Skip to main content

Cytoplasm: ER Stress

  • Living reference work entry
  • First Online:
Molecular Biology
  • 556 Accesses

Introduction

ER Stress and the Environment

Abiotic stresses brought about by drought, heat, freezing, or saline conditions result in some of the greatest crop losses worldwide. The frequency of adverse conditions due to climate change presents serious challenges to global agriculture, which already suffers annual crop losses estimated at billions of dollars (Mittler and Blumwald 2010). Therefore, there is great interest in understanding how plants respond to stress and in endowing crop plants with traits for stress tolerance.

This chapter deals with a type of plant stress called endoplasmic reticulum (ER) stress. In learning about what plant cells do, the ER is sometimes overlooked – the focus is usually on chloroplasts, mitochondria, nuclei, or cell walls. Nonetheless, the ER is important in stress management because the ER senses abiotic and biotic stresses and responds to them.

The ER plays a key role in many cellular activities because, among other things, the ER is the gateway...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aebi M, Bernasconi R, Clerc S, Molinari M. N-glycan structures: recognition and processing in the ER. Trends Biochem Sci. 2010;35:74–82.

    Article  CAS  PubMed  Google Scholar 

  • Anelli T, Sitia R. Protein quality control in the early secretory pathway. EMBO J. 2008;27:315–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braakman I, Bulleid NJ. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 2011;80:71–99.

    Article  CAS  PubMed  Google Scholar 

  • Brodsky JL, Wojcikiewicz RJ. Substrate-specific mediators of ER associated degradation (ERAD). Curr Opin Cell Biol. 2009;21:1–6.

    Article  Google Scholar 

  • Brown MS, Ye J, Rawson RB, Goldstein JL. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000;100:391–8.

    Article  CAS  PubMed  Google Scholar 

  • Caramelo JJ, Parodi AJ. Getting in and out from calnexin/calreticulin cycles. J Biol Chem. 2008;283:10221–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caro LG, Palade GE. Protein synthesis, storage, and discharge in the pancreatic exocrine cell. An autoradiographic study. J Cell Biol. 1964;20:473–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, Tyler RE, Greenblatt EJ, Harper JW, Kopito RR. Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol. 2012;14:93–105.

    Article  CAS  Google Scholar 

  • Di Cola A, Frigerio L, Lord JM, Roberts LM, Ceriotti A. Endoplasmic reticulum-associated degradation of ricin A chain has unique and plant-specific features. Plant Physiol. 2005;137:287–96.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gething MJ. Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol. 1999;10:465–72.

    Article  CAS  PubMed  Google Scholar 

  • Hammond C, Helenius A. Folding of VSV G protein: sequential interaction with BiP and calnexin. Science. 1994;266:456–8.

    Article  CAS  PubMed  Google Scholar 

  • Hebert DN, Bernasconi R, Molinari M. ERAD substrates: which way out? Semin Cell Dev Biol. 2010;21:526–32.

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Li J. The protein quality control of plant receptor-like kinases in the endoplasmic reticulum. In: Tax F, Kemmerling B, editors. Receptor-like Kinases in Plants. Berlin: Springer; 2012. p. 275–307.

    Google Scholar 

  • Howell SH. ER stress responses in plants. Annu Rev Plant Biol. 2013;64:477–99.

    Article  CAS  PubMed  Google Scholar 

  • Initiative TA. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815.

    Article  Google Scholar 

  • Jurgens G. Membrane trafficking in plants. Annu Rev Cell Dev Biol. 2004;20:481–504.

    Article  PubMed  Google Scholar 

  • Keenan RJ, Freymann DM, Stroud RM, Walter P. The signal recognition particle. Annu Rev Biochem. 2001;70:755–75.

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–64.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Bassham DC. Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol. 2011;63:215–37.

    Article  Google Scholar 

  • Lupattelli F, Pedrazzini E, Bollini R, Vitale A, Ceriotti A. The rate of phaseolin assembly Is controlled by the glucosylation state of Its N-linked oligosaccharide chains. Plant Cell. 1997;9:597–609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol. 2010;61:443–62.

    Article  CAS  PubMed  Google Scholar 

  • Mori K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem. 2009;146:743–50.

    Article  CAS  PubMed  Google Scholar 

  • Ruddock LW, Molinari M. N-glycan processing in ER quality control. J Cell Sci. 2006;119:4373–80.

    Article  CAS  PubMed  Google Scholar 

  • Shao S, Hegde RS. Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol. 2011;27:25–56.

    Article  CAS  PubMed  Google Scholar 

  • Totani K, Ihara Y, Tsujimoto T, Matsuo I, Ito Y. The recognition motif of the glycoprotein-folding sensor enzyme UDP-Glc:glycoprotein glucosyltransferase. Biochemistry. 2009;48:2933–40.

    Article  CAS  PubMed  Google Scholar 

  • Vierstra RD. The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol. 2012;160(1):2–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walter P. Walking along the serendipitous path of discovery. Mol Biol Cell. 2010;21:15–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Howell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Howell, S. (2014). Cytoplasm: ER Stress. In: Howell, S. (eds) Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0263-7_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0263-7_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4939-0263-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics