. R. Piperno, C. H. McMichael, M. B. Bush, Amazonia and the Anthropocene: What was the spatial extent and intensity of human landscape modification in the Amazon Basin at the end of prehistory? Holocene 25, 1588–1597 (2015).
6
C. R. Clement, 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ. Bot. 53, 188–202 (1999).
7
N. L. Boivin, M. A. Zeder, D. Q. Fuller, A. Crowther, G. Larson, J. M. Erlandson, T. Denham, M. D. Petraglia, Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proc. Natl. Acad. Sci. U.S.A. 113, 6388–6396 (2016).
8
D. Rindos, The Origins of Agriculture: An Evolutionary Perspective (Academic Press, 1984), pp. 154–158.
9
J. Kennedy, Agricultural systems in the tropical forest: A critique framed by tree crops of Papua New Guinea. Quat. Int. 249, 140–150 (2012).
10
C. Darwin, On the Origin of Species (John Murray, 1859).
11
D. Zohary, Unconscious selection and the evolution of domesticated plants. Econ. Bot. 58, 5–10 (2004).
12
M. D. Purugganan, D. Q. Fuller, The nature of selection during plant domestication. Nature 457, 843–848 (2009).
13
C. R. Clement, M. de Cristo-Araújo, G. Coppens D’Eeckenbrugge, A. Alves Pereira, D. Picanço-Rodrigues, Origin and domestication of native Amazonian crops. Diversity (Basel) 2, 72–106 (2010).
14
B. D. O’Fallon, L. Fehren-Schmitz, Native Americans experienced a strong population bottleneck coincident with European contact. Proc. Natl. Acad. Sci. U.S.A. 108, 20444–20448 (2011).
15
A. B. Junqueira, G. H. Shepard Jr., C. R. Clement, Secondary forests on anthropogenic soils in Brazilian Amazon conserve agrobiodiversity. Biodivers. Conserv. 19, 1933–1961 (2010).
16
C. L. Erickson, W. Balée, in Time and Complexity in Historical Ecology, W. Balee, C. L. Erickson, Eds. (Columbia Univ. Press, 2006), pp. 187–233.
17
H. ter Steege, N. C. A. Pitman, D. Sabatier, C. Baraloto, R. P. Salomão, J. E. Guevara, O. L. Phillips, C. V. Castilho, W. E. Magnusson, J.-F. Molino, A. Monteagudo, P. Núñez Vargas, J. C. Montero, T. R. Feldpausch, E. N. H. Coronado, T. J. Killeen, B. Mostacedo, R. Vasquez, R. L. Assis, J. Terborgh, F. Wittmann, A. Andrade, W. F. Laurance, S. G. W. Laurance, B. S. Marimon, B.-H. Marimon Jr., I. C. Guimarães Vieira, I. L. Amaral, R. Brienen, H. Castellanos, D. Cárdenas López, J. F. Duivenvoorden, H. F. Mogollón, F. D. A. Matos, N. Dávila, R. García-Villacorta, P. R. Stevenson Diaz, F. Costa, T. Emilio, C. Levis, J. Schietti, P. Souza, A. Alonso, F. Dallmeier, A. J. D. Montoya, M. T. Fernandez Piedade, A. Araujo-Murakami, L. Arroyo, R. Gribel, P. V. A. Fine, C. A. Peres, M. Toledo, G. A. Aymard C, T. R. Baker, C. Cerón, J. Engel, T. W. Henkel, P. Maas, P. Petronelli, J. Stropp, C. E. Zartman, D. Daly, D. Neill, M. Silveira, M. R. Paredes, J. Chave, Dde. A. Lima Filho, P. M. Jørgensen, A. Fuentes, J. Schöngart, F. Cornejo Valverde, A. Di Fiore, E. M. Jimenez, M. C. Peñuela Mora, J. F. Phillips, G. Rivas, T. R. van Andel, P. von Hildebrand, B. Hoffman, E. L. Zent, Y. Malhi, A. Prieto, A. Rudas, A. R. Ruschell, N. Silva, V. Vos, S. Zent, A. A. Oliveira, A. C. Schutz, T. Gonzales, M. Trindade Nascimento, H. Ramirez-Angulo, R. Sierra, M. Tirado, M. N. Umaña Medina, G. van der Heijden, C. I. A. Vela, E. Vilanova Torre, C. Vriesendorp, O. Wang, K. R. Young, C. Baider, H. Balslev, C. Ferreira, I. Mesones, A. Torres-Lezama, L. E. Urrego Giraldo, R. Zagt, M. N. Alexiades, L. Hernandez, I. Huamantupa-Chuquimaco, W. Milliken, W. Palacios Cuenca, D. Pauletto, E. Valderrama Sandoval, L. Valenzuela Gamarra, K. G. Dexter, K. Feeley, G. Lopez-Gonzalez, M. R. Silman, Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).
18
C. Hoorn, F. P. Wesselingh, H. ter Steege, M. A. Bermudez, A. Mora, J. Sevink, I. Sanmartín, A. Sanchez-Meseguer, C. L. Anderson, J. P. Figueiredo, C. Jaramillo, D. Riff, F. R. Negri, H. Hooghiemstra, J. Lundberg, T. Stadler, T. Särkinen, A. Antonelli, Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).
19
H. ter Steege, N. C. A. Pitman, O. L. Phillips, J. Chave, D. Sabatier, A. Duque, J.-F. Molino, M.-F. Prévost, R. Spichiger, H. Castellanos, P. von Hildebrand, R. Vásquez, Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).
20
C. A. Peres, T. Emilio, J. Schietti, S. J. Desmoulière, T. Levi, Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. U.S.A. 113, 892–897 (2016).
21
A. Esquivel-Muelbert, et al., Seasonal drought limits tree species across the Neotropics. Ecography 39, 1–12 (2016).
22
M. B. Bush, C. H. McMichael, Holocene variability of an Amazonian hyperdominant. J. Ecol. 104, 1370–1378 (2016).
23
J. Schietti, T. Emilio, C. D. Rennó, D. P. Drucker, F. R. C. Costa, A. Nogueira, F. B. Baccaro, F. Figueiredo, C. V. Castilho, V. Kinupp, J.-L. Guillaumet, A. R. M. Garcia, A. P. Lima, W. E. Magnusson, Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol. Divers. 7, 241–253 (2014).
24
Materials and methods as well as supplementary text are available as supplementary materials.
25
U. Lombardo, E. Canal-Beeby, H. Veit, Eco-archaeological regions in the Bolivian Amazon. Geogr. Helv. 66, 173–182 (2011).
26
C. H. McMichael, M. W. Palace, M. B. Bush, B. Braswell, S. Hagen, E. G. Neves, M. R. Silman, E. K. Tamanaha, C. Czarnecki, Predicting pre-Columbian anthropogenic soils in Amazonia. Proc. R. Soc. London Ser. B 281, 20132475 (2014).
27
C. Levis et al., “What do we know about the distribution of Amazonian Dark Earth along tributary rivers in Central Amazonia?” in Antes de OrellanaActas del 3er Encuentro Internacional de Arqueología Amazónica (IFEA, ed. 1, 2014), pp. 305–312.
28
D. R. Piperno, The origins of plant cultivation and domestication in the New World Tropics: Patterns, process, and new developments. Curr. Anthropol. 52, S453–S470 (2011).
29
A. C. Roosevelt, The Amazon and the Anthropocene: 13,000 years of human influence in a tropical rainforest. Anthropocene 4, 69–87 (2013).
30
M. Arroyo-Kalin, Slash-burn-and-churn: Landscape history and crop cultivation in pre-Columbian Amazonia. Quat. Int. 249, 4–18 (2012).
31
E. G. Neves, J. B. Petersen, R. N. Bartone, C. A. da Silva, in Amazonian Dark Earths, J. Lehmann, D.C. Kern, B. Glaser, W. I. Woods, Eds. (Springer, 2003), pp. 29–50.
32
R. S. Walker, L. A. Ribeiro, Bayesian phylogeography of the Arawak expansion in lowland South America. Proc. R. Soc. London Ser. B 278, 2562–2567 (2011).
33
E. J. M. dos Santos, A. L. S. da Silva, P. D. Ewerton, L. Y. Takeshita, M. H. T. Maia, Origins and demographic dynamics of Tupí expansion: A genetic tale. Bol. Mus. Para. Goeldi. Ciências Humanas 10, 217–228 (2015).
34
F. E. Mayle, M. J. Power, Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Philos. R. Trans. Soc. London B Biol. Sci. 363, 1829–1838 (2008).
35
M. Crevels, H. der Voort, in From Linguistic Areas to Areal Linguistics, P. Muysken, Ed. (John Benjamins Press, 2008), pp. 151–179.
36
C. A. Quesada, O. L. Phillips, M. Schwarz, C. I. Czimczik, T. R. Baker, S. Patiño, N. M. Fyllas, M. G. Hodnett, R. Herrera, S. Almeida, E. Alvarez Dávila, A. Arneth, L. Arroyo, K. J. Chao, N. Dezzeo, T. Erwin, A. di Fiore, N. Higuchi, E. Honorio Coronado, E. M. Jimenez, T. Killeen, A. T. Lezama, G. Lloyd, G. López-González, F. J. Luizão, Y. Malhi, A. Monteagudo, D. A. Neill, P. Núñez Vargas, R. Paiva, J. Peacock, M. C. Peñuela, A. Peña Cruz, N. Pitman, N. Priante Filho, A. Prieto, H. Ramírez, A. Rudas, R. Salomão, A. J. B. Santos, J. Schmerler, N. Silva, M. Silveira, R. Vásquez, I. Vieira, J. Terborgh, J. Lloyd, Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).
37
T. Emilio, C. A. Quesada, F. R. C. Costa, W. E. Magnusson, J. Schietti, T. R. Feldpausch, R. J. W. Brienen, T. R. Baker, J. Chave, E. Álvarez, A. Araújo, O. Bánki, C. V. Castilho, E. N. Honorio C, T. J. Killeen, Y. Malhi, E. M. Oblitas Mendoza, A. Monteagudo, D. Neill, G. Alexander Parada, A. Peña-Cruz, H. Ramirez-Angulo, M. Schwarz, M. Silveira, H. ter Steege, J. W. Terborgh, R. Thomas, A. Torres-Lezama, E. Vilanova, O. L. Phillips, Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecol. Divers. 7, 215–229 (2014).
38
C. H. McMichael, D. R. Piperno, E. G. Neves, M. B. Bush, F. O. Almeida, G. Mongeló, M. B. Eyjolfsdottir, Phytolith assemblages along a gradient of ancient human disturbance in Western Amazonia. Front. Ecol. Evol. 3, 141 (2015).
39
E. Thomas, M. van Zonneveld, J. Loo, T. Hodgkin, G. Galluzzi, J. van Etten, Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal. PLOS ONE 7, e47676 (2012).
40
D. Alden, The significance of cacao production in the Amazon region during the late colonial period: An essay in comparative economic history. Proc. Am. Philos. Soc. 120, 103–135 (1976).
41
J. Esquinas-Alcázar, Science and society: protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat. Rev. Genet. 6, 946–953 (2005).
42
E. Thomas, C. Alcázar-Caicedo, C. H. McMichael, R. Corvera, J. Loo, Uncovering spatial patterns in the natural and human history of Brazil nut (Bertholletia excelsa) across the Amazon Basin. J. Biogeogr. 42, 1367–1382 (2015).
43
B. Lehner, K. Verdin, A. Jarvis, New global hydrography derived from spaceborne elevation data. Eos. Trans. Am. Geophys. 89, 93–94 (2008).
44
BRASIL, “Manual de Construção da Base Hidrográfica Ortocodificada” (Brasília, ANA, SGI, 2007); www.ana.gov.br.
45
E. J. Fittkau, Esboço de uma divisão ecológica da região amazônica. Proc. Symp. Biol. Trop. Amaz., 363–372 (1971).
46
T. Hengl, J. M. de Jesus, R. A. MacMillan, N. H. Batjes, G. B. M. Heuvelink, E. Ribeiro, A. Samuel-Rosa, B. Kempen, J. G. B. Leenaars, M. G. Walsh, M. R. Gonzalez, SoilGrids1km—global soil information based on automated mapping. PLOS ONE 9, e105992 (2014).
47
C. Kummerow, W. Barnes, T. Kozu, J. Shiue, J. Simpson, The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 15, 809–817 (1998).
48
A. Nobre, L. A. Cuartas, M. Hodnett, C. D. Rennó, G. Rodrigues, A. Silveira, M. Waterloo, S. Saleska, Height above the nearest drainage—A hydrologically relevant new terrain model. J. Hydrol. (Amst.) 404, 13–29 (2011).
49
P. Perrut de Lima, “Caracterização da variabilidade genética, sistema de cruzamento e parâmetros de germinação e emergência de Euterpe precatoria Martius em populações do baixo rio Solimões,” thesis, Instituto National de Pesquisas da Amazônia, Manaus, AM, Brazil (2014).
50
M. Smith, C. Fausto, Socialidade e diversidade de pequis (Caryocar brasiliense, Caryocaraceae) entre os Kuikuro do alto rio Xingu (Brasil). Bol. Mus. Para. Emílio Goeldi. Cienc. Hum. 11, 87–113 (2016).
51
P. A. Moreira, J. Lins, G. Dequigiovanni, E. A. Veasey, C. R. Clement, The domestication of Annatto (Bixa orellana) from Bixa urucurana in Amazonia. Econ. Bot. 69, 127–135 (2015).
52
J. Sosnowska, A. Walanus, H. Balslev, Asháninka palm management and domestication in the Peruvian Amazon. Hum. Ecol. Interdiscip. J. 43, 451–466 (2015).
53
N. García, G. Galeano, L. Mesa, N. Castaño, H. Balslev, R. Bernal, Management of the palm Astrocaryum chambira Burret (Arecaceae) in northwest Amazon. Acta Bot. Bras. 29, 45–57 (2015).
54
P. Hanelt, R. Büttner, R. Mansfeld, Mansfeld's Encyclopedia of Agricultural and Horticultural Crops: Except Ornamentals (Berlin, Springer, 2001); http://mansfeld.ipk-gatersleben.de.
55
H. Dempewolf, L. H. Rieseberg, Q. C. Cronk, Crop domestication in the Compositae: A family-wide trait assessment. Genet. Resour. Crop Evol. 55, 1141–1157 (2008).
56
K. Hammer, K. Khoshbakht, A domestication assessment of the big five plant families. Genet. Resour. Crop Evol. 62, 665–689 (2015).
57
B. Boyle, N. Hopkins, Z. Lu, J. A. Raygoza Garay, D. Mozzherin, T. Rees, N. Matasci, M. L. Narro, W. H. Piel, S. J. McKay, S. Lowry, C. Freeland, R. K. Peet, B. J. Enquist, The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinformatics 14, 16 (2013).
58
R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2012); www.R-project.org.
59
C. Levis, P. F. de Souza, J. Schietti, T. Emilio, J. L. P. V. Pinto, C. R. Clement, F. R. C. Costa, Historical human footprint on modern tree species composition in the Purus-Madeira interfluve, central Amazonia. PLOS ONE 7, e48559 (2012).
60
J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, R Core Team, nlme: Linear and Nonlinear Mixed Effects Models (Comprehensive R Archive Network, 2016); http://cran.r-project.org/package=nlme.
61
D. Lüdecke, sjPlot: Data Visualization for Statistics in Social Science (The Comprehensive R Archive Network, 2016); https://cran.r-project.org/package=sjPlot.
62
P. Breheny, W. Burchett, Visualization of Regression Models Using visreg (Comprehensive R Archive Network, 2013); https://cran.r-project.org/web/packages/visreg/index.html.
63
P. Legendre, Studying beta diversity: Ecological variation partitioning by multiple regression and canonical analysis. J. Plant Ecol. 1, 3–8 (2008).
64
J. Oksanen et al., vegan’: Community ecology package (The Comprehensive R Archive Network, 2016); https://github.com/vegandevs/vegan.
65
G. H. Shepard, H. Ramirez, “Made in Brazil”: Human dispersal of the Brazil Nut (Bertholletia excelsa, Lecythidaceae) in Ancient Amazonia. Econ. Bot. 65, 44–65 (2011).
66
C. A. Peres, C. Baider, Seed dispersal, spatial distribution and population structure of Brazil nut trees (Bertholletia excelsa) in southeastern Amazonia. J. Trop. Ecol. 13, 595–616 (1997).
67
P. M. Paiva, M. C. Guedes, C. Funi, Brazil nut conservation through shifting cultivation. For. Ecol. Manage. 261, 508–514 (2011).
68
P. S. Sujii, K. Martins, L. H. de Oliveira Wadt, V. C. R. Azevedo, V. N. Solferini, Genetic structure of Bertholletia excelsa populations from the Amazon at different spatial scales. Conserv. Genet. 16, 955–964 (2015).
69
C. R. Clement, A center of crop genetic diversity in western Amazonia. Bioscience 39, 624–631 (1989).
70
I. K. Dawson, P. M. Hollingsworth, J. J. Doyle, S. Kresovich, J. C. Weber, C. Sotelo Montes, T. D. Pennington, R. T. Pennington, Origins and genetic conservation of tropical trees in agroforestry systems: A case study from the Peruvian Amazon. Conserv. Genet. 9, 361–372 (2008).
71
J. de Paiva, L. M. Barros, J. Cavalcanti, in Breeding Plantation Tree Crops: Tropical Species, S. M. Jain, P. M. Priyadarshan, Eds. (Springer, 2009), pp. 287–324.
72
W. Balée, Indigenous transformation of Amazonian forests: An example from Maranhão, Brazil. Homme 33, 231–254 (1993).
73
R. M. Alves, A. M. Sebbenn, A. S. Artero, C. R. Clement, A. Figueira, High levels of genetic divergence and inbreeding in populations of cupuassu (Theobroma grandiflorum). Tree Genet. Genomes 3, 289–298 (2007).
74
V. A. Vos, O. Vaca, A. Cruz, Sistemas Agroforestales en la Amazonía Boliviana (Centro de Investigación y Promoción del Campesinado, 2015).
75
N. Smith, Ed., Palms and People in the Amazon (Springer Series in Geobotany Studies, 2015).
76
G. Morcote-Ríos, R. Bernal, Remains of palms (Palmae) at archaeological sites in the New World: A review. Bot. Rev. 67, 309–350 (2001).
77
R. J. Seibert, The uses of Hevea for food in relation to its domestication. Ann. Mo. Bot. Gard. 35, 117–121 (1948).
78
A. C. Roosevelt, M. Lima da Costa, C. Lopes Machado, M. Michab, N. Mercier, H. Valladas, J. Feathers, W. Barnett, M. Imazio da Silveira, A. Henderson, J. Sliva, B. Chernoff, D. S. Reese, J. A. Holman, N. Toth, K. Schick, Paleoindian cave dwellers in the Amazon: The peopling of the Americas. Science 272, 373–384 (1996).
79
P. B. Cavalcante, Ed., Frutas Comestíveis na Amazônia (Museu Paraense Emílio Goeldi, 2010).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 355 | Issue 6328
3 March 2017

Submission history

Received: 28 September 2016
Accepted: 20 January 2017
Published in print: 3 March 2017

Permissions

Request permissions for this article.

Acknowledgments

This paper was made possible by the work of hundreds of different scientists and research institutions in the Amazon over the past 80 years. This work was supported by Asociación para la Conservación de la Cuenca Amazónica/Amazon Conservation Association (ACCA/ACA); Alberta Mennega Stichting; ALCOA Suriname; Banco de la República; Centre for Agricultural Research in Suriname (CELOS Suriname); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Plano Nacional de Pós-Graduação); CAPES Ciencia sem Fronteiras (PVE 177/2012); Conselho Nacional de Desenvovimento Científico e Tecnológico of Brazil (CNPq) Projects CNPq/FAPEAM–INCT CENBAM (573721/2008-4), PPBio Manaus (CNPq 558318/2009-6), CNPq–PPBio-AmOc (457544/2012-0), CNPq–PQ (304088/2011-0 and 306368/2013-7), Hidroveg Universal CNPq (473308/2009-6), Projeto Cenarios FINEP/CNPq (52.0103/2009-2), CNPq–SWE (201573/2014-8), CNPq–SWE (207400/2014-8), CNPq Universal (307807-2009-6), CNPq Universal (479599/2008-4), CNPq Universal 458210/2014-5, and CNPq Universal 303851/2015-5; Colciencias; Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) projects with Fundação de Amparo à Pesquisa do Estado de São Paulo (09/53369-6 and 465/2010) and PRONEX-FAPEAM (1600/2006); Gordon and Betty Moore Foundation; Guyana Forestry Commission; Investissement d’Avenir grant of the French L’Agence Nationale de la Recherche (ANR) (Centre d’Étude de la Biodiversité Amazonienne: ANR-10-LABX-0025); Instituto Venezolano de Investigaciones Científicas of Venezuela; Lincoln Park Zoo; Margaret Mee Amazon Trust; Margot Marsh Foundation; Marie Sklodowska–Curie/European Union’s Horizon 2020 (706011); Ministério da Ciência, Tecnologia e Inovação (MCTI)–Museu Paraense Emílio Goeldi–Proc. 407232/2013-3–PVE-MEC/MCTI/CAPES/CNPq; Miquel fonds; Netherlands Foundation for the Advancement of Tropical Research WOTRO: grants WB85-335 and W84-581; Nuffic; Primate Conservation; Stichting het van Eeden-fonds; Shell Prospecting and Development of Peru; Tropenbos International; UniAndes; Variety Woods Guyana; U.S. National Science Foundation Projects (DEB-0918591, DEB-1258112, and DEB-1556338) and Wenner-Gren Foundation; Venezuela National Council for Scientific Research and Technology (CONICIT); Wageningen University (Interdisciplinary Research and Education Fund Terra Preta program and FOREFRONT program); Aarhus University; Wake Forest University; and WWF-Guianas and grants to RAINFOR from the Natural Environment Research Council (UK) and the Gordon and Betty Moore Foundation European Union. O.L.P. is supported by a European Research Council Advanced Grant and a Royal Society Wolfson Research Merit Award. We thank J. Chave, A. Vincentini, C. Vriesendorp, U. Lombardo, and H. Prümers for providing data and B. Monteiro Flores for constructive comments on the manuscript. A.B.J. and E.K.T. thank all archaeologists who contributed with archaeological coordinates. All data described in the paper are present in the main text and the supplementary materials, and custom R scripts used in analyses are provided in the supplementary materials. Additional data related to this paper can be obtained by contacting authors. C.L., H.t.S., F.R.C.C, F.B., M.P.-C., C.R.C., and A.B.J conceived the study and designed the analyses. C.L. and H.t.S. carried out most analyses. C.L., H.t.S., F.R.C.C, F.B., M.P.-C., C.R.C., A.B.J, and N.C.A.P. wrote the manuscript. All of the other authors contributed data, discussed further analyses, and commented on various versions of the manuscript. This is contribution 708 of the technical series of the Biological Dynamics of Forest Fragments Project (BDFFP).

Authors

Affiliations

D. Cárdenas López
H. E. Mendonça Nascimento
F. D. de Almeida Matos
R. García-Villacorta
D. de Andrade Lima Filho
J. D. Cardenas Revilla
M. C. Peñuela Mora
L. C. de Matos Bonates
I. P. de Andrade Miranda
L. E. Urrego Giraldo
E. H. Valderrama Sandoval
L. Valenzuela Gamarra

Notes

*
Corresponding author. Email: [email protected] and [email protected] (C.L.); [email protected] (H.t.S.)
The full list of author affiliations is available in the supplementary materials.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Relationship between fruit phenotypes and domestication in hexaploid populations of biribá ( Annona mucosa ) in Brazilian Amazonia , PeerJ, 11, (e14659), (2023).https://doi.org/10.7717/peerj.14659
    Crossref
  2. Combining Digital Covariates and Machine Learning Models to Predict the Spatial Variation of Soil Cation Exchange Capacity, Land, 12, 4, (819), (2023).https://doi.org/10.3390/land12040819
    Crossref
  3. Local working collections as the foundation for an integrated conservation of Theobroma cacao L. in Latin America, Frontiers in Ecology and Evolution, 10, (2023).https://doi.org/10.3389/fevo.2022.1063266
    Crossref
  4. Prehistoric pathways to Anthropocene adaptation: Evidence from the Red River Delta, Vietnam, PLOS ONE, 18, 2, (e0280126), (2023).https://doi.org/10.1371/journal.pone.0280126
    Crossref
  5. Late-Holocene maize cultivation, fire, and forest change at Lake Ayauch i , Amazonian Ecuador , The Holocene, (095968362311518), (2023).https://doi.org/10.1177/09596836231151833
    Crossref
  6. More than 10,000 pre-Columbian earthworks are still hidden throughout Amazonia, Science, 382, 6666, (103-109), (2023)./doi/10.1126/science.ade2541
    Abstract
  7. Intentional creation of carbon-rich dark earth soils in the Amazon, Science Advances, 9, 38, (2023)./doi/10.1126/sciadv.adh8499
    Abstract
  8. Soil fertility in indigenous swidden fields and fallows in northern Amazonia, Brazil, Soil Use and Management, (2023).https://doi.org/10.1111/sum.12886
    Crossref
  9. The legacy of human use in Amazonian palm communities along environmental and accessibility gradients, Global Ecology and Biogeography, (2023).https://doi.org/10.1111/geb.13667
    Crossref
  10. Palm live aboveground biomass in the riparian zones of a forest in Central Amazonia, Biotropica, (2023).https://doi.org/10.1111/btp.13215
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media