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Position weight matrix (PWM) is not only one of the most widely used bioinformatic methods, but also a key component in more
advanced computational algorithms (e.g., Gibbs sampler) for characterizing and discovering motifs in nucleotide or amino acid
sequences. However, few generally applicable statistical tests are available for evaluating the signi�cance of site patterns, PWM,
and PWM scores (PWMS) of putative motifs. Statistical signi�cance tests of the PWM output, that is, site-speci�c frequencies,
PWM itself, and PWMS, are in disparate sources and have never been collected in a single paper, with the consequence that many
implementations of PWM do not include any signi�cance test. Here I review PWM-based methods used in motif characterization
and prediction (including a detailed illustration of the Gibbs sampler for de novo motif discovery), present statistical and
probabilistic rationales behind statistical signi�cance tests relevant to PWM, and illustrate their application with real data. e
multiple comparison problem associated with the test of site-speci�c frequencies is best handled by false discovery rate methods.
e test of PWM, due to the use of pseudocounts, is best done by resampling methods. e test of individual PWMS for each
sequence segment should be based on the extreme value distribution.

1. Introduction

Most genetic switches are in the form of sequence motifs that
interact with proteins [1]. Position weight matrix or PWM
[2–6] is one of the key bioinformatic tools used extensively in
characterizing and predictingmotifs in nucleotide and amino
acid sequences. e popularity of PWM has been further
increased since its implementation as a component in PSI-
BLAST [7], which is frequently used to generate PWM for
motif characterization and prediction [8–11].

PWM has been applied extensively in studies of cis-
regulatory elements in the genome such as translation initia-
tion sites [12], transcription initiation sites [13], transcription
factor binding sites [14–22], yeast intron splicing sites [23],
whole-genome identi�cation of transcription units [24],
and whole-genome screening of transcription regulatory
elements [25, 26]. e PWM scores (PWMSs) for individual
motifs have been found to be useful as a measure of the
motif strength, for example, PWMS for individual splice sites
has been used as a proxy of splicing efficiency in eukaryotes
[27, 28].

PWM has been used not only as an independent tool
for summarizing and predicting sequence motifs, but also
as a key component in more advanced bioinformatic algo-
rithms such as the variable-order Bayesian network [29],
Gibbs sampler [30–32, pp. 113–147] and related algorithms
based on the Monte Carlo method [33], MEME [34], and
support vector machines [35–39]. While PWM has been
used mainly to characterize and predict motifs in nucleotide
sequences, recent studies have demonstrated its potential in
characterizing and predicting functional protein motifs [40–
42], signal peptides [43], and protein-protein-binding sites
[44]. In particular, the method was successful in predicting
tyrosine sulfation sites [45–48].

A PWM-based sequence analysis involves three types of
output: the site-speci�c frequency distribution, the PWM
itself, and PWMS for each input sequence (and optionally
PWMS resulting from scanning new sequences with the
trained PWM). Here I brie�y review the PWMmethod in the
context of motif discovery, followed by a detailed illustration
of the Gibbs sampler of which PWM is a key component, and
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then propose statistical signi�cance tests appropriate for each
of the three types of PWM output.

2. PWM in the Context of Motif Discovery
Methods

e simplest input for a PWM-based method consists of
an aligned set of sequences and the speci�cation of the
background (prior) frequencies. e main output of PWM,
other than the PWM itself, consists of the site-speci�c
information content and the motif information content [6]
as well as PWMS for individual motifs, together with the
associated statistical tests.

We �rst illustrate the PWMmethod by applying it to the
246 donor splice sites of yeast introns each represented by 5
nucleotide sites on the exon side and 12nucleotide sites on the
intron side (Table 1). e four columns on the le of Table
1 headed by A, C, G, and U are the site-speci�c counts of
nucleotides A, C, G, and U. When all site-speci�c counts are
greater than zero, each element in the PWM, designated by
PWM𝑖𝑖𝑖𝑖 (where 𝑖𝑖 𝑖 𝑖𝑖 𝑖𝑖 𝑖, and 4 corresponding to A, C, G,
and U, respectively, and 𝑖𝑖 is site index), is computed as

PWM𝑖𝑖𝑖𝑖 𝑖 log𝑖 
𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖
 𝑖 (1)

where 𝑝𝑝𝑖𝑖 is the background frequency of nucleotide 𝑖𝑖, and 𝑝𝑝𝑖𝑖𝑖𝑖
is the site-speci�c nucleotide frequency for nucleotide 𝑖𝑖 at site
𝑖𝑖 (e.g., 𝑝𝑝A𝑖 𝑖 8𝑖/𝑖46 in Table 1). Plotting these site-speci�c
PWM𝑖𝑖𝑖𝑖 values graphically over sites yields the sequence logo
[49, 50]. e PWM score (PWMS) for a particular motif is
computed as

PWMS 𝑖
𝐿𝐿

𝑖𝑖𝑖𝑖

PWM𝑖𝑖𝑖𝑖𝑖𝑖 (2)

where 𝐿𝐿 is the length of the motif which equal 17 for our
example shown in Table 1.

Note that PWMS is the logarithm of a likelihood ratio,
or log-odds. Given a 17mer, say, 𝑆𝑆 = ACGGTACCACG-
TAAGTT,we have two hypotheses.e�rst hypothesis is that
the 17mer belongs to a motif, constrained to have speci�c
nucleotides at speci�c sites (𝜃𝜃Yes), and the second is that each
site in the 17mer is sampled from a nucleotide pool with no
site-speci�c constraints (𝜃𝜃No). e likelihoods of observing
sequence 𝑆𝑆, given the two different hypotheses, are speci�ed,
respectively, as

𝐿𝐿Yes 𝑖 𝑝𝑝 𝑆𝑆 𝑆 𝜃𝜃Yes 𝑖 𝑝𝑝A𝑖𝑝𝑝C𝑖𝑝𝑝G𝑖𝑝𝑝G4 ⋯𝑝𝑝T𝑖7𝑖

𝐿𝐿No 𝑖 𝑝𝑝 𝑆𝑆 𝑆 𝜃𝜃No 𝑖 𝑝𝑝
5
A𝑝𝑝

4
C𝑝𝑝

4
G𝑝𝑝

4
T.

(3)

is leads to the following that is identical to (2):

PWMS 𝑖 log𝑖 
𝐿𝐿Yes
𝐿𝐿No

 𝑖 log𝑖
𝑝𝑝A𝑖
𝑝𝑝A

+ log𝑖
𝑝𝑝C𝑖
𝑝𝑝C

+⋯

+ log𝑖
𝑝𝑝T𝑖7
𝑝𝑝T

𝑖 PWMA𝑖 + PWMC𝑖

+ ⋯ + PWMT𝑖7.

(4)

e back-
ground frequencies (𝑝𝑝𝑖𝑖) have been speci�ed in three different
ways in previous publications. e �rst is simply to assume
equal background frequencies [51, 52] in characterizing
splice sites with PWM. is is equivalent to the classic
sequence logo method for graphic display of site patterns
[49] which does not take background frequencies into con-
sideration. In sequences with biased nucleotide frequencies,
equal 𝑝𝑝𝑖𝑖 values will generate a false site pattern when there
is in fact no pattern. For example, the AT-biased background
genome in the yeast implies that PWMA𝑖𝑖 and PWMT𝑖𝑖 will be
greater than PWMC𝑖𝑖 and PWMG𝑖𝑖 on average even when the
sequences contain no site-speci�c information. Similarly, the
classic sequence logo will display A and T more prominently
than C and G even when the sequences of interest contains
no site-speci�c information.

e second approach to specify 𝑝𝑝𝑖𝑖 is to compute it from
the input sequences. As such, in our example, 𝑝𝑝𝑖𝑖 can be
computed from the four columns headed by A, C, G, and
U on the le side of Table 1. is approach also has a
problem. Suppose a certain motif is a poly-U sequence, and
all input sequences are “UUUUUUUU”. is will generate
background nucleotide frequencies with 𝑝𝑝U 𝑖 𝑖 and 𝑝𝑝A 𝑖
𝑝𝑝C 𝑖 𝑝𝑝G 𝑖 0. Note that the site-speci�c frequencies, given
the input sequences all being “UUUUUUUU”, are 𝑝𝑝U𝑖𝑖 𝑖 𝑖
and 𝑝𝑝A𝑖𝑖 𝑖 𝑝𝑝C𝑖𝑖 𝑖 𝑝𝑝G𝑖𝑖 𝑖 0. So the resulting PWM would then
suggest that the motif is not informative, which is contrary
to our intuition, that is, a stretch of UUUUUUUU conserved
across a set of aligned sequences is likely to be biologically
informative.

e third approach is to specify 𝑝𝑝𝑖𝑖 according to the
speci�c problem one wishes to solve. For example, when
characterizing splice sites of introns in a particular species,
one may use the nucleotide frequencies of all transcripts
(including all exons and introns) annotated in the genome
as the background frequencies [28]. Similarly, a study of site
patterns of branchpoint sequences in introns could have 𝑝𝑝𝑖𝑖
values computed from all intron sequences. I suggest that
only this third approach be used to avoid the impression that
PWMcould have an in�nite number of null hypotheses (each
associated with a different speci�cation of 𝑝𝑝𝑖𝑖).

e computer program DAMBE [53, 54] offers different
choices for specifying 𝑝𝑝𝑖𝑖 in computing PWM. Similarly,
the new sequence logo method allows more appropriate
speci�cation of background (prior) frequencies [50]. e
resulting PWM for the 246 donor splice sites of yeast introns,
with background frequencies computed from all introns, is
shown in Table 1.

When some 𝑝𝑝𝑖𝑖𝑖𝑖 values are
zero, as is the case in our example, (1) is inapplicable because
the logarithm of zero is unde�ned. ree approaches can be
taken to avoid this problem [55, 56]. e �rst is to compute
𝑝𝑝𝑖𝑖𝑖𝑖 by

𝑝𝑝𝑖𝑖𝑖𝑖 𝑖
𝑓𝑓𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑖𝑖
𝑁𝑁 + 𝑖

(5)
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T 1: Site-speci�c frequencies and position weight matrix (PWM) for 246 donor splice sites (each represented by 5 sites on the exon
side and 12 sites on the intron side). e 𝜒𝜒2 test is performed for each site against the expected background frequencies with A = 0.3279,
C = 0.1915, G = 0.2043, and U = 0.2763. Sites that have been experimentally veri�ed to be important are in bold.

Site A C G U 𝜒𝜒2 P A C G U
1 83 30 49 84 10.10 0.0177 0.0525 −0.6332 −0.0260 0.3143
2 103 44 46 53 10.04 0.0182 0.3613 −0.0878 −0.1162 −0.3434
3 121 36 38 51 30.01 0.0000 0.5920 −0.3739 −0.3886 −0.3981
4 122 38 33 53 32.16 0.0000 0.6038 −0.2969 −0.5893 −0.3434
5 81 40 81 44 28.33 0.0000 0.0177 −0.2238 0.6933 −0.6081
6 0 1 245 0 948.34 0.0000 −6.6464 −5.0056 2.2841 −6.6469
7 0 9 0 237 582.23 0.0000 −6.6464 −2.3190 −6.6480 1.8032
8 239 1 2 4 462.46 0.0000 1.5693 −5.0056 −4.3320 −3.8633
9 16 24 1 205 387.81 0.0000 −2.2655 −0.9496 −5.0680 1.5946
10 2 0 243 1 928.96 0.0000 −4.8476 −6.6483 2.2723 −5.3416
11 9 7 2 228 521.06 0.0000 −3.0427 −2.6612 −4.3320 1.7475
12 87 15 34 110 53.66 0.0000 0.1198 −1.6111 −0.5468 0.7006
13 84 49 30 83 11.71 0.0085 0.0696 0.0659 −0.7246 0.2971
14 111 39 33 63 19.09 0.0003 0.4684 −0.2599 −0.5893 −0.0969
15 106 38 31 71 17.24 0.0006 0.4024 −0.2969 −0.6781 0.0738
16 92 30 40 84 13.69 0.0034 0.1997 −0.6332 −0.3155 0.3143
17 80 38 36 92 14.32 0.0025 −0.0001 −0.2969 −0.4655 0.4445

which approaches 𝑓𝑓𝑖𝑖𝑖𝑖/𝑁𝑁 with increasing𝑁𝑁 (where 𝑓𝑓𝑖𝑖𝑖𝑖 is the
site-speci�c count for nucleotide or amino acid 𝑖𝑖 at site 𝑖𝑖).
PWM𝑖𝑖𝑖𝑖 values can then be computed by (1). is approach is
poor when𝑁𝑁 is small.

e second approach is to use explicit pseudocounts by
de�ning

𝑓𝑓𝑖𝑖𝑖pseudo = 𝛼𝛼𝑓𝑓𝑖𝑖,

𝑓𝑓pseudo =
𝑀𝑀

𝑖𝑖=1
𝑓𝑓𝑖𝑖𝑖pseudo,

(6)

where 𝑓𝑓𝑖𝑖 is the frequency of nucleotide 𝑖𝑖, and 𝑝𝑝𝑖𝑖𝑖𝑖 is then

𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑓𝑓𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑖𝑖𝑖pseudo
𝑁𝑁 + 𝑓𝑓pseudo

. (7)

It is important to keep 𝛼𝛼 small (e.g., 0.0001) because the
expected PWM𝑖𝑖𝑖𝑖 from random sequences is 0 in (1). A large
𝛼𝛼 will substantially increase PWM𝑖𝑖𝑖𝑖 above 0 with random
sequences.

e two approaches above share one main disadvantage.
Suppose we have 10 aligned motifs of 10 amino acids each.
Position 3 is occupied by amino acids K (lysine) and R
(arginine) and position 5 by amino acid E (glutamic acid).
e two approaches above will specify pseudocounts for
positions 3 and 5 in the same way, which is unreasonable
for the following reason. If position 3 requires a positively
charged amino acid, and position 5 a negatively charged
amino acid, then amino acids K, R, and H (histidine) should
be more likely found than other amino acids at position 3,
and amino acid D (aspartic acid) should bemore likely found
than other amino acids at position 5. By using other aligned

protein sequence data of roughly the same divergence we
can derive frequency distributions for positions that require
a positively charge or negatively charged amino acid and use
these frequency distributions to produce pseudocounts [56].
In our case, the pseudocounts at positions 3 and 5 will be
assigned quite differently because the frequency distribution
for a position requiring a positively charged amino acid is
typically quite different from that for a position requiring a
negatively charged amino acid.

PWM and PWMS can potentially be used to measure
codon usage bias. For example, given the frequency of
nucleotide 𝑖𝑖 as 𝑝𝑝𝑖𝑖, the background frequency of a codon,
say AGC, can be speci�ed as 𝑝𝑝A𝑝𝑝G𝑝𝑝C, and compared to
the observed frequency of AGC. Such an approach would
eliminate one major weakness of commonly used codon bias
indices such as CAI [57, 58] and Nc [59, 60].

3. Gibbs Sampler with PWM as
a Key Component

While PWM is a technique for characterizing a set of
identi�ed motifs, Gibbs sampler [61], named aer the math-
ematical physicist, J. W. Gibbs, is for de novomotif discovery.
For example, given a set of yeast intron sequences, what and
where is the branchpoint site? All information we have is
that each intron should have one branchpoint site, but what
sequence signature does it have and where is it located along
the intron sequence? is scenario (Figure 1) is where the
Gibbs sampler will shine.

A similar scenario involves the discovery of regula-
tory equence motifs given a set of coexpressed genes (i.e.,
genes that increase or decrease their transcription level syn-
chronously over time) by microarray [62, 63], SAGE [64, 65],
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GTAAGTACAGAAAGCCACAGAGTACCATCTAGGAAATTAACATTATACTAACTTTCTACATCGTTGATACTTATGCGTATACATTCATATA

GTATGTTCCGATTTAGTTTACTTTATAGATCGTTGTTTTTCTTTCTTTTTTTTTTTTCCTATGGTTACATGTAAAGGGAAGTTAACTAATA

GTATGTTCATGTCTCATTCTCCTTTTCGGCTCCGTTTAGGTGATAAACGTACTATATTGTGAAAGATTATTTACTAACGACACATTGAAG

GCATGTGTGCTGCCCAAGTTGAGAAGAGATACTAACAAAATGACCGCGGCTCTCAAAAATAATTGACGAGCTTACGGTGATACGCTTACCG

GTATGTTTGACGAGAATTGCTAGTGTGCGGGAAACTTTGCTACCTTTTTTGGTGCGATGCAACAGGTTACTAATATGTAATACTTCAG

GTATGTTAAAATTTTTATTTTCCACAATGCAATTTGGTTAAATTGATCATAAAGTAAAGTTCCAAGATTTCATTTTGCTGGGTACAACAGA

GTAAGTATCCAGATTTTACTTCATATATTTGCCTTTTTCTGTGCTCCGACTTACTAACATTGTATTCTCCCCTTCTTCATTTTAG

GTATGCATAGGCAATAACTTCGGCCTCATACTCAAAGAACACGTTTACTAACATAACTTATTTACATAG

GTATGTAGTAGGGAAATATATCAAAGGAACAAAATGAAAGCTATGTGATTCCGTAATTTACGAAGGCAAATTACTAACATTGAAATACGGG

GTATGTTACTATTTGGAGTTTCATGAGGCTTTTCCCGCCGTAGATCGAACCCAATCTTACTAACAGAGAAAGGGCTTTTTCCCGACCATCA

GTATGTTTAACAGTGATACTAAATTTTGAACCTTTCACAAGATTTATCTTTAAATATGTTATGAATGTCATCCTTTGGAGAGAAATAGATA

GTATGTTCATAATGATTTACATCGGAATTCCCTTTGATACAAGAAAACTAACGGGTATCGTACATCAATTTTTGAAAAAAGTCAAGTACTA

GTATGTATATTTTTGACTTTTTGAGTCTCAACTACCGAAGAGAAATAAACTACTAACGTACTTTAATATTTATAG

SNC1
EFB1
TFC3
YBL111C
SCS22
RPL23A

YBL059W
SEC17
ERD2
RPL19B
LSM2
POP8
RPS11B GTATGAAAGAATTATAACCTGAATGAGGTAATCAATGAAATATTCAGTACGGAAAGGAAAATTGCTCGAGGTAATATTATAATTTTAATGG

AGTACAGAAAGCCACAGAGTACCATCTAGGAAATTAACATTATACTAACTTTCTACATCGTTGATACTTATGCGTA

AGACAGAGTCTAAAGATTGCATTACAAGAAAAAAGTTCTCATTACTAACAAGCAAAATGTTTTGTTTCTCCTTTTA

CTCCGTTTAGGTGATAAACGTACTATATTGTGAAAGATTATTTACTAACGACACATTGAAG

GCATGTGTGCTGCCCAAGTTGAGAAGAGATACTAACAAAATGACCGCGGCTCTCAAAAATAAT

TGCGGGAAACTTTGCTACCTTTTTTGGTGCGATGCAACAGGTTACTAATATGTAATACTTCAG

TTTCAAGATTAACCACATCTGCTAACTTTCTCCCTATGCTTTTACTAACAAAATTATTCTCACTCCCCGATATTGA

CAGATTTTACTTCATATATTTGCCTTTTTCTGTGCTCCGACTTACTAACATTGTATTCTCCCCTTCTTCATTTTAG

TGCATAGGCAATAACTTCGGCCTCATACTCAAAGAACACGTTTACTAACATAACTTATTTACATAG

CAAAATGAAAGCTATGTGATTCCGTAATTTACGAAGGCAAATTACTAACATTGAAATACGGGAATTGATATTTCCC

GAGTTTCATGAGGCTTTTCCCGCCGTAGATCGAACCCAATCTTACTAACAGAGAAAGGGCTTTTTCCCGACCATCA

TCTTTACTGTTAGGTTTCAGGATTTTAAAAATGAAGCAACTTTACTAACATCAATATGCAAATAAATCTGCAAAAA

AAACTAACGGGTATCGTACATCAATTTTTGAAAAAAGTCAAGTACTAACGTTTGTTTACCCCTGTTTATTGTGTTT

ATTTTTGACTTTTTGAGTCTCAACTACCGAAGAGAAATAAACTACTAACGTACTTTAATATTTATAG

AGTAGGAATGAAGTTCATGATTATATTTTAGATCAACCGGTTTACTAACATGCTATTTTTCATACAG

TATGTAATGATATATTATGAAGTAAGTTCCCCAAAGCCAATTAACTAACCGAATTTTAATCTGCACTCATCATTAG

GAGTAATGAAACAGAATAATACATGTATAAATCGATCGGGAATACTAACACTACTTTTCTTTATCTAAGCAG

GTTTCAAATGCGTGCTTTTTTTTTAAAACTTATGCTCTTATTTACTAACAAAATCAACATGCTATTGAACTAG

TTTCGACGCGAATAGACTTTTTCCTTCTTACAGAACGATAATAACTAACATGACTTTAACAG

Gibbs sampler
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F 1:What Gibbs sampler does.e intron sequences in the top panel represent the input information to the Gibbs sampler.e bottom
panel represents part of the output showing the identi�ed motif (i.e., TAATAAC, in red) shared among the sequences. �utput from �AM�E
[53, 54]. e input intron sequence �le (�eastAllIntron.fas) is in �AM�E installation directory in FASTA format.

or deep-sequencing [66–68] experiments. If the coexpressed
genes are also coregulated, then they may share a certain yet-
unknown transcription factor binding site controlled by the
same or similar transcription factor. Given that the binding
site is oen located upstream of the translation initiation
codon, onemay extracted the upstream sequences from these
coexpressed genes and let the Gibbs sampler to �nd the
candidate regulatory motifs. A recent study has shown that
shared motifs may also present in the 5′ UTR of mRNA to
modulate translation initiation [69].

Gibbs sampler is one of the Monte Carlo algorithms
that rely on repeated random sampling to estimate desired
parameters. Monte Carlo method was envisioned by the
famous mathematician Stanislaw Ulam, following the suc-
cessful assembly of the �rst electronic computer ENIAC
in 1945, and further developed by physicists and mathe-
maticians working on nuclear weapon projects in the Los
Alamos National Laboratory in mid-1940s [70]. e term
“Monte Carlo method” was coined by Nicholas Metropolis to
designate this class of computational algorithms. While the
general application of the method unsurprisingly followed
the operation of ENIAC in 1945, the physicist Enrico Fermi
is known to have independently developed and applied the
method nearly 15 years earlier with mechanical calculators
[70].

Gibbs sampler simpli�es computation in parameter esti-
mationwhen analytical solution is very difficult or impossible
to obtain. In biology, it has been used in the identi�cation
of functional motifs in proteins [31, 71, 72], biological
image processing [73], pairwise sequence alignment [74], and
multiple sequence alignment [75, 76]. However, the most
frequent biological application of Gibbs sampler remains in
the identi�cation of regulatory sequences of genes [30, 77–
84].

ere are two slightly different applications of Gibbs
sampler in motif prediction. e �rst assumes that each
sequence contains exactly one motif [30] and the associated
algorithm is called a site sampler. e second is more �exible
and allows each sequence to have none ormultiplemotifs [71]
and the algorithm is termed amotif sampler.Wewill illustrate
the site sampler and then brie�y discuss the motif sampler.

I numerically illustrate the Gibbs sampler algorithm for
motif discovery.emain output of the Gibbs sampler is typ-
ically of three parts.e �rst is the shared motif in an aligned
format (bottom panel in Figure 1). e second is a PWM
summarizing the discoveredmotif, and the third contains the
associated signi�cance tests which will be reviewed in a later
section. e derived PWM, just like any other PWM, can be
used to scan sequences not in the input data to discover the
presence of the motif present elsewhere.
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3.1. Computational Details of the Gibbs Sampler. We will use
the erythroid nucleotide sequences [85], listed in Figure 2, to
illustrate the Gibbs sampler algorithm. Our main objective
is to infer the location and sequence of the unknown motif
shared among the sequences so that we can align the motifs
as shown in the bottom panel of Figure 1. e aligned motifs
will allow us to generate a PWM that characterizes the motif
by site-speci�c nucleotide frequency distributions.e PWM
can be used to scan for the presence of the identi�ed motif in
other sequences.

We need �rst to count all nucleotides, with their num-
bers designated as 𝐹𝐹A, 𝐹𝐹C, 𝐹𝐹G, and 𝐹𝐹T, respectively, in
the sequences. e total number of nucleotides of all 29
sequences (Figure 2) is 1209, with𝐹𝐹A,𝐹𝐹C,𝐹𝐹G, and𝐹𝐹T equal to
325, 316, 267, and 301, respectively. ese values are needed
for specifying pseudocounts (which we encountered in the
previous section on PWM).

Let 𝑁𝑁 be the number of input sequences designated as
𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑖𝑖,… , 𝑆𝑆𝑁𝑁. Let 𝐿𝐿𝑖𝑖 be the length of 𝑆𝑆𝑖𝑖, and 𝑚𝑚 be the
length of the motif, which typically is of length 4–8. For our
illustration, we will use 𝑚𝑚 𝑚 𝑚. One typically would run
the Gibbs sampler several times with different 𝑚𝑚 values if
one knows little about the length of the motif. e PWM is
of dimension 4 × 𝑚𝑚 for nucleotide sequences, and 20 × 𝑚𝑚
for amino acid sequences. Let A𝑖𝑖 be the unknown starting
position of the motif in 𝑆𝑆𝑖𝑖.

e main algorithm of Gibbs sampler is of two steps.
e �rst is random initialization in which a random set of
A𝑖𝑖 values is assigned and site-speci�c nucleotide frequencies
are calculated. e second step is predictive updating until
a local solution of A𝑖𝑖 values is obtained, together with
site-speci�c nucleotide frequencies that can be made into
a PWM. is is repeated multiple times and previously
stored locally optimal solutions are replaced by better ones.
Convergence is typically declared when two or more local
solutions are identical.ese steps are numerically illustrated
in the following sections.

3.2. Initialization. e initiation step randomly assigns a
value to A𝑖𝑖, with the constraint that 1 ≤ A𝑖𝑖 ≤ 𝐿𝐿𝑖𝑖 − 𝑚𝑚 𝑚 1.
So our �rst set of 𝑁𝑁 “motifs” is essentially a random set of
sequences of lengthmand is not expected to have any pattern.
For readers who are curious, the �rst set of 29 random A𝑖𝑖
values happen to be: 29, 31, 23, 28, 10, 2, 18, 32, 20, 15, 11,
25, 24, 30, 18, 15, 10, 23, 14, 15, 26, 36, 8, 6, 30, 19, 27, 26,
and 14. e site-speci�c distribution of nucleotides from the
29 random motifs is shown in Table 2. ere is hardly any
site-speci�c pattern, as one would have expected.

e second column in Table 2 will be referred to as the C0
vector with C0A, C0C, C0G, and C0T equal to 278, 279, 230,
and 248, respectively. e 4 × 𝑚matrix, occupying the last six
columns in Table 2, will be referred to as the C matrix. e C
matrix is tabulated from the 29 random motifs whereas the
C0 vector is tabulated from nucleotides outside of the motifs.
us, the sum of the �rst, second, third, and fourth rows of
Table 2 should be equal to 𝐹𝐹A, 𝐹𝐹C, 𝐹𝐹G, and 𝐹𝐹T, respectively.
Also note that each of the six columns in the C matrix should
add up to 29.

3.3. Predictive Update. e predictive update consists of
obtaining𝑁𝑁 (= 29 in our example) random numbers ranging
from 1 to𝑁𝑁, and use these numbers as an index to choose the
sequences sequentially to update the site-speci�c distribution
of nucleotides (the C matrix) and the associated frequencies
(the C0 vector). For example, the𝑁𝑁 random numbers in my
�rst run of the Gibbs sampler happen to be 11, 18, 26, 22, 2,
28, 12, 9, 7, 3, 17, 16, 1, 4, 21, 15, 14, 24, 19, 27, 29, 6, 10, 20, 13,
8, 23, 25, and 5, respectively. is means that 𝑆𝑆11 will be used
�rst, and 𝑆𝑆5 last, for the �rst cycle of the predictive update.
It is important to use a random series of numbers instead of
choosing sequences according to the input order. e latter
increases the likelihood of trapping Gibbs sampler within a
local optimum.

Our �rst randomly chosen sequence happens to be 𝑆𝑆11
and its randomly chosen motif starts at site 11, that is, A11 𝑚
11, with themotif being AGTGTG.is initial motif will now
be taken out of the C matrix and put into the C0 vector. is
motif has one A, zero C, three G’s, and two U’s. By adding
these values to the C0 vector in Table 2, we obtain the C0
vector in Table 3. We also need to take this motif out of the
C matrix by subtracting the �rst A from the �rst value in
the �rst column in the C matrix in Table 2 (i.e., new CA,1
= old CA,1 − 1), the second G from the third value in the
second column in the C matrix in Table 2 (i.e., new CG,2 =
old CG,2 − 1), and so on. is converts the C matrix in Table
2 to the C matrix in Table 3.

At this point the C matrix is made of the 28 randomly
chosen motifs, one from each sequence (excluding 𝑆𝑆11). You
will notice that each of the six columns in the C matrix has a
sum of 28. e reason for taking the initial motif in 𝑆𝑆11 out
of the C matrix and put it back into the C0 vector is that we
are going to �nd a better motif in 𝑆𝑆11, and put it into the C
matrix so that the C matrix will again be based on 29 motifs.
How are we going to get a better motif? Recall that a position
weight matrix (PWM) can be used to scan a sequence in a
sliding window of length m to get position weight matrix
scores (PWMSs) for each window. We will make a PWM out
of the C0 vector and the C matrix and use the resulting PWM
to scan 𝑆𝑆11 and get a new motif that has the highest PWMS.

One may wonder why such a practice would get us
anywhere given the fact that the C matrix is initially made of
randommotifs.e resulting PWMwould exhibit no pattern,
and the resulting PWMSs will therefore be uninformative.
e key concept here is that when one takes a random walk
over a terrain with multiple peaks, one sooner or later will
encounter a peak, and climbing the peak will at least bring
us to a local maximum. Aer reaching the top of one peak
and recording the height, we will land ourselves at another
randomly chosen location and start climbing local peaks
again. is process continues until we reach the highest peak
or aer a �xed number of computer iterationswithout �nding
any higher peak.

Typically, the PWM is generated by using the C0 vector
as background frequencies (𝑝𝑝𝑖𝑖) and the C matrix as site-
speci�c frequencies 𝑝𝑝𝑖𝑖𝑖𝑖. However, although most algorithmic
illustration of the Gibbs sampler computes 𝑝𝑝𝑖𝑖 this way (e.g.,
[32, pp. 133–147]), 𝑝𝑝𝑖𝑖 computed from the C0 vector has
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S1 TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT

S2 CCCACGCAGCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG

S3 TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG

S4 AAAACACTTGAGGGAGCAGATAACTGGGCCAACCATGACTC

S5 GGGTGAATGGTACTGCTGATTACAACCTCTGGTGCTGC

S6 AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA

S7 GCCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA

S8 CATTATCACAAACTTAGTGTCCATCCATCACTGCTGACCCT

S9 TCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGC

S10 GCCCCTTCCCCACACTATCTCAATGCAAATATCTGTCTGAAACGGTTCC

S11 CATGCCCTCAAGTGTGCAGATTGGTCACAGCATTTCAAGG

S12 GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGTAAG

S13 TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA

S14 CCTTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC

S15 ATTATTTTCCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCC

S16 AGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC

S17 CCAGCACACACACTTATCCAGTGGTAAATACACATCAT

S18 TCAAATAGGTACGGATAAGTAGATATTGAAGTAAGGAT

S19 ACTTGGGGTTCCAGTTTGATAAGAAAAGACTTCCTGTGGA

S20 TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAGTAGGCTAAGGCCA

S21 CAACCACAACCTCTGTATCCGGTAGTGGCAGATGGAAA

S22 CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA

S23 GAAAAAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT

S24 TGCCTTGTCTGTTGTAGATAATGAATCTATCCTCCAGTGACT

S25 GGCCAGGCTGATGGGCCTTATCTCTTTACCCACCTGGCTGT

S26 CAACAGCAGGTCCTACTATCGCCTCCCTCTAGTCTCTG

S27 CCAACCGTTAATGCTAGAGTTATCACTTTCTGTTATCAAGTGGCTTCAGC

S28 GGGAGGGTGGGGCCCCTATCTCTCCTAGACTCTGTG

S29 CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC

F 2: e erythroid sequences [85] for illustrating the Gibbs sampler algorithm, with the 3′-end trimmed to the maximum length 50
bases to �t the page.

T 2: Site-speci�c distribution of nucleotides from the 29 randommotifs of length 6.e second column lists the distribution of nucleotides
outside the 29 random motifs.

Site
Nuc C0 1 2 3 4 5 6
A 278 8 7 9 6 10 7
C 279 3 8 5 10 6 5
G 230 7 5 6 5 3 11
T 248 11 9 9 8 10 6

T 3: Site-speci�c distribution of nucleotides from the 28 random motifs of length 6, a�er remo�ing the initial motif in 𝑆𝑆11. e second
column lists the distribution of nucleotides outside the 28 random motifs.

Site
Nuc C0 1 2 3 4 5 6
A 279 7 7 9 6 10 7
C 279 3 8 5 10 6 5
G 233 7 4 6 4 3 10
T 250 11 9 8 8 9 6
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serious problems when input sequences are almost as short as
the motif. For example, if the true motif has many nucleotide
A and few nucleotide U, then the C0 vector will also have
many A and few U. Now a motif with a few nucleotide U will
be taken as deviating substantially from the background and
will tend to have a high PWMS, leading to a biased estimate
of the true motif. us, when input sequences are short, one
should specify the background frequencies instead of using
C0 to compute 𝑝𝑝𝑖𝑖. One may refer to the previous section on
PWM for more information on background frequencies.

For pseudocounts, we may use 𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼. e resulting
PWM is then used to scan 𝑆𝑆𝛼𝛼 which is 40 bases long, with 35
(𝛼 4𝛼 −𝑚𝑚 𝑚 𝛼𝑚 possible motif starting points (i.e., possible A𝑖𝑖
values along the sequence). e 35 PWMS values for these 35
possible motifs in 𝑆𝑆𝛼𝛼 (Table 4) are normalized to have a sum
of 1 (𝑃𝑃Norm in Table 4). We now proceed to update the initial
A𝛼𝛼 (𝛼 𝛼𝛼) by a newA𝛼𝛼 value based on result in Table 4. How
should we choose the new A𝛼𝛼 value?

ere are two strategies to choose the new A𝛼𝛼 value. e
�rst is to randomly pick up an A𝑖𝑖 value according to the
magnitude of 𝑃𝑃Norm (Table 4). You may visualize a dartboard
with 35 sliceswith their respective areas being proportional to
𝑃𝑃Norm values. When you throw a dart at the dartboard, large
slices will have a better chance of being hit than small slices.
If the dart happens to land on the 7th slice, then the initial
A𝛼𝛼 𝛼 𝛼𝛼 will be updated to A𝛼𝛼 𝛼 7, with the original motif
AGTGTG replaced by the new motif CTCAAG.

e second strategy is simply to use the largest 𝑃𝑃Norm
value for updating initial A𝛼𝛼 to the new A𝛼𝛼 value. As
the motif starting at site 25 has the largest 𝑃𝑃Norm, we will
set the new A𝛼𝛼 equal to 25 and replace the initial motif
(= AGTGTG) by the new motif (= TCACAG). With this
approach we do not need 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚 as we can choose A𝛼𝛼 based
on the largest odds ratio in Table 4. is strategy is faster
than the �rst, but did not seem to lose any sensitivity in motif
discovery based on limited simulation studies. However, if
one is concerned about the possibility of missing motifs, one
should use the �rst strategy.

Regardless of how the new A𝛼𝛼 is chosen, the updating
is the same. Suppose we have taken the second strategy and
set the new A𝛼𝛼 equal to 25. e C matrix in Table 2 is then
revised by replacing the original A𝛼𝛼 motif (= AGTGTG) by
the new motif (= TCACAG). is leads to an updated C0
vector and C matrix (Table 5).

We repeat this process for the rest of the sequences to
update the rest of A𝑖𝑖 values. Aer the last sequence has been
updated, we have obtained a new set of A𝑖𝑖 values, a new set
of 29 motifs, together with the PWM based on the associated
C0 vector and C matrix. At this point we compute a weighted
alignment score (i.e., a weighted PWMS) as follows:

𝐹𝐹 𝛼
𝑁𝑁Code


𝑖𝑖𝛼𝛼

𝑚𝑚

𝑗𝑗𝛼𝛼
𝐶𝐶𝑖𝑖𝑖𝑗𝑗PWM𝑖𝑖𝑗𝑗𝑖 (8)

where 𝑚𝑚 is the motif width, and 𝑁𝑁Code is the number of
different symbols in the sequences (4 for nucleotide and 20
for amino acid sequences). 𝐹𝐹 is a measure of the quality of
alignment of the motifs. e larger the 𝐹𝐹 value, the better.

T 4: Possible locations of the 6-mer motif along 𝑆𝑆𝛼𝛼, together
with the corresponding motifs and their position weight matrix
scores expressed as odds ratios. e last column lists the odds ratios
normalized to have a sum of 1.

Site 6-mer Odds Ratio 𝑃𝑃Norm

1 CATGCC 0.153 0.004
2 ATGCCC 0.850 0.021
3 TGCCCT 0.664 0.016
4 GCCCTC 0.944 0.023
5 CCCTCA 0.254 0.006
6 CCTCAA 0.843 0.021
7 CTCAAG 0.609 0.015
8 TCAAGT 0.717 0.018
9 CAAGTG 0.613 0.015
10 AAGTGT 0.426 0.011
11 AGTGTG 0.967 0.024
12 GTGTGC 0.546 0.014
13 TGTGCA 0.594 0.015
14 GTGCAG 4.034 0.100
15 TGCAGA 0.251 0.006
16 GCAGAT 1.084 0.027
17 CAGATT 0.343 0.009
18 AGATTG 1.812 0.045
19 GATTGG 1.128 0.028
20 ATTGGT 0.408 0.010
21 TTGGTC 1.194 0.030
22 TGGTCA 0.888 0.022
23 GGTCAC 1.005 0.025
24 GTCACA 0.596 0.015
25 TCACAG 5.888 0.146
26 CACAGC 0.064 0.002
27 ACAGCA 0.569 0.014
28 CAGCAT 0.569 0.014
29 AGCATT 0.381 0.009
30 GCATTT 2.024 0.050
31 CATTTC 0.474 0.012
32 ATTTCA 1.317 0.033
33 TTTCAA 4.293 0.107
34 TTCAAG 2.475 0.061
35 TCAAGG 1.279 0.032

e 𝐹𝐹 value, as de�ned in (8), has many different
names. It has been called the Kullback-Leibler information or
Kullback-Leibler divergence in information theory [86–88],
or large-deviation rate function in statistical estimation [89].
In bioinformatics, especially in motif characterization and
prediction involving a PWM, it ismost oen referred to as the
information content [6]. e fact that the Kullback-Leibler
information is a special case of the so-called 𝑓𝑓-divergence
that measures the difference between two probability distri-
butions 𝑃𝑃 and 𝑄𝑄 leads naturally to the use of the letter 𝐹𝐹 in
(8).

e predictive updating is repeated again and again. Each
time when we get a new set of A𝑖𝑖 values, a new set of motifs
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T 5: Site-speci�c distribution of nucleotides from the 29 initial motifs of length 6, aer replacing the initial A11 motif (= AGTGTG) by
the new motif (= TCACAG).

Site
Nuc C0 1 2 3 4 5 6
A 277 7 7 10 6 11 7
C 277 3 9 5 11 6 5
G 232 7 4 6 4 3 11
T 249 12 9 8 8 9 6

T 6: Final site-speci�c distribution of nucleotides from the 29 identi�ed motifs. Output from �AM�� [53, 54].

Site
Nuc C0 1 2 3 4 5 6
A 275 3 0 22 0 9 16
C 285 11 0 0 0 19 1
G 252 0 7 7 0 0 1
T 223 15 22 0 29 1 11

and the PWM based on the C0 vector and the C matrix, we
compute a new 𝐹𝐹 value. If the new 𝐹𝐹 value is greater than the
previously stored 𝐹𝐹 value, then the new 𝐹𝐹 value, the new set
A𝑖𝑖 values, and the new set ofmotifs will replace the previously
stored ones. is continues until we reach a local maximum
of 𝐹𝐹 or when the preset maximum number of local loops
has been reached. e resulting 𝐹𝐹 value, the set of A𝑖𝑖 values,
the new set of motifs and the associated PWM are stored as
the locally optimal output. In the hill-climbing analogy, 𝐹𝐹
represents the height of a local peak.

e entire process is now repeated from the very begin-
ning, that is, we again perform the initialization by choosing
another random set of A𝑖𝑖 values, and go through the local
iteration to obtain another locally optimal output. If the new
locally optimal output is better than previously stored ones
(i.e., the new 𝐹𝐹 value is larger than the previously stored
one), the newoutputwill replace the previously stored output.
is process is repeated multiple times until convergence
is reached, that is, when new 𝐹𝐹 values are consistently the
same as the previously stored one, or until a �xed number
of computation iteration has been reached without �nding
an 𝐹𝐹 value better than what has already been recorded. e
�nal site-speci�c nucleotide distribution (Table 6) displays a
much stronger pattern than the initial distribution (Table 2)
from 29 randomly chosen motifs.

e �nal aligned motifs (Figure 7-2 in [32]) share in
general a consensus of (C/T)TATC(A/T). Its reverse comple-
ment (A/T)GATA(A/G) is known to be the binding site of
GATA-binding transcription factors [90–95]. is discovery
of the motif suggests that this set of sequences may indeed be
coregulated by the same type of GATA-binding transcription
factors. Such �ndings are crucial in transcriptomic and
proteomic studies aiming to understand gene regulation net-
works. Algorithms such as Gibbs sampler help us understand
interactions among genes and gene products.

It might be relevant here to summarize essential biol-
ogy about the GATA box and GATA-binding transcription
factors. A living cell is a system with many genetic switches

that can be turned on or off in response to intracellular and
extracellular environment. It is these switches that distinguish
a normal living cell from a cancer cell or a dead cell. e
GATA motif (or GATA box) is one of such switches and it
is switched on or off by speci�c transcription factors (which
are proteins that bind to the motif and turn on or off the
transcription of the gene containing such motifs). One of the
better knownGATA-binding transcription factors is GATA-1
which binds to the GATA motif found in cis-elements of the
vast majority of erythroid-expressed genes of all vertebrate
species examined [96, 97]. e core promoter of the rat
platelet factor 4 (PF4) gene contains such a GATA motif and
the binding of such GATA motif by GATA-binding proteins
such as GATA-1 suppresses the transcription of the PF4 gene
[91]. It is now known that GATA regulatory motifs and the
GATA-binding transcription factors are present in a variety
of organisms ranging from cellular slimemold to vertebrates,
including plants, fungi, nematodes, insects, and echinoderms
[98], suggesting that the function of the genetic switch is
far beyond erythropoiesis. In human, the GATA motif and
the GATA-binding proteins are implicated in several diseases
[99]. e sequence divergence of GATA motifs and their
binding proteins should shed light on the coevolution of the
components of genetic switches.

One may have noted that some sequences have a strong
(C/T)TATC(A/T) motif, whereas others (e.g., the second, the
fourth and the �h sequences) have only weak and highly
doubtful signals. Computer programs implementing Gibbs
sampler typically would output a quantitative measure of the
strength of the signal, andPWMS is themost oen used index
for this purpose (Table 7). Recall that PWMS is the log-odds,
but onemay use the odds ratio directly as ameasure of relative
motif strength. Also recall that an odds ratio is the ratio of two
probabilities associated with two hypotheses. �e�ne 𝜃𝜃Yes as
the hypothesis that the 6-mer is a motif with its site-speci�c
constraints, and 𝜃𝜃No as the hypothesis that the 6-mer is not
a motif and has its probabilities speci�ed only by the four
overall nucleotide frequencies. e odds ratio is the ratio of
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T 7: Output of PWMS as a quantitative measure of the strength
of the identi�ed motifs. Output from �AM�� [53, 54].

SeqName Motif Start Odds-ratio
Seq1 TTATCA 18 163.6602
Seq2 CGGTCA 22 14.5511
Seq3 CTATCA 14 101.8203
Seq4 AGATAA 17 9.1127
Seq5 TGATTA 16 12.9266
Seq6 CTATCT 18 90.7790
Seq7 TTATCA 20 163.6602
Seq8 TTATCA 2 163.6602
Seq9 CTATAA 17 58.1420
Seq10 CTATCT 14 90.7790
Seq11 TGGTCA 21 23.3886
Seq12 TTGTAA 33 38.9024
Seq13 TTATCT 20 145.9129
Seq14 TTATCT 2 145.9129
Seq15 TTATCA 10 163.6602
Seq16 CTATAA 3 58.1420
Seq17 TTATCC 13 34.3258
Seq18 AGATAT 20 8.1245
Seq19 TGATAA 16 32.0835
Seq20 AGATAA 24 9.1127
Seq21 CTGTAT 12 21.5783
Seq22 CTGTAT 0 21.5783
Seq23 CTATCT 23 90.7790
Seq24 TTGTCT 4 60.7395
Seq25 TTATCT 17 145.9129
Seq26 CTATCG 15 21.2368
Seq27 TTATCA 19 163.6602
Seq28 CTATCT 15 90.7790
Seq29 TTGTCA 2 68.1272
Mean 76.3120
Stdev 57.8163

the probability that 𝜃𝜃Yes is true over the probability that 𝜃𝜃No is
true. One generally should take a cut-off value of 20, that is,
𝜃𝜃Yes is 20 times more likely than 𝜃𝜃No.

One should note that Gibbs sampler, being started from
a random set of A𝑖𝑖 values, may not necessarily converge to
the same motif. is is both an advantage and a disadvantage
of the algorithm. e advantage is that repeated running of
the algorithm will allow us to identify other types of hidden
motifs (i.e., other than the reverse complement of the GATA
motif) in the sequences. e disadvantage is that users not
familiar with the algorithm oen get confused when the same
input generates quite different results. For example, another
set of putative motifs, in the form of RGVAGR (where R is A
or G and V is “not T”), has been found to be shared among
the sequences [32, p. 146].

It is possible that the input sequences may contain two
or more different biologically signi�cant motifs. If one motif
is much stronger (more over-represented among the input
sequences) than other motifs, and if the search by the Gibbs

sampler algorithm outlined before is exhaustive, then we will
always end up with the strongest motif and miss all other
biologically interestingmotifs. However, one could runGibbs
sampler by speci�cally exclude the strongest motif already
identi�ed so that weaker motifs can then be identi�ed.

3.4. Motif Sampler. e Gibbs sampler has two versions. e
one that we have just illustrated is called site sampler. It
assumes that each sequence contains exactly one motif [30].
e other version is more �exible and allows each sequence
to have none or multiple motifs [71] and the algorithm
is termed motif sampler. e GATA-binding transcription
factors comprise a protein family whose members contain
either one or two highly conserved zinc �nger �NA-binding
domains [98] and it is consequently likely that a sequence
may contain more than one GATA box. For example, the
erythroid �ruppel-like factor (���F, which is a zinc �nger
transcription factor required for 𝛽𝛽-globin gene expression)
has in its 5′-region two GATAmotifs �anking an � box motif
characterized by CANNTG [100]. is calls for an algorithm
that can identify multiple motifs in a single sequence.

e site sampler can be extended to motif sampler by
post-processing. e PWM generated from the site sampler
can be used to re-scan the sequences for motifs and compute
the associated PWMS or odds ratio for all 6-mers in each
sequence. All what we need is to have a cut-off score to keep
those motifs with a PWMS or odds ratio greater than the cut-
off score.

e PMW, be it from alignment of known motifs or from
running the Gibbs sampler, need to be assessed for its
statistical signi�cance. One continuous problem with PWM
is the lack of generally applicable and accurate signi�cance
tests, either for individual sites of the motif, on PWM or on
PWMS.ere are two reasons why accurate signi�cance tests
are desirable. First, aer characterizing a motif with PWM,
one naturally wants to knowwhether the characterized PWM
is signi�cant, which sites contribute to the signi�cance and
which sequence has a PWMS that is signi�cantly greater
than random expectation. Second, aer �nding a signi�cant
PWM, one typically would want to use the PWM to scan
other sequences to identify newmotifs, and one needs a good
signi�cance test to show the reliability of the identi�ed motif.
is would reduce the number of putative sequence motifs
going through experimental veri�cation which is typically
tedious and expensive [101, 102].

In short, three separates signi�cance tests are required:
one for individual sites, one for PWM per se and one for
PWMS. ese tests are detailed in the following sections.

4.�. Stati�ti�al Si��i��a��e �e�t� for ���i�i��al Site�. e
statistical signi�cance of individual sites can be done by 𝜒𝜒2-
tests with type I error rate controlled for by the false discovery
rate [103, 104]. Take the data in Table 1 for example. e
background frequencies are A = 0.3279, C = 0.1915, G =
0.2043, and U = 0.2763, which allow us to obtain expected
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T 8: Evaluating statistical signi�cance of individual sites by two
types of false discovery rate.

Site 𝑝𝑝 pBH(1) pBY(2)

6 ∗0.0000000000† 0.002941 0.000855
10 ∗0.0000000000† 0.005882 0.001710
7 ∗0.0000000000† 0.008824 0.002565
11 ∗0.0000000000† 0.011765 0.003420
8 ∗0.0000000000† 0.014706 0.004276
9 ∗0.0000000000† 0.017647 0.005131
12 ∗0.0000000000† 0.020588 0.005986
4 ∗0.0000004842† 0.023529 0.006841
3 ∗0.0000013734† 0.026471 0.007696
5 ∗0.0000030965† 0.029412 0.008551
14 ∗0.0002619304† 0.032353 0.009406
15 ∗0.0006307900† 0.035294 0.010261
17 ∗0.0025004071† 0.038235 0.011116
16 ∗0.0033589734† 0.041176 0.011971
13 ∗0.0084455695† 0.044118 0.012827
1 ∗0.0177349476 0.047059 0.013682
2 ∗0.0182291629 0.050000 0.014537
(1)
Critical 𝑝𝑝 based on Benjamini and Hochberg (1995) [103].

(2)Critical 𝑝𝑝 based on Benjamini and Yekutieli (2001) [104].
∗Signi�cant by the criterion in Benjamini and Hochberg (1995) [103].
†Signi�cant by the criterion in Benjamini and Yekutieli (2001) [104].

counts of A, C, G, and T. With 17 𝜒𝜒2-tests (Table 1), we face
the problem of multiple comparisons and need to control
for the familywise error rate [105] which is synonymous to
experimentwise error rate.

Designate the error rate by 𝛼𝛼0, then the exact critical 𝛼𝛼 for
rejection in individual tests is

𝛼𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼𝛼0
𝛼/𝑁𝑁 , (9)

where𝑁𝑁 is the number of tests and is equal to 17 in our case.
If we set 𝛼𝛼0 𝛼 0.05, then 𝛼𝛼 𝛼 0.00𝛼0𝛼2𝛼05. e Bonferroni
criterion is based on the approximation that

𝛼𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼𝛼0
𝛼/𝑁𝑁 ≈

𝛼𝛼0
𝑁𝑁
, (10)

which leads to 𝛼𝛼 𝛼 0.002𝛼𝛼𝛼𝛼𝛼𝛼. e second order Bonfer-
roni 𝛼𝛼, when relevant assumptions are met [105], is based on

𝑁𝑁𝛼𝛼 𝛼 (𝑁𝑁 𝛼 𝛼) 𝛼𝛼2 𝛼 𝛼𝛼0, (11)

which leads to 𝛼𝛼 𝛼 0.002𝛼𝛼𝛼𝛼𝛼𝛼𝛼. In practice, these different
𝛼𝛼 values make little difference. In our case, all three 𝛼𝛼 values
lead to the conclusion that the frequency distribution at
sites 1, 2, 13, and 16 do not deviate signi�cantly from the
background frequencies.

e statistical protocol for controlling for the familywise
error rate has been considered too conservative, and the
protocol for controlling for the false discovery rate (FDR)
has consequently been proposed recently [103, 104]. e
classical FDR approach [103], now commonly referred to
as the Benjamini-Hochberg procedure or simply the BH

procedure, sorts 𝑝𝑝 values in descending order and computes
𝑝𝑝critical⋅BH⋅𝑖𝑖 for the 𝑖𝑖th 𝑝𝑝 value (where the subscript BH stands
for the BH procedure) as

𝑝𝑝critical⋅BH⋅𝑖𝑖 𝛼
𝑞𝑞 ⋅ 𝑖𝑖
𝑁𝑁

, (12)

where 𝑞𝑞 is FDR (e.g., 0.05), 𝑖𝑖 is the rank of the 𝑝𝑝 value in the
sorted array of 𝑝𝑝 values, and 𝑁𝑁 is the number of tests (i.e.,
the number of 𝑝𝑝 values). If 𝑘𝑘 is the largest 𝑖𝑖 satisfying the
condition of 𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝critical⋅BH⋅𝑖𝑖, then we reject hypotheses from
𝐻𝐻𝛼 to𝐻𝐻𝑘𝑘. In our case, all the sites are statistically signi�cant
based on 𝑝𝑝critical⋅BH⋅𝑖𝑖 (Table 8).

e FDR procedure above assumes that the test statistics
are independent or positively dependent (in the extreme case
of perfect positive dependence, all tests are the same and
there is really only just one test with no multiple comparison
problem). A more conservative FDR procedure has been
developed that relaxes the assumption [104]. is method,
now commonly referred to as the Benjamini-Yekutieli or
simply the BY procedure, computes 𝑝𝑝critical⋅BY⋅𝑖𝑖 for the 𝑖𝑖th
hypothesis as

𝑝𝑝critical⋅BY⋅𝑖𝑖 𝛼
𝑞𝑞 ⋅ 𝑖𝑖

𝑁𝑁𝑁𝑁𝑁
𝑖𝑖𝛼𝛼 (𝛼/𝑖𝑖)

𝛼
𝑝𝑝critical⋅BH⋅𝑖𝑖
𝑁𝑁𝑁
𝑖𝑖𝛼𝛼 (𝛼/𝑖𝑖)

. (13)

With 𝑁𝑁 𝛼 𝛼𝛼 in our case, Σ𝛼/𝑘𝑘 𝛼 𝛼.𝛼𝛼𝛼55252𝛼. Based
on 𝑝𝑝critical⋅BY⋅𝑖𝑖, the 𝜒𝜒

2-tests pertaining to sites 1 and 2 are
not statistically signi�cant (Table 8). e BY procedure was
found to be too conservative and several alternatives have
been proposed [106]. For large𝑁𝑁,Σ𝛼/𝑘𝑘 converges to ln(𝑁𝑁)𝑁𝑁𝑁
(Euler’s constant equal approximately to 0.57721566). us,
for 𝑁𝑁 𝛼 𝛼0000, Σ𝛼/𝑘𝑘 is close to 10. So 𝑝𝑝critical⋅BY is nearly
10 times smaller than 𝑝𝑝critical⋅BH. Both FDR procedures above
have been used in signi�cance tests concerning yeast splicing
sites [23].

�.�. ����u�t�n� �t�t�st�c�� ���n��c�nce o� �����en �seudo�
counts Are Used. Whether a PWM represents a motif with
site-speci�c constraints can be tested by using the 𝐹𝐹 statistic
[6] speci�ed in (8). However, the distribution of 𝐹𝐹 is altered
by pseudocounts as speci�ed in (5) and (7). For example, the
expectation of 𝐹𝐹 is no longer zero with pseudocounts when
there is no site-speci�c pattern.

A more straightforward method for evaluating the sig-
ni�cance of PWM is by resampling. With the tetranomial
distribution de�ned by (𝑝𝑝A 𝑁 𝑝𝑝C 𝑁 𝑝𝑝G 𝑁 𝑝𝑝T)

𝑁𝑁, where 𝑝𝑝𝑖𝑖 is
the nucleotide frequency of nucleotide 𝑖𝑖, we can obtain a new
set of sequences (246 sequences of 17 nt each) and compute
𝐹𝐹. is is repeated for, say, 5000 times to obtain 5000 𝐹𝐹
values. e 95th or 99th percentile of the 𝐹𝐹 values can be
taken as critical 𝐹𝐹 values at 0.05 and 0.01 signi�cance levels,
respectively. An observed 𝐹𝐹 for the PWM is signi�cant if
it is greater than the critical 𝐹𝐹. Based on this criterion, the
PWM from the 246 donor splice sites is highly signi�cant.
e same resampling technique can also be used to evaluate
the signi�cance of the site-speci�c patterns in the previous
section or the signi�cance of PWMS in the next section.
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F 3: PWMS from random sequences follows approximately
the normal distribution, based on 1000 random sequences of length
17 drawn from the pool of nucleotides with frequencies of A, C,
G, and T equal to 0.3279, 0.1915, 0.2043, and 0.2763, respectively.
e distribution has mean equal to 0.068884 and standard deviation
equal to 0.314714254.

���� ����is�ic�l �i�ni�c�nc� o� ����� One of the purposes
of constructing a PWM is to facilitate the computation of
PWMSs. For example, the PWMS for sequence UAAAG-
GUAUGUUUAAUU, given the PWM in Table 1 (the four
columns headed byA, C, G, andUon the right side), is simply

PWMS = PWMU1 + PWMA2 + ⋯ + PWMU17. (14)

us, we can use the PWM to predict a new donor splice
site by scanning a nucleotide sequence with a window of 17
nucleotide sites and computing the PWMS. e larger the
PWMS, the more likely the 17-mer is a donor splice site.
However, we need to address the question of how large is large
in such in silico predictions.

PWMS from random sequences follows approximately
the normal distribution (Figure 3), with mean 0 (or slightly
greater than 0 when pseudocounts are used with a small 𝛼𝛼).
e distribution in Figure 3 has amean equal to 0.068884 and
a standard deviation equal to 0.314714254.

Suppose we are to use our 4 × 17 PWM to scan a target
sequence 𝑆𝑆 of 1000 nt for a possible donor splice site. ere
are 984 (= 1000−17+1) different 17mers along the sequence
𝑆𝑆, resulting in 984 PWMS values. If the maximum PWMS is
1, how statistically signi�cant is it?

If the length of the target sequence 𝑆𝑆 were only 17 nt
instead of 1000 nt, then the answer is easy. e upper 99%
con�dence limit for a normal distribution with mean equal
to 0.0689 and standard deviation equal to 0.3147 is 0.8808
(= 0.06888 + 2.58 × 0.3147), which implies that a PWMS of
1 is signi�cant at the 0.01 level. However, because our target
sequence 𝑆𝑆 is 1000 nt, with the maximum of PWMS equal to
1 out of a total of 984 PWMS values, we need to go a long way
to evaluate the signi�cance of this maximum PWMS value.
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F 4: Extreme value distribution as speci�ed in (17), with 𝜇𝜇 =
0.068884, 𝜎𝜎 = 0.314714254, and𝑁𝑁 = 𝑁84.

Suppose we perform many sampling experiments from
the same normal distribution 𝑝𝑝(𝑝𝑝𝑝 as in Figure 3:

𝑝𝑝 (𝑝𝑝𝑝 =
𝑒𝑒(𝑝𝑝−𝜇𝜇𝑝

2/(2𝜎𝜎2𝑝

𝜎𝜎√2𝜋𝜋
. (15)

In each experiment, we sample 𝑁𝑁 times to obtain
𝑝𝑝1, 𝑝𝑝2,… , 𝑝𝑝𝑁𝑁. e maximum 𝑝𝑝 in each experiment is
𝑝𝑝max. is is equivalent to use PWM to scan a sequence to
obtain PWMS1, PWMS2,…, PWMS𝑁𝑁, with the maximum
PWMS designated as PWMSmax. What is the distribution of
𝑝𝑝max, designated as 𝐹𝐹(𝑝𝑝max𝑝? Note that 𝑝𝑝max is an extreme
value of𝑁𝑁𝑝𝑝 values, so it is natural to call 𝐹𝐹(𝑝𝑝max𝑝 an extreme
value distribution (EVD).

Extreme value distribution or EVD, also referred to as the
Gumbel distribution in honour of the pioneer of the statistics
of extremes [107], is used in BLAST [108, 109] and new
versions of FASTA [110] to attach statistical signi�cance to a
match score between two sequences. It is also used to perform
signi�cance tests involving PWM[5, 6, 55].Here Iwill outline
the mathematical framework of EVD pertaining to PWMS.

e probability of getting an 𝑝𝑝 value smaller than 𝑝𝑝max is

𝐺𝐺𝑝𝑝 𝑥 𝑝𝑝max = 
𝑝𝑝max

0
𝑝𝑝 (𝑝𝑝𝑝 𝑑𝑑𝑝𝑝. (16)

Note that 𝑝𝑝max can be either 𝑝𝑝1, 𝑝𝑝2,… , or 𝑝𝑝𝑁𝑁, with 𝑁𝑁
possibilities. (𝑁𝑁 − 1𝑝 𝑝𝑝𝑖𝑖 values are smaller than 𝑝𝑝max in each
experiment. is leads us to

𝐹𝐹 𝑝𝑝max = 𝑁𝑁𝑝𝑝 𝑝𝑝max 𝐺𝐺𝑝𝑝 𝑥 𝑝𝑝max
𝑁𝑁−1, (17)

which is plotted for 𝜇𝜇 = 0.068884, 𝜎𝜎 = 0.314714254, and𝑁𝑁 =
𝑁84 (Figure 4). Compared to the distribution of𝑝𝑝(𝑝𝑝𝑝 in Figure
3, the distribution of𝐹𝐹(𝑝𝑝max) has been shied substantially to
the right and peaks at 𝑝𝑝max = 1.05.

Nowwe can answer the question of whether our observed
𝑝𝑝max = 1 is statistically signi�cant. e probability of
observing an 𝑝𝑝max value equal to 1 or greater is

𝑝𝑝 𝑝𝑝max ≥ 𝑝𝑝obs = 
∞

𝑝𝑝obx

𝐹𝐹 𝑝𝑝max 𝑑𝑑𝑝𝑝max, (18)
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which is approximately 0.7986, that is, it is not statistically
signi�cant.

Amuch simpler, but likely less accurate, method based on
𝑝𝑝𝑝𝑝𝑝𝑝 only without deriving (16)–(18), is to use the Bonferroni
criterion in (10). With 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼, 𝛼𝛼 𝛼 𝛼𝛼𝛼/986 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼81
which requires a PWMS value equal to 1.292076814 to be
marginally signi�cant, given 𝜇𝜇 𝛼 𝛼𝛼𝛼6888𝜇, and 𝜎𝜎 𝛼
𝛼𝛼31𝜇71𝜇2𝛼𝜇. As our observed maximum PWMS is 1 <
1𝛼292𝛼7681𝜇, it is not signi�cant at the 0.05 signi�cance level.

In summary, a PWM-based sequence analysis involves
three types of output: the site-speci�c deviation from the
background frequencies, the positionweightmatrix itself and
the position weight matrix score for each input sequence.e
signi�cance of the �rst can be evaluated with 𝜒𝜒2-tests using
the false discovery rate as the criterion for rejection of the
null hypothesis, the second by the resampling method, and
the third by statistics based extreme value distribution.ese
tests have been implemented in the most recent versions of
DAMBE [53, 54].
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