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cial Science, Tóth Kálmán u. 4, H-1097, Budapest, Hungary

This pdf file includes:

Supplementary text: the mean field model, the configuration field model

and additional results for the lattice model

Figs S1 to S9

References

Appendix 1. The mean-field model

Let x1, x2, x3, x4, x5, x6, x7, x8 (
∑
xi = 1) denote the frequencies of the

strategies of La, Tr,Bo, Sm, Ne, Li, Cl, V o, respectively. x2 +x3 +x4 +

x5 = XC is the total concentration of cooperators, xk is the cooperation

threshold concentration and XC + x3 + x5 + x6 + x7 = XS denotes the

total concentration of signals. N is the neighborhood size, which is

assumed to be large in this limit. By using the notation introduced in

the main text and above the strategies have the following fitness in the

mean field limit:

WLa(XC) = W0 − c0 [1− bθ(XC)] (1)
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WTr(XC) = W0 − (c0 + c) [1− bθ(XC + 1/N)] (2)

WBo(XC) = W0 − (c0 + c+ s) [1− bθ(XC + 1/N)] (3)

WSm(XC , XS) = W0 − (c0 + r + c)(1− b)θ(XC + 1/N)−[
c0 + r + cθS|1−C(XC + 1/N,XS + 1/N)

]
[1− θ(XC)]

(4)

WNe(XC , XS) = W0 − (c0 + r + s+ c)(1− b)θ(XC + 1/N)−[
c0 + r + s+ cθS|1−C(XC + 1/N,XS + 2/N)

]
[1− θ(XC + 1/N)]

(5)

WLi(XC) = W0 − (c0 + s) (1− bθ(XC)) , (6)

WCl(XC) = W0 − (c0 + s+ r) (1− bθ(XC)) , (7)

WV o(XC) = W0 − (c0 + r) (1− bθ(XC)) , (8)

where

θ(X) =

1, if X ≥ xk

0, otherwise

,

θS|1−C(X, Y ) =

1, if X < xk and Y ≥ xk

0, otherwise

are step functions representing the effect of cooperation as functions

of the cooperative strategies’ concentrations and the signal concentra-

tions. Since N is the neighborhood size, the focal strategy is taken

into account with weight 1/N in the θ functions if it cooperates (eqs.

1-5) and/or as a signaler if it signals (eqs. 4,5). The Ne strategy is-

sues an extra signal and it detects signals as well, so this strategy adds

with weight 2/N to the signal concentration term when we compute
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WNe (eq. 5). Naturally, as the the neighborhood size N tends to infin-

ity, θ(XC + 1/N) → θ(XC); consequently, the La strategy attains the

highest fitness regardless of the frequency distribution of the strategies.

That is, La is always the winner of selection in this limit.

If N is finite - even if it is large - and b is sufficiently high compared to

the costs c, s, r, then besides La, the inevitable winner of selection, also

the cooperative strategies can be successful. Below we analyse this case.

From the definitions of the strategies and the specific assumptions of

the mean-field model (i.e., everyone detects the same amount of quorum

signal and feels the same effect of cooperation across the habitat) it

follows that

WLa > WLi,WCl,WV o

and similarly

WTr > WBo, WSm > WNe,

regardless of the actual strategy distribution. Consequently, we need to

consider the relations only among the La, Tr and Sm strategies, since

all the others are certainly ousted by one of these three. Because all

of these strategies are honest, θS|1−C(X, Y ) = 0, thus the fitnesses of

these strategies in the mean-field model are simplified to:

WLa(X) = W0 − c0 [1− bθ(X)]

WTr(X) = W0 − (c0 + c) [1− bθ(X + 1/N)]

WSm(X) = W0 − [c0 + r + c] (1− b)θ(X + 1/N)− (c0 + r)[1− θ(X + 1/N)],

(9)

where X is the joint concentration of the cooperative Tr and Sm

strategies. For sake of simplicity the total concentration of strategies is

rescaled to be between zero and 1.
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Using standard assumptions of replicator dynamics (Hofbauer and

Sigmund 1998) the system is represented by

ẋ = (WLa(X)− W̄ )x, (10)

ẏ = (WTr(X)− W̄ )y,

ż = (WSm(X)− W̄ )z.

where, x, y, z are the frequencies of the feasible La, Tr and Sm strategy

triplet, and W̄ = WLax + WTry + WSmz is the actual average fitness

in the population. We studied the qualitative behavior of the above

dynamical system by using the the fitness functions of (9).

Convergence and stability of the x = 1 state

Let us assume that the system is in the x = 1, y = z = 0

steady state. We are interested in the stability of this state. As-

sume that the invader Tr and Sm strategies emerge with frequen-

cies y and z either together or separately. If their total frequency

X = y + z < xk − 1/N , then θ(X) = θ(X + 1/N) = 0 and conse-

quently, WLa(X) > WTr(X), WSm(x), so the invaders couldn’t spread.

Moreover, it follows from y + z < xk − 1/N that x > 1 − xk + 1/N ,

consequently ẋ > 0 in(10) after invasion, therefore limt→∞ x = 1. Thus

we have shown that the x = 1, y = z = 0 state is an asymptotically

stable fixed point of the system if the total initial frequency of invaders

satisfies y + z < xk − 1/N .

Coexistence of La and Tr.

Now let us assume that X = y+z ≥ xk−1/N . Then θ(X+1/N) = 1

and thus WTr(X) > WSm(X), at any parameter setting of the model.

That is, the Sm strategy is always beaten by the Tr strategy. Thus we

have to consider only the La/Tr subsystem at this initial condition,

for which z = 0 and y = 1 − x is the frequency of the Tr strategy.

As we have shown above if y < xk − 1/N then ẏ < 0 in(10), so Tr

is selected out. However, if xk − 1/N < y ≤ xk then θ(y) = 0 while

θ(y+1/N) = 1. In this case, the dynamics depend on the parameters of
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the model. If b/c > 1/(c0+c), then WLa(y) < WTr(y) and, consequently,

ẏ > 0, that is, y increases, so after a while y will be greater than

xk and then θ(y) = θ(y + 1/N) = 1. Thus, WLa(y) > WTr(y), and,

consequently, ẏ < 0, that is, y decreases again. We note here that

since WLa(xk) < WTr(xk), xk is not a fixed point of the dynamics

by definition, but WLa(xk + ε) > WTr(xk + ε) for any small ε > 0.).

This strange behavior of the system (no fixed point for the replicator

dynamics but coexistence anyway) is the consequence that the θ step

function used in the model is nonderivable at the point of the jump.

Changing the step function to a continuous sigmoidal benefit function

obliterates this singularity by transforming the average benefit of the

strategies to a continuous, strictly monotonously increasing function

of the strategy distribution. Then the stationary state analyzed above

becomes the well known fixed point where WTr(y∗) = WLa(y∗), with

y∗ ∈ (xk − 1/N, xk). Notice that any fluctuation decreasing y below

xk − 1/N drives Tr extinct and fixates La (Fig. S1).

Figure S1 The qualitative dynamics of the La/Tr system. The xk − 1/N and xk points separate

three different dynamical behaviours.

As we have shown above the fitness of the Sm strategy is always lower

than that of the Tr if y ≥ xk − 1/N ; therefore, Sm can never invade a

Tr/La coexistence.

Coexistence of La and Sm.

Considering the coexistence of Sm with La the situation is the same

as before. The (z = xk, x = 1− xk) is a resting point around which the

system fluctuates if b > (r+ c)/(c0 + r+ c). However, since WTr(X) >
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WSm(X) if X = y + z ≥ xk − 1/N , Tr always invades the La/Sm

coalition and excludes Sm.

Naturally, if b/c < 1/(c0+c), then La always has a fitness higher than

the alternative strategies Tr and Sm, thus La is the only fixed point

of the replicator dynamics.

Appendix 2 The configuration field model

We assume that the interacting group around a focal individual is as-

sembled by drawing N − 1 individuals at random from the population.

The probability of having at least k cooperators (or units of signal) in

the group of N individuals thus assembled (including the focal individ-

ual) is the weighted average of having k, k+1,...N cooperators (or signal

doses) within the group. Let us denote with Pl(~x) the average proba-

bility of having at least l cooperators among the N − 1 group members

if the frequency distribution of the 8 strategies is (x1, x2, ..x8) = ~x in

the population. Let Qm|l(~x) be the average probability that the num-

ber of signal units is at least m while the number of cooperators is

smaller than l in the group of N − 1 neighbours if the global strategy

frequencies are given by ~x. Denote the threshold number of cooperators

with k (kεZ+, k ≤ N). Using notations and arguments similar to those

of the mean-field model we can determine the average fitnesses of the

strategies as

WLa(~x) = W0 − c0[1− bPk(~x)] (11)

WTr(~x) = W0 − (c0 + c)[1− bPk−1(~x)] (12)

WBo(~x) = W0 − (c0 + s+ c)[1− bPk−1(~x)] (13)

WSm(~x) = W0 − (c0 + r + c)(1− b)Pk−1(~x)−

(c0 + r + c)Qk−1|k−1(~x)−

(c0 + r)[1−Qk−1|k−1(~x)][1− Pk−1(~x)]

(14)
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WNe(~x) = W0 − (c0 + r+s+ c)(1− b)Pk−1(~x)−

(c0 + r + s+ c)Qk−2|k−1(~x)]−

(c0 + r + s)[1−Qk−2|k−1(~x)][1− Pk−1(~x)]

(15)

WLi(~x) = W0 − (c0 + s) [1− bPk(~x)] , (16)

WCl(~x) = W0 − (c0 + s+ r) [1− bPk(~x)] , (17)

WV o(~x) = W0 − (c0 + r) [1− bPk(~x)] , (18)

Like in the the mean field model, it can be shown that WLa >

WLi,WCl,WV o and WTr > WBo, WSm > WNe, regardless of the strat-

egy distribution. Thus again only the La, Tr or Sm strategies can be

present in any equilibrium state. Assuming random selection of indi-

viduals into the interacting groups the fitnesses of these three strategies

are

WLa(x, y, z) = W0 − c0[1− bPk(x, y, z)]

WTr(x, y, z) = W0 − (c0 + c)[1− bPk−1(~x)]

WSm(x, y, z) = W0 − (c0 + r + c)(1− b)Pk−1(x, y, z)− (c0 + r)[1− Pk−1(x, y, z)],

with the probabilities computed as

Pk(x, y, z) =
∑
i+j≥k

fi,j(N − 1)xN−1−i−jyizj,

Pk−1(x, y, z) =
∑

i+j≥k−1

fi,j(N − 1)xN−1−i−jyizj.

fi,j(N − 1) is the corresponding trinomial coefficient and x, y, z are

the frequencies of the La, Tr and Sm strategies, respectively. Since

there are no non-cooperating signaling strategies in this subsystem,

Qk−1|k(x, y, z) = 0 at any x, y, z frequency. We consider the same type

of replicator equations as above (10) and study this dynamical system

qualitatively.
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La is a locally asymptotically stable state of the replicator

dynamics.

We consider the (x = 1, y = z = 0) state and show that the rare

invader Tr or Sm strategies have always lower fitness than the resident

La strategy. Let us assume first that the invaders follow the Tr strategy

with frequency y << 1. The success of invasion is determined by the

sign of fitness difference of the resident and the invader. After some el-

ementary calculations the fitness difference of La and Tr is determined

by

WLa−WTr = c[1−bPk−1(1−y, y, 0)]+c0b[Pk(1−y, y, 0)−Pk−1(1−y, y, 0)].

Since limy→0 Pk−1(1 − y, y, 0) = limy→0 Pk(1 − y, y, 0) = 0, the fitness

difference tends to c > 0 if y → 0. Thus Sign{WLa−WTr} > 0, that is,

the fitness of the invader Tr is always smaller than that of the resident

La if the invader is rare. Strategy Tr can not spread if y << 1.

Similarly, La is resistant against the invasion of rare Sm (z << 1).

The fitness difference of La and Sm is

(c0 + r + c)(1− b)Pk−1(1− z, 0, z)+(c0 + r)[1− Pk−1(1− z, 0, z)]−

c0[1− bPk(1− z, 0, z)]
(19)

which, for the same reason as above, tends to r > 0 as z → 0. Strategy

Sm can not spread if z << 1.

Neither Tr nor Sm are stable against the invasion of La.

Consider again the fitness differences of La and Tr or La and Sm,

but at the y ≈ 1 and 1− y ≈ 0 or at z ≈ 1 and 1− z ≈ 0 initial values,

respectively. Since Pl(0, 1, 0) = 1, for l ∈ Z+; l ≤ N ,

lim
y→1

WLa(1− y, y, 0)−WTr(1− y, y, 0)} = c [1− b] ,

lim
z→1

WLa(1− z, 0, z)−WSm(1− z, 0, z) = (r + c) [1− b] .
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Since these limits are always positive, La always has higher fitness than

Tr or Sm if La is rare, that is, La successfully invades both cooperative

strategies.

The stable coexistence of La and Tr

We are look for frequencies y where

WLa(1− y, y, 0) = WTr(1− y, y, 0), (20)

i.e., where La and tr are at equilibrium. Substituting the fitness values

and rearranging (20) yields the condition of fitness equilibrium as

c

b
= cPk−1(1− y, y, 0) + c0Fk(y) = H1(y), (21)

where Fk(y) = fk−1(N−1)(1−y)N−kyk−1. It is easy to see that H1(0) =

0 and H1(1) = c. Since 0 < b < 1, H1(0), H1(1) < c/b.

Now we show that H1(y) has only one maximum (Max{H1(y)} =

H1(y
∗)) in y ∈ [0, 1]. We apply that Fk(y) has a single maximum

(see e.g. Archetti and Scheuring 2010) in y ∈ [0, 1]. Further, it can

be shown that Pk−1(1 − y, y, 0) is a monotonously increasing function

with P ′k−1(1, 0, 0) = P ′k−1(0, 1, 0) = 0 and with an inflexion point at

a yk ∈ (0, 1). To prove this let us observe that Pk−1(1 − y, y, 0) =∑N−1
i=0 θ((i + 1)/(N − 1))fi(N − 1)yi(1 − y)N−1−i where θ(x) is a step

function defined as θ(x)=0 if x < k and θ(x)=1 if x ≥ k. Actually,

Pk−1(1−y, y, 0) is the Bernstein polynomial BN−1(θ; y) of θ(y) (Phillips

2003). We introduce the function

σα(y) =
1

1 + e−α(y−(k−1)/(N−1))
, y ∈ [0, 1], (22)

and define

Tα(y) =
σα(y)− σα(0)

σα(1)− σα(0)
, y ∈ [0, 1]. (23)

For every ε1 > 0 there is an αc that for every α > αc, ‖θ(y)−Tα(y)‖ < ε1

for every y ∈ [0, 1]. That is, Tα(y) is an arbitrarily good continuous

approximation of the step function θ(y). Since the Bernstein operator



Page 10 of 20

is monotonous (Phillips 2003),

‖BN−1(θ; y)−BN−1(Tα; y)‖ < ε2 (24)

remains valid for every ε2 > 0 if α is sufficiently large. BN−1(Tα; y) is an

arbitrary good approximation of Pk−1(y, 1−y, 0). Tα(y) is a continuous

and differentiable function, thus if it is monotonous then its Bernstein

polynomial is a monotonous function as well (Phillips 2003). Conse-

quently, BN−1(Tα; y) is monotonously increasing, and because of (24)

Pk−1(y, 1−y, 0) is a monotonously increasing function as well. Further,

the Bernstien operator does not change the sign of the derivatives of

a function. That is, since T ′α(y) > 0, it means that B′N−1(Tα; y) > 0,

and consequently P ′k−1(1 − y, y, 0) > 0. Similarly, since the sign of

T ′′α(y) changes from positive to negative at the inflexion point, so do

B′′N−1(Tα; y) and P ′′k−1(1− y, y, 0) (Phillips 2003).

H1(y) has maximum (or minimum) points where H ′1(y) = 0, that is,

where

cP ′k−1(1− y, y, 0) = −c0F ′k(y). (25)

It is easy to show that Fk(y) is a single-humped function with a maxi-

mum point ŷ ∈ (0, 1). Similarly, it can be shown that P ′k−1(1− y, y, 0)

is also a single-humped function with one maximum value in the [0, 1]

range. Since F ′k(y) > 0 in y ∈ [0, ŷ), and Fk(0) = Pk−1(1, 0, 0) = 0, eq.

(25) has exactly one solution if

lim
y→1

cP ′k−1(1− y, y, 0) < lim
y→1
−c0F ′k(y). (26)

Figure (S2) visualizes these two functions by a numerical example.

After derivation of the functions and rearranging the above relation we

get

lim
y→1

c
∑
i≥k

fi(N − 1)
yi−1

yk−2
(1− y)N−2−i

(1− y)N−k−1
(i− (N − 1)y) <

lim
y→1
−(c0 + c)fk−1(N − 1) ((k − 1)− (N − 1)y) .
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Figure S2 The shape of cP ′k−1(1− y, y, 0) (red) and −c0F ′k(y) (dashed, blue) functions if H1(y)

has one maximum. The intersection of these functions determines the maximum point of H1(y).

c = 0.5, c0 = 1, k = 3, N = 9, in this example.

The left hand side of the relation tends to −∞ and the right hand side

tends to (N − k − 1)(c+ c0) > 0, so relation (26) is satisfied.

Thus we have proven that H1(y) has only one maximum at y∗ in

y ∈ [0 1]. If H1(y
∗) > c/b then there are two solutions yu < y∗ < ys

of eq. (21), where yu is the unstable and ys is the stable equilibrium of

the La-Tr coexistence. (The stability can be studied by computing the

signs of the fitness differences above and below the equilibrium yu and

ys frequencies). Contrary, if H1(y
∗) < c/b then WLa > WTr for every

y ∈ [0, 1], therefore the coexistence of these strategies is not possible

(Archetti and Scheuring 2010). In summary, there is at most one stable

polymorphic equilibrium (ys) of La and Tr strategies, and an unstable

one (yu) that separates the trajectories. If y < yu initially then the

system evolves to the pure La strategy (y = 0), while if y > yu then it

converges to the state of coexistence (ys).

It follows from (21) that there is a critical (c/b)∗ below whichH1(y
∗) <

(c/b)∗ for every c0, that is, when La always outcompetes Tr, and thus

the La strategy remains the only stable state of the dynamics. Therefore

besides the fact that La strategy that is always locally stable , the
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unstable and stable fixed points (yu, ys) emerge in pair by a blue sky

bifurcation (Fig S3)
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Figure S3 The bifurcation diagram of the La− Tr subsystem. The stable (solid line) and

unstable (dashed line) fixed points appear in pair below a critical c/b value. Other parameters

k = 3, N = 9, c0 = 3, w0 = 1/10 in this example.

The stable coexistence of La and Sm.

We perform essentially the same analysis as before; however, in this

case equation (21) is modified to

r

b
= (r + c− c/b)Pk−1(1− z, 0, z) + c0Fk(z) = H2(z) (27)

as the condition for the coexistence of La and Sm. As before, it can

be shown easily that H2(0) = 0 and H2(1) = r + c − c/b, which are

both smaller than r/b if 0 < b < 1. Since H2(z) is the sum of the same

polynomials as H1(y), we can use the same method as before to show

that the H ′2(z) = 0 equation has at most one solution in z ∈ (0, 1), and

consequently, H2(z) = r
b

has two solutions: zu and zs if Max{H2(z)} >
r
b

in z ∈ (0, 1). There is no solution if Max{H2(z)} < r
b
. (In the

marginal case when Max{H2(z)} = r
b
, zu = zs.) The only difference is

that limz→0H
′
2(z) can be negative because r + c− c/b can be negative

as well.

The following cases are possible:
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• If limz→0H
′
2(z) > 0 then the situation is the same as before, so

there is only one z∗ ∈ (0, 1) where H ′2(z
∗) = 0. This is the point

where H2(z) is maximal (Fig. S4). If H2(z
∗) > r/b, then there is an

unstable and a stable fixed point of the replicator dynamics of La

and Sm in z ∈ (0, 1). Contrary, if H2(z
∗) ≤ r/b, then WLa > WSm

for every z ∈ (0, 1), and thus La beats Sm.
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Figure S4 A case when H′2(z) is zero at a single zmax ∈ [0, 1]. up:

(r + c− c/b)P ′K−1(1− z, 0, z) (red), (-c0F ′k(z) dashed, blue). bottom: The fitness difference of

Sm and La in function of z. The dynamics has an unstable (zu) and a stable (zs) fixed point.

N = 9, k = 3, c0 = 1, c = 0.7, b = 0.85, r = 0.01

• If limz→0H
′
2(z) < 0 then, since P ′k−1(1 − z, 0, z) ≥ 0 and F ′k(z)

changes the sign exactly once, there are two possibilities: either

H ′2(z) < 0 for every z ∈ [0, 1] or H ′2(z) changes sign two times
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in z ∈ [0, 1] (Fig. S5). In the first case WLa > WSm for every
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Figure S5 A case when H′2(z) becomes zero two times; i.e., there is a local minimum and

maximum point of this function.up: (r + c− c/b)P ′k−1(1− z, 0, z) (red) -c0F ′k(z) (dashed,

blue). bottom: The fitness differences in function of z. Again there are zu and zs unstable and

stable fixed points of the dynamics. N = 9, k = 3, c0 = 1, c = 0.88, b = 0.85, r = 0.01

z ∈ [0, 1], so La wins the selection (Fig. S6). In the second case

H2(z) has a minimum value at z∗∗ and a maximum value at z∗.

Again if H2(z
∗) > r/b, then there is an unstable (zu) and a stable

(zs) fixed point of the dynamics of the La and Sm subsystem,

otherwise La wins the competition. Thus the zu zs fixed points

emerge by blue sky bifurcation as the r/b parameter changes (Fig.

S7).
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Figure S6 A case when H′2(z) < 0 and thus La wins over Sm. up:

(r + c− c/b)P ′k−1(1− z, 0, z) (red) −c0F ′k(z) (dashed, blue). bottom: The fitness differences

in function of z. N = 9, k = 3, c0 = 1, c = 0.7, b = 0.65, r = 0.01

Invasion of two coexistent strategies by the third one

Let us assume that there is a stable polymorph steady state of La

and Tr. The rare Sm can invade this state if its fitness is higher than

the fitness of La or Tr in the equilibrium. Let ys denote the frequency

of Tr when Tr and La are in stable equilibrium; thus the fitness of the

rare invading Sm is

W0−(c0+r+c)[1−b]Pk−1(1−ys, ys, 0)]−(c0+r)[1−PK−1(1−ys, ys, 0)].
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Figure S7 The bifurcation diagram of the La− Sm subsystem. The stable (solid line) and

unstable (dashed line) fixed points appear in pair below a critical r/b value. Other parameters

k = 3, N = 9, c0 = 3, w0 = 1/10, c = 4/5, k = 3, N = 9, in this example.

Since Pl(1 − y, y, 0) = Pl(1 − z, 0, z) if z = y, for every l = 1, 2, N − 1

the above fitness function can be rewritten as W0 − [c0 + r + c][1 −
b]Pk−1(1− ys, 0, ys)− [c0 + r][1−Pk−1(1− ys, 0, ys)] as the fitness of the

rare invading Sm at the stable polymorph state of Tr and La. Sm can

invade this polymorph Tr, La state only if there is a zs frequency at

which La and Sm are in stable coexistence, otherwise the fitness of Sm

is always smaller than the fitness of La. Let zu and zs be the frequency of

Sm where La and Sm are in unstable and stable equilibrium. Assume

that ys ∈ (zu, zs). Since WSm(z) > WLa(z) for every z ∈ (zu, zs),

WSm(ys) > WLa(ys) = WTr(ys), that is, Sm can spread when rare in

the polymorph state of La and Tr. Since ys < zs, WTr(zs) < WLa(zs) =

WSm(zs) follows; that is, Tr can’t spread at the Sm-La equilibrium.

Using similar arguments it can be shown that if zs ∈ (yu, ys) the

stable polymorph state of Tr and La resists the invasion of the rare Sm

strategy, and the polymorph state of Sm and La is unstable against

the invasion of Tr.

The remaining possibilities are that either zs < yu or ys < zu. Then

the system is bistable: neither Tr nor Sm can invade when they are rare.

The existence of these two stable fixed points requires the existence of at
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least one inner (where the three strategies coexist) unstable fixed point.

However, we will see later that the coexistence of the three strategies is

not possible. Therefore, this bistability is also not possible. Combining

these invasion rules and bifurcation diagrams of La−Tr and La−Sm
subsystems, the La strategy can form a stable state either with Sm or

with Tr, depending on the model parameters (Fig. S8).
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Figure S8 The bifurcation diagrams of La− Sm and La− Tr subsystems as a function of 1/b.

The invasion stable subsystems are determined by the relative values of stable fixed points in the

subsystems. Other parameters k = 3, N = 9, c0 = 3, w0 = 1/10, c = 4/5, r = 1/6, k = 3,

N = 9, in this example.

Coexistence of Sm and Tr is not possible.

The condition for coexistence is that

c− r
c− rb

= Pk−1(0, y, 1− y). (28)

Since Pk(0, y, 1 − y) = 1 for every y ∈ [0, 1] and the left-hand side is

smaller than 1, the above equation can not be satisfied, except in the

trivial case of r = 0. Otherwise, Sm has a smaller fitness than Tr so it

is competed out.

Coexistence of the three strategies is not possible.

For the coexistence of La, Tr and Sm it is necessary that there is a

(x̂ > 0, ŷ > 0, ẑ > 0) where WTr = WSm = WLa. WTr and WSm are
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equal if

(c− r)/(c− rb) = Pk−1(x̂, ŷ, ẑ) (29)

where ẑ = 1− x̂− ŷ.

It is clear again, that (29) can be valid only if r = 0 and if x̂ = 0,

which excludes the possibility of coexistence of the all three strategies.
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Appendix 3. Lattice model

B

Figure S9 Genotype distributions in steady-state populations of the 8-strategy lattice model and

the CF model across the feasible ranges of cooperation threshold (k), QS signal cost (s), QS

signal response cost (r) and agent mobility due to diffusion (D), with fixed parameters

N = 9, c0 = 1.0 in all cases. The functional mutation rate for all strategies is ρ = 10−4. A:

c = 0.2, b = 0.8; B: c = 0.3, b = 0.8; C: c = 0.3, b = 0.5.
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