
A General Formula for Calculating Meridian Arc Length and its Application to Coordinate Conversion in the Gauss-Krüger Projection 

 

 

1

  A General Formula for Calculating Meridian Arc Length 
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  Kazushige KAWASE 

  
  Abstract 

  
The meridian arc length from the equator to arbitrary latitude is of utmost importance in map projection, 

particularly in the Gauss-Krüger projection. In Japan, the previously used formula for the meridian arc length was a 

power series with respect to the first eccentricity squared of the earth ellipsoid, despite the fact that a more concise 

expansion using the third flattening of the earth ellipsoid has been derived. One of the reasons that this more concise 

formula has rarely been recognized in Japan is that its derivation is difficult to understand. This paper shows an explicit 

derivation of a general formula in the form of a power series with respect to the third flattening of the earth ellipsoid. 

Since the derived formula is suitable for implementation as a computer program, it has been applied to the calculation 

of coordinate conversion in the Gauss-Krüger projection for trial. 

 

1. Introduction 

As is well known in geodesy, the meridian arc 

length  S  on the earth ellipsoid from the equator to 

the geographic latitude   is given by 
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where a  and e  are the semi-major axis and the first 

eccentricity of the earth ellipsoid, respectively. 

Since formula (1) includes an elliptic integral, it 

cannot be expressed explicitly using a combination of 

elementary functions. As a rule, we evaluate this elliptic 

integral as an approximate expression by first expanding 

the integrand in a binomial series with respect to 2e , 

regarding e  as a small quantity, then readjusting with a 

trigonometric function, and finally carrying out termwise 

integration. 

The following example is an approximation of 

formula (1) obtained by truncating the expansion at order 

10e : 
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Since the above expression has fractional 

coefficients too complicated for most readers, except for 

those specialized in the given field, to memorize at a 

glance, users face a perpetual risk of making mistakes 

owing to errors in typing the fractional coefficients. 

Despite this fact, formula (2) has long been used 

generally in Japan to calculate the meridian arc length of 

the earth ellipsoid. 
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2. Other expressions 

2.1 Bessel’s formula 

On the other hand, an alternative derivation using 

yet another quantity n , the third flattening of the earth 

ellipsoid defined as 
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has been presented by Bessel (Bessel, 1837).  

Bessel rewrote formula (1) using the relation 

expressed in formula (3) as 

 

     
  , d

2cos21

11 

0 232

2













nn

nna
S            (4) 

 

expanded the denominator of the integrand in a series 

with respect to n , and then carried out termwise 

integration. 

The following formula is a summary of the 

expansion result that appeared in Bessel’s original paper: 
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The main advantages of this formula over 

formula (2) are its good convergence, since n  is about 

a quarter of the value of 2e , and the reduced number of 

terms appearing in the formula despite its almost equal 

precision. 

 

2.2 Helmert’s formula 

About forty years after the publication of Bessel’s 

result, Helmert derived a simpler expression by replacing 

the    nn  11 2  factor appearing in formula (5) with 

an equivalent value    nn  11
22 . Helmert then 

multiplied the terms in the curly brackets in formula (5) 

by  221 n , the numerator of the substituted value, 

aiming to extract the factor  n11  and simplify the 

fractional coefficients appearing in formula (5) (Helmert, 

1880). 

More than thirty years after that, Krüger 

summarized Helmert’s result in his paper published in 

1912 (Krüger, 1912) as the following formula: 
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As formula (6) shows, the result derived by 

Helmert has a simpler and more concise expression than 

does formula (2), which was truncated at order 10e , and 

has almost the same or greater precision despite its 

truncation to no more than order 4n  (corresponds to 
8e ), as reported by Tobita et al. (Tobita et al., 2009). 

Nevertheless, the derivation process used by Helmert 

(1880) seems to be not only difficult to understand but 

also hard to generalize. 

 

3. Derivation of general formula 

In order to generalize formula (6), we choose 

another approach that does not start from formula (4) 

directly. First, in accordance with a well-known result 
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regarding elliptic integrals and elliptic functions (e.g., 

Byrd et al., 1954), we find that the integral in formula (1) 

can be regarded as a special case of incomplete elliptic 

integrals of the third kind. Thus, it can be divided into an 

incomplete elliptic integral of the second kind and a term 

of elementary functions as* 
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Bearing the relation expressed in formula (3) in 

mind and letting  2 , it is not hard to see that we can 

rewrite formula (7) as 
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At a glance, the result of formula (8) appears to 

be a favorable transformation, since the factor  na 1 , 

which also appears in formula (6), appears spontaneously. 

Now, we can begin to examine formula (8) in order to 

generalize Helmert’s result. 

First, since the integrand appearing in the first 

term in the parentheses in formula (8) (we denote this 

term 1S ) can be regarded as a generating function of 

Gegenbauer polynomials   cos21
iC  (e.g., 

Abramowitz et al., 1965), we can expand 1S  in a power 

series with respect to n  and rearrange all the terms as 

 

 

*Since we could find no references describing the derivation of this result in detail, a simple proof is given in the 

appendix. 
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In formula (9), nini  23 ,  x  denotes 

the Gamma function, and  x  denotes the floor 

function. From the above result, for the time being we 

rewrite formula (8) as 
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Next, we turn to the second term in the 

parentheses (we denote this term 2S ) in formula (8). 

First, we take the following favorable relation between 

1S  and 2S  into account: 
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On the other hand, as we have already seen the 

final result of formula (9), it is easy to understand that 

1S  can be represented as a trigonometric expansion that 

has the form 
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Bering the relation of formula (11) in mind, we 

find that 2S  can be represented with a very similar 

form to that of 1S , i.e., 
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Combining 1S  and 2S , we finally arrive at a general 

formula for calculating the meridian arc length from the 

equator to an arbitrary geographic latitude, 
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Truncating the summation with respect to index 

j  in formula (14) at 2j , we can confirm that this 

formula yields Helmert’s result summarized in formula 

(6). 

Note that we can derive another general formula 

for  S  without dividing terms as in formula (8) using 

the fact that the denominator of the integrand in formula 

(4) can be regarded as a generating function of 

Gegenbauer polynomials   2cos23
iC . In this case, 

just replacing nini  23  in formula (9) with 

nini  2  by analogy with the expansion with 

      2coscos 2121   ii CC , we have 
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Although formula (15) is a little less effective 

with respect to convergence at obtaining the meridian arc 

length itself, it might be better than formula (14) when it 

comes to calculating the rectifying latitude, because of 

cancelation of the redundant factor in front of the 

summation sign during the calculation. That is, the 

rectifying latitude   is given by 

 

 
 

   

 

   . 

2

2122

2sin
2

22

0

2

1

2

1 1

1

0

2

1 





 s

n
k

n

n
mj

n
l

l
n

k
n

S

S

j

j

k

j

l

l

m
m

j

j

k

m





















 



































 



 

  


 

 



               (16) 

  

(14)

(13)



Bulletin of the Geospatial Information Authority of Japan, Vol.59 December, 2011 

 

 

6

For practical purposes in the next section, we 

have defined the function  xsx   at the end of formula 

(16). 

 

4. Application to coordinate conversion in the 

Gauss-Krüger projection 

4.1 Current status of coordinate conversion in the 

Gauss-Krüger projection 

Recently, formulae for direct projection to the 

Gauss-Krüger coordinate system using the third 

flattening of the earth ellipsoid were implemented by 

Karney (Karney, 2011). In this paper, almost all formulae 

for coordinate conversion between geographic and plane 

rectangular coordinates in the Gauss-Krüger projection 

are described as series expansions with respect to the third 

flattening of the earth ellipsoid. 

However, for simplicity of evaluation and 

inversion, Newton’s method, which belongs to a class of 

iteration methods, was adopted instead of series 

expansions such as those given by Engsager and Poder 

(Engsager et al., 2007) for the transformation between 

geographic latitude and conformal latitude. Although the 

details of the Engsager and Poder implementations are 

alleged to be available on the Internet (as mentioned in 

the original paper), they are still difficult (or impossible) 

to access and follow. On the other hand, it is also true that 

adopting the simpler iteration method and sacrificing 

calculation efficiency might lead to inconsistent 

uniformity of the evaluation because of intermixing of 

iteration and truncation round-off errors. 

 

4.2 Applying the general formula to the Gauss-Krüger 

projection 

Bearing the above discussion of the current status 

in mind, we now consider applying the general formula 

for meridian arc length derived in the previous section to 

coordinate conversion in the Gauss-Krüger projection. 

The goal of this paper is an explicit and self-contained 

presentation of series expansion coefficients to the 10th 

order of the quantity n  using no iteration methods. As 

we shall see below, all we have to do is to boot wxMaxima, 

which is a document-based interface for the computer 

algebra system Maxima (Maxima.sourceforge.net, 2011), 

and input six command lines. 

We start from the following formula describing 

the relation between geographic latitude   and 

conformal latitude  : 
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Here, x1gd  denotes the inverse function of the 

Gudermannian function x gd  defined as 
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Now, we introduce a function g  and variables u  and 

v , which temporarily replace the function and variables 

in formula (17) as 
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It follows from formula (19) that we can rewrite 

formula (17) as  ugvu  . From this equation, by 

applying the Lagrange inversion theorem (Lagrange, 

1770; Weisstein, 2011) with respect to the Gudermannian 

function, we can obtain the expression 
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
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Using the well-known characteristic of the 

Gudermannian function shown in formula (18), it is not 

hard to see that 
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It follows from the above relations and formula 

(19) that we can rewrite formula (20) with the original 

variables as
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With the help of powerful commands included in 

wxMaxima, we can obtain a readjusted trigonometric 

expansion of formula (21) that has the form 

 

. 2sin
1

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
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k

k k                       (22) 

 

In addition, it is not hard to obtain the inverse 

equation in the form 

 

 . 2sin
1

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k

k hk               (23) 

 

From the equation   h  derived in 

formula (23), by applying the Lagrange inversion 

theorem with respect to the function  xsx   defined in 

formula (16), we have 
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According to formula (16), since the left-hand 

side of formula (24) corresponds to the rectifying latitude 

 , we can confirm that the equations that represent the 

relation between   and the conformal latitude   are 

expressed in the form 

 

, 2sin
1






k

k k                      (25) 

 

and, as its inverse equation, 

 

. 2sin
1






k

k k                      (26) 

 

Beginning on the next page, we show a series of 

screen captures (from Fig. 1 to Fig. 3) describing the 

calculation of the expansion coefficients k , k  , k , 

and k  appearing in formulas (22), (23), (25), and (26), 

respectively, to the 10th order of n . The coefficients 

k  and k  use the same notation as those that 

appeared in Karney (2011). We note that it is sufficient to 

truncate the summation with respect to index j  in 

)( ps  (corresponds to (%i2) in Fig. 1) at 5j  in order 

to cover the coefficients to the 10th order. 
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Fig. 1 Screen capture of calculation using wxMaxima (1/3) 
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Fig. 2 Screen capture of calculation using wxMaxima (2/3) 
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Fig. 3 Screen capture of calculation using wxMaxima (3/3) 

 

It is easy to see from these figures that the 

coefficients k  (corresponds to (%o3) in Fig. 1) and 

k   (corresponds to (%o4) in Fig. 2) coincide with kG2  

and ke2  appearing in Engsager et al. (2007) to the 7th 

order, respectively. Likewise, we can also confirm that 

the coefficients k  (corresponds to (%o5) in Fig. 2) 

and k  (corresponds to (%o6) in Fig. 3) completely 

coincide with those appearing on the Web site 

(http://geographiclib.sourceforge.net/html/transversemer

cator.html#tmseries) presented by Karney. 

Although the command (%i3) has redundant 

expressions (to a large extent due to the author’s poor 

knowledge of wxMaxima) and there is still plenty of 

room for improvement, it does not take much time (less 

than 20 seconds on a 2.93 GHz Intel® processor) to 

carry out all the calculations. This implies that Maxima 

is a powerful tool even for amateur users such as the 

author. 

 

5. Concluding remarks 

A general formula for the calculation of the 

meridian arc length has been presented. The derived 

formula is very concise and suitable for implementation 

as a computer program, as well, due to its simple 

expression and easy handling. 

The derived formula has also been applied to a 

core part of the calculation for coordinate conversion in 

the Gauss-Krüger projection. For the readers’ immediate 

use, a practical example of the calculation using 

wxMaxima has also been displayed. This confirmed that 
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an advantage of the explicit general formula is its easy 

implementation on the computer algebra system 

Maxima. 
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APPENDIX: A simple proof of the relation between formulas (1) and (7) 

First, after performing integration by parts and then inserting terms that cancel each other, we have 
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Bearing the relation  22 sincos2cos   in mind, we obtain 
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where  eF ,  and  eE ,  denote the first and the second kind of incomplete elliptic integral, respectively. On the 

other hand, it follows from the definition of  eF ,  that 
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Rearranging the above results, we arrive at the final conclusion as 
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