Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

A comprehensive evaluation of motion sensor step-counting error

Publication: Applied Physiology, Nutrition, and Metabolism
12 January 2011

Abstract

The purpose of this study was to conduct a comprehensive evaluation of the effect that walking speed, gender, leg length, motion sensor tilt angle, brand, and placement have on motion sensor step-counting error. Fifty-nine participants performed treadmill walking trials at 6 speeds while wearing 5 motion sensor brands placed on the anterior (Digiwalker, DW; Walk4Life, WFL; New Lifestyles, NL; Omron, OM), midaxillary (DW; WFL; NL; ActiGraph, AG), and posterior (DW, WFL, NL) aspects of the waistline. The anterior-placed NL and midaxillary-placed AG were the most accurate motion sensors. Motion sensor step-count error tended to decrease at faster walking speeds, with lesser tilt angles, and with an anterior waistline placement. Gender and leg length had no effect on motion sensor step-count error. We conclude that the NL and AG yielded the most accurate step counts at a range of walking speeds in individuals with different physical characteristics.

Résumé

Cette étude se propose de faire l’évaluation complète des effets de la vitesse de marche, du sexe, de la longueur des jambes, de l’angle d’inclinaison du détecteur de mouvement ainsi que de la marque et sa position sur l’erreur de mesure du nombre de pas enregistré par le détecteur de mouvement. Cinquante-neuf sujets participent à des séances de marche sur un tapis roulant à 6 vitesses tout en portant des détecteurs de mouvements de cinq marques et placés à la partie antérieure (Digiwalker, DW; Walk4Life, WFL; New Lifestyles, NL; Omron, OM), dans le plan axillaire (DW; WFL; NL; ActiGraph, AG) et à la partie postérieure de la taille (DW, WFL, NL). Le détecteur NL placé à la partie antérieure et le détecteur AG installé dans le plan axillaire donnent les mesures les plus précises. L’erreur de mesure du nombre de pas compté par le détecteur tend à diminuer avec l’augmentation de la vitesse de marche, la diminution de l’angle d’inclinaison et le positionnement à la partie antérieure de la taille. Le sexe et la longueur des jambes n’influent pas sur l’erreur de mesure du nombre de pas enregistré par le détecteur de mouvement. En conclusion, les détecteurs de marque NL et AG donnent les mesures les plus précises du nombre de pas, et ce, à diverses vitesses de marche et chez des sujets aux caractéristiques physiques différentes.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abel, M.G. 2008. The effect of pedometer tilt angle on pedometer accuracy. Int. J. Fit. 4(1): 51–57.
Abel, M.G., Hannon, J.C., Sell, K., Lillie, T., Conlin, G., and Anderson, D. 2008. Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults. Appl. Physiol. Nutr. Metab. 33(6): 1155–1164.
Abel, M.G., Hannon, J.C., Eisenman, P.A., Ransdell, L.B., Pett, M., and Williams, D.P. 2009. Waist circumference, pedometer placement, and step-counting accuracy in youth. Res. Q. Exerc. Sport, 80(3): 434–444.
ACSM. 2006. Health-related physical fitness testing and interpretation. In ACSM’s guidelines for exercise testing and prescription. Edited by M. Whaley. American College of Sports Medicine, Lippincott Williams & Wilkins, Philadelphia, Pa. p. 60.
Bassey, E.J., Dallosso, H.M., Fentem, P.H., Irving, J.M., and Patrick, J.M. 1987. Validation of a simple mechanical accelerometer (pedometer) for the estimation of walking activity. Eur. J. Appl. Physiol. 56(3): 323–330.
CDC. 2005. Anthropometric reference data for children and adults. U.S. population, 1999–2002. In Advance data from vital and health statistics. Edited by M.A. McDowell, C.D. Fryar, R. Hirsch, and C.L. Ogden. U.S. Department of Health and Human Services, Center for Disease Control and Prevention, National Center for Health Statistics. Number 361. pp. 12–30.
Crouter, S.E., Schneider, P.L., Karabulut, M., and Bassett, D.R., Jr. 2003. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med. Sci. Sports Exerc. 35(8): 1455–1460.
Crouter, S.E., Schneider, P.L., and Bassett, D.R., Jr. 2005. Spring-levered versus piezo-electric pedometer accuracy in overweight and obese adults. Med. Sci. Sports Exerc. 37(10): 1673–1679.
Graser, S.V., Pangrazi, R.P., and Vincent, W.J. 2007. Effects of placement, attachment, and weight classification on pedometer accuracy. J. Phys. Act. Health, 4(4): 359–369.
Hatano, Y. 1997. Prevalence and use of pedometer. Research J. Walking, 1: 45–54.
Jago, R., Watson, K., Baranowski, T., Zakeri, I., Yoo, S., Baranowski, J., and Conry, K. 2006. Pedometer reliability, validity and daily activity targets among 10- to 15-year-old boys. J. Sports Sci. 24(3): 241–251.
Le Masurier, G.C., Lee, S.M., and Tudor-Locke, C. 2004. Motion sensor accuracy under controlled and free-living conditions. Med. Sci. Sports Exerc. 36(5): 905–910.
Swartz, A.M., Bassett, D.R., Jr., Moore, J.B., Thompson, D.L., and Strath, S.J. 2003. Effects of body mass index on the accuracy of an electronic pedometer. Int. J. Sports Med. 24(8): 588–592.
Zatsiorky, V.M., Werner, S.L., and Kaimin, M.A. 1994. Basic kinematics of walking. Step length and step frequency. A review. J. Sports Med. Phys. Fitness, 34(2): 109–134.

Information & Authors

Information

Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 36Number 1January 2011
Pages: 166 - 170

History

Received: 23 April 2010
Accepted: 8 October 2010
Version of record online: 12 January 2011

Permissions

Request permissions for this article.

Key Words

  1. accelerometer
  2. measurement
  3. motion sensor
  4. pedometer
  5. walking

Mots-clés

  1. accéléromètre
  2. mesure
  3. détection de mouvement
  4. podomètre
  5. marche

Authors

Affiliations

Department of Kinesiology and Health Promotion, University of Kentucky, 217 Seaton Building, Lexington, KY 40506-0219, USA.
Nicole Peritore
Department of Kinesiology and Health Promotion, University of Kentucky, 217 Seaton Building, Lexington, KY 40506-0219, USA.
Robert Shapiro
Department of Kinesiology and Health Promotion, University of Kentucky, 217 Seaton Building, Lexington, KY 40506-0219, USA.
David R. Mullineaux
Department of Kinesiology and Health Promotion, University of Kentucky, 217 Seaton Building, Lexington, KY 40506-0219, USA.
Kelly Rodriguez
Department of Kinesiology and Health Promotion, University of Kentucky, 217 Seaton Building, Lexington, KY 40506-0219, USA.
Present address: Military Performance Laboratory, Center for the Intrepid–Brooke Army Medical Center, Fort Sam Houston, TX, USA.
James C. Hannon
Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT 84105, USA.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Initiation of New Glucose-Lowering Therapies May Act to Reduce Physical Activity Levels: Pooled Analysis From Three Randomized Trials
2. Stepping up with GGIR: Validity of step cadence derived from wrist-worn research-grade accelerometers using the verisense step count algorithm
3. Energy Expenditure Estimation of Tabata by Combining Acceleration and Heart Rate
4. Promoting physical activity in a multi-ethnic population at high risk of diabetes: the 48-month PROPELS randomised controlled trial
5. Toward Harmonized Treadmill-Based Validation of Step-Counting Wearable Technologies: A Scoping Review
6. Impact of Depression and Anxiety on Change to Physical Activity Following a Pragmatic Diabetes Prevention Program Within Primary Care: Pooled Analysis From Two Randomized Controlled Trials
7. Dominant vs. Non-Dominant Wrist Placement of Activity Monitors: Impact on Steps per Day
8. Validity of wearable activity monitors for tracking steps and estimating energy expenditure during a graded maximal treadmill test
9. Dietary Intake and Physical Activity Assessment: Current Tools, Techniques, and Technologies for Use in Adult Populations
10. Effects of Body Mass Index on Bone Loading Due to Physical Activity
11. GT3X+ accelerometer placement affects the reliability of step-counts measured during running and pedal-revolution counts measured during bicycling
12. Activity Monitors Step Count Accuracy in Community-Dwelling Older Adults
13. Validity of the Actical activity monitor for assessing steps and energy expenditure during walking
14. GT3X+ Accelerometer, Yamax Pedometer, and SC-StepMX Pedometer Step Count Accuracy in Community-Dwelling Older Adults
15. Assessment of Physical Activity and Energy Expenditure: An Overview of Objective Measures

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media