Skip to main content

Ophthalmologic Concerns

  • Chapter
  • First Online:
Principles of Clinical Medicine for Space Flight

Abstract

This chapter reviews a wide spectrum of ophthalmic issues associated with space flight operations. Current vision standards for space flight and vision demographics are discussed, followed by clinical, anatomic, and physiologic conditions that could affect space flight duties. We will describe more traditional methods of visual correction to include spectacles and contact lenses as well as the utility of several methods of surgical correction. We will also include a discussion of anatomic changes observed in astronauts following long-duration space flight to include disc edema, globe flattening, and hyperopic shifts and review the ground-based and in-flight testing used to study these anomalies. Finally, we discuss common ocular emergencies that could occur during space operations. This chapter focuses primarily on ocular abnormalities that might be expected in healthy subjects during exposure to weightlessness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NASA Crewmembers Medical Standards Volume 1 – Selection and Periodic Certification, July 2007 (OCHMO 80771201MED).

    Google Scholar 

  2. Medical Evaluation Documents (MED) Volume A – Medical Standards for ISS Crewmembers, Rev 3.1, Oct 2010 (SSP50667).

    Google Scholar 

  3. NASA. Astronaut Medical Standards, Selection and Annual Medical Certification, Payload Specialist – Class III. Houston: NASA Johnson Space Center; 1997. JSC 25396.

    Google Scholar 

  4. Porter J, Gibson CR, Strauss S. Determining spherical power correction for astronaut training underwater. Optom Vis Sci. 2011;88(9):1119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schanzlin DJ, Santos VR, Waring GO III, et al. Diurnal change in refraction, corneal curvature, visual acuity, and intraocular pressure after radial keratotomy in the PERK study. Ophthalmology. 1986;93:167–75.

    Article  CAS  PubMed  Google Scholar 

  6. Snyder RP, Klein P, Solomon J. The possible effect of barometric pressure on the corneas of an RK patient: a case report. Intern Cont Lens Clinics. 1988;15:130–2.

    Google Scholar 

  7. White LJ, Mader TH. Refractive changes with increasing altitude after radial keratotomy. Am J Ophthalmol. 1993;115:821–3.

    Article  CAS  PubMed  Google Scholar 

  8. Mader TH, White LJ. Refractive changes at extreme altitude after radial keratotomy. Am J Ophthalmol. 1995;119:733–7.

    Article  CAS  PubMed  Google Scholar 

  9. Mader TH, Blanton CL, Gilbert BN, et al. Refractive changes during 72-hour exposure to high altitude after refractive surgery. Ophthalmology. 1996;103:1188–95.

    Article  CAS  PubMed  Google Scholar 

  10. Simsek S, Demirok A, Cinal A, Yasar T, Yilmaz O. The effect of altitude on radial keratotomy. Japan J Ophthalmol. 1998;42:119–23.

    Article  CAS  Google Scholar 

  11. Winkle RK, Mader TH, Parmley VC, et al. The etiology of refractive changes at high altitude following radial keratotomy: hypoxia versus hypobaria. Ophthalmology. 1998;105:282–6.

    Article  CAS  PubMed  Google Scholar 

  12. Bosch MM, Barthelmes D, Merz TM, et al. New insights into changes in corneal thickness in healthy mountaineers during a very-high-altitude climb to Mount Muztagh Ata. Arch Ophthalmol. 2010;128:184–9.

    Article  PubMed  Google Scholar 

  13. Mader TH, White LJ. Corneal thickness changes in very-high-altitude mountaineers. Arch Ophthalmol. 2010;128(9):1224–5.

    Article  PubMed  Google Scholar 

  14. Ng J, White LJ, Parmley VC, et al. Effects of simulated high altitude on patients who have had radial keratotomy. Ophthalmology. 1996;103:452–7.

    Article  CAS  PubMed  Google Scholar 

  15. White LJ, Mader TH. Effects of hypoxia and high altitude following refractive surgery. Ophthalmic Prac. 1997;15:174–8.

    Google Scholar 

  16. Schallhorn SC, Blanton CL, Kaupp SE, et al. Preliminary results of photorefractive keratectomy in active-duty United States Navy personnel. Ophthalmology. 1996;103:5–22.

    Article  CAS  PubMed  Google Scholar 

  17. Stanley PF, Tanzer DJ, Schallhorn SC. Laser refractive surgery in the United States Navy. Curr Opin Ophthalmol. 2008;19(4):321–4.

    Article  PubMed  Google Scholar 

  18. Maguire L. Keratorefractive surgery, success, and the public health. Am J Ophthalmol. 1994;117:394–8.

    Article  CAS  PubMed  Google Scholar 

  19. Baron WS, Munnerlyn C. Predicting visual performance following excimer photorefractive keratectomy. J Refract Corneal Surg. 1992;8:355–62.

    Article  CAS  Google Scholar 

  20. Maguire LJ, Zabel RW, Parker P, et al. Topography and raytracing analysis of patients with excellent visual acuity 3 months after excimer laser photorefractive keratectomy for myopia. J Refract Corneal Surg. 1991;7:122–8.

    Article  CAS  Google Scholar 

  21. Camp JJ, Maguire LJ, Cameron BM, et al. A computer model for the evaluation of the effect of corneal topography on optical performance. Am J Ophthalmol. 1990;109:379–86.

    Article  CAS  PubMed  Google Scholar 

  22. Gartry DS, Kerr-Muir MG, Marshall J. Excimer laser photorefractive keratectomy. 18 month follow-up. Ophthalmology. 1990;99:1209.

    Article  Google Scholar 

  23. Kim JH, Sah WJ, Kim MS, et al. Three year results of photorefractive keratectomy for myopia. J Refract Surg. 1995;11:S248–52.

    Article  CAS  PubMed  Google Scholar 

  24. O’Brart DP, Lohmann CP, Fitzke FW, et al. Discrimination between the origins and functional implications of haze and halo at night after photorefractive keratectomy. J Refract Corneal Surg. 1994;10:S281.

    PubMed  Google Scholar 

  25. Wilson SE, Klyce SD, McDonald MB, et al. Changes in corneal topography after excimer laser photorefractive keratectomy for myopia. Ophthalmology. 1991;98:1338–47.

    Article  CAS  PubMed  Google Scholar 

  26. Tengroth B, Epstein D, Fagerholm P, et al. Excimer laser photorefractive keratectomy for myopia. Ophthalmology. 1993;100:739–45.

    Article  CAS  PubMed  Google Scholar 

  27. Snibson GR, Carson CA, Aldred GF, et al. One-year evaluation of excimer laser photorefractive keratectomy for myopia and myopic astigmatism. Arch Ophthalmol. 1995;113:994–1000.

    Article  CAS  PubMed  Google Scholar 

  28. Caubet E. Cause of subepithelial corneal haze over 18 months after keratectomy for myopia. J Refract Corneal Surg. 1993;9:S65–70.

    Article  CAS  Google Scholar 

  29. Maguen E, Salz JJ, Nesburn AB, et al. Results of excimer laser photorefractive keratectomy for the correction of myopia. Ophthalmology. 1994;101:1548–57.

    Article  CAS  PubMed  Google Scholar 

  30. Roberts CW, Koester CJ. Optical zone diameters for photorefractive corneal surgery. Invest Ophthalmol Vis Sci. 1993;34:2275–81.

    CAS  PubMed  Google Scholar 

  31. Heitzmann J, Binder PS, Kassar BS, Nordan LT. The correction of high myopia using the excimer laser. Ophthalmology. 1993;111:1627–34.

    CAS  Google Scholar 

  32. Orssaud C, Ganem S, Binaghi M, et al. Photorefractive keratectomy in 176 eyes: 1-year follow-up. J Refract Corneal Surg. 1994;10:S199–205.

    CAS  PubMed  Google Scholar 

  33. Mader TH. Bilateral photorefractive keratectomy with intentional unilateral undercorrection performed on an aircraft pilot (guest editorial). J Cataract Refract Surg. 1997;23:145–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kaiserman I, Hazarbassanov R, Varssano D, et al. Contrast sensitivity after wave front-guided LASIK. Ophthalmology. 2004;111:454–7.

    Article  PubMed  Google Scholar 

  35. Schallhorn SC, Farjo AA, Huang D, et al. Wave front-guided LASIK for the correction of primary myopia and astigmatism; a report by the American Academy of Ophthalmology (Ophthalmic Technology Assessment). Ophthalmology. 2008;1249-61(2):115.

    Google Scholar 

  36. Gibson CR, Mader TH, Schallhorn S, et al. The Visual stability of laser vision correction in an astronaut on a Soyuz Mission to the International Space Station (ISS). J Cataract Refract Surg. 2012;38:1486–91.

    Article  PubMed  Google Scholar 

  37. Davidorf JM. LASIK at 16,000 feet (letter to the editor). Ophthalmology. 1997;104:565–6.

    Article  CAS  PubMed  Google Scholar 

  38. Mader TH, Parmley VC, White LJ. Authors’ reply to LASIK at 16,000 feet (letter). Ophthalmology. 1997;104:566.

    Article  Google Scholar 

  39. White LJ, Mader TH. Refractive changes at high altitude after LASIK (letter). Ophthalmology. 2000;107:2118.

    Article  CAS  PubMed  Google Scholar 

  40. Boes DA, Omura A, Hennessy MJ. The effective of high altitude exposure on myopic laser in situ keratomileusis. J Caratact Refract Surg. 2001;27:1937–41.

    Article  CAS  Google Scholar 

  41. Dimmig JW, Tabin G. The ascent of Mount Everest following laser in situ keratomileusis. J Refract Surg. 2003;19:48–51.

    Article  PubMed  Google Scholar 

  42. Nelson ML, Brady S, Mader TH, et al. Refractive changes caused by hypoxia after laser in situ keratomileusis surgery. Ophthalmology. 2001;108:542–4.

    Article  CAS  PubMed  Google Scholar 

  43. Krueger RR, Burris TE. Intrastromal corneal ring technology. Int Ophthalmol Clin. 1996;36:89–106.

    Article  CAS  PubMed  Google Scholar 

  44. Mader TH, Carey WG, Friedl KE, et al. Intraocular lenses in aviators: a review of the US Army experience. Aviat Space Environ Med. 1987;58:690–4.

    CAS  PubMed  Google Scholar 

  45. Liddy BS, Boyd K, Takahashi GY. Cataracts, intraocular lens implants, and a flying career. Aviat Space Environ Med. 1990;61:660–1.

    CAS  PubMed  Google Scholar 

  46. Moorman DL, Green RP Jr. Cataract surgery and intraocular lenses in military aviators. Aviat Space Environ Med. 1992;63:302–7.

    CAS  PubMed  Google Scholar 

  47. Loewenstein A, Geyer O, Biger Y, et al. Intraocular lens in a fighter aircraft pilot. Brit J Ophthalmol. 1991;75:752.

    Article  CAS  Google Scholar 

  48. Mader TH, Koch DD, Manuel K, Gibson CR, Effenhauser RK, Musgrave S. Stability of vision in an astronaut with bilateral intraocular lenses during space flight. Am J Ophthalmol. 1999;127:342–3.

    Article  CAS  PubMed  Google Scholar 

  49. Jones JA, McCarten M, Manuel K, et al. Cataract formation mechanisms and risk in aviation and space crews. Aviat Space Environ Med. 2007;78:A56–66.

    Article  PubMed  Google Scholar 

  50. Mader TH, Gibson CR, Pass AF, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118:2058–69.

    Article  PubMed  Google Scholar 

  51. Kalina RE, Mills RP. Acquired hyperopia with choroidal folds. Ophthalmology. 1980;87:44–50.

    Article  CAS  PubMed  Google Scholar 

  52. Lavinsky J, Lavinsky D, Lavinsky F, Frutuoso A. Acquired choroidal folds: a sign of idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol. 2007;245:883–8.

    Article  PubMed  Google Scholar 

  53. Friedman D. Idiopathic intracranial hypertension. Curr Pain Headache Rep. 2007;11:62–8.

    Article  PubMed  Google Scholar 

  54. Griebel SR, Kosmorsky GS. Choroidal folds associated with increased intracranial pressure. Am J Ophthalmol. 2000;129:513–6.

    Article  CAS  PubMed  Google Scholar 

  55. Sharma M, Volpe NJ, Patel T, Kimmel A. Intracranial hypertension associated with acquired hyperopia and choroidal folds. Retina. 1999;19:260–2.

    Article  CAS  PubMed  Google Scholar 

  56. Jacobson DM. Intracranial hypertension and the syndrome of acquired hyperopia with choroidal folds. J Neuroophthalmol. 1995;15:178–85.

    CAS  PubMed  Google Scholar 

  57. Cassidy LM, Sanders MD. Choroidal folds and papilloedema. Br J Ophthalmol. 1999;83:1139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dailey RA, Mills RP, Stimac GK, et al. The natural history and CT appearance of acquired hyperopia with choroidal folds. Ophthalmology. 1986;93:1336–42.

    Article  CAS  PubMed  Google Scholar 

  59. Guiffre G, Distefano MG. Optical coherence tomography of chorioretinal and choroidal folds. Acta Ophthalmol Scand. 2007;85:333–6.

    Article  Google Scholar 

  60. Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol. 1993;116:548–56.

    Article  CAS  PubMed  Google Scholar 

  61. Tso MO, Hayreh SS. Optic disc edema in raised intracranial pressure. IV. Axoplasmic transport in experimental papilledema. Arch Ophthalmol. 1977;95:1458–62.

    Article  CAS  PubMed  Google Scholar 

  62. Iwasaki K, Levine BD, Zhang R, et al. Human cerebral autoregulation before, during and after spaceflight. J Physiol. 2007;579:799–810.

    Article  CAS  PubMed  Google Scholar 

  63. Frey MA, Mader TH, Bagian JP, et al. Cerebral blood velocity and other cardiovascular responses to 2 days of head-down tilt. J Appl Physiol. 1993;74:319–25.

    Article  CAS  PubMed  Google Scholar 

  64. Thornton WE, Hoffler GW, Rummel JA. Anthropometric changes and fluid shifts. In: Johnston R, Dietlein L, editors. Biomedical results from Skylab. Washington, DC: Scientific and Technical Information Office, NASA; 1977. Available at: http://lsda.jsc.nasa.gov/books/skylab//Ch32.htm. Accessed 29 May 2011.

  65. Arbeille P, Fomina G, Roumy J, et al. Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and space flights. Eur J Appl Physiol. 2001;86:157–68.

    Article  CAS  PubMed  Google Scholar 

  66. Harris BA Jr, Billica RD, Bishop SL, et al. Physical examination during space flight. Mayo Clin Proc. 1997;72:301–8.

    Article  PubMed  Google Scholar 

  67. Herault S, Fomina G, Alferova I, et al. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol. 2000;81:384–90.

    Article  CAS  PubMed  Google Scholar 

  68. Davson H, Domer FR, Hollingsworth JR. The mechanism of drainage of the cerebrospinal fluid. Brain. 1973;96:329–36.

    Article  CAS  PubMed  Google Scholar 

  69. Andersson N, Malm J, Eklund A. Dependency of cerebrospinal fluid outflow resistance on intracranial pressure. J Neurosurg. 2008;109:918–22.

    Article  PubMed  Google Scholar 

  70. Alperin N, Lee SH, Mazda M, et al. Evidence for the importance of extracranial venous flow in patients with idiopathic intracranial hypertension (IIH). Acta Neurochir Suppl. 2005;95:129–32.

    Article  CAS  PubMed  Google Scholar 

  71. Kapoor KG, Katz SE, Grzybowski DM, Lubow M. Cerebrospinal fluid outflow: an evolving perspective. Brain Res Bull. 2008;77:327–34.

    Article  PubMed  Google Scholar 

  72. Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR. Orbital and intracranial effects of microgravity: findings at 3-T MR imaging. Radiology. 2012;263:1–9.

    Article  Google Scholar 

  73. Wall M. Idiopathic intracranial hypertension. Neuro Clin. 2010;28(3):593–617.

    Article  Google Scholar 

  74. Killer HE, Jaggi GP, Flammer J, et al. The optic nerve: a new window into cerebrospinal fluid composition? Brain. 2006;129:1027–30.

    Article  CAS  PubMed  Google Scholar 

  75. Killer HE, Jaggi GP, Flammer J, et al. Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain. 2007;130:514–20.

    Article  CAS  PubMed  Google Scholar 

  76. Kelman SE, Sergott RC, Cioffi GA, et al. Modified optic nerve decompression in patients with functioning lumboperitoneal shunts and progressive visual loss. Ophthalmology. 1991;98:1449–53.

    Article  CAS  PubMed  Google Scholar 

  77. Killer HE, Jaggi GP, Miller NR. Papilledema revisited: is its pathophysiology really understood? Clin Exp Ophthalmol. 2009;37:444–7.

    Article  PubMed  Google Scholar 

  78. Killer HE, Subramanian PS. Compartmentalized cerebral spinal fluid. Int Ophthalmol Clin. 2014;54(1):95–102.

    Article  PubMed  Google Scholar 

  79. Mader TH, Gibson CR, Pass AF, et al. Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol. 2013;33(3):249–55.

    Article  PubMed  Google Scholar 

  80. Mader TH, Gibson CR, Lee AG, et al. Unilateral loss of spontaneous venous pulsations in an astronaut. J Neuroophthalmol. 2015;35(2):226–7.

    Article  PubMed  Google Scholar 

  81. Draeger J, Wirt H, Schwartz R. Tonometry under microgravity conditions. In: Sahm PR, Jansen R, Keller MH, editors. Proceedings of the Norderney Symposium on Scientific Results of the German Spacelab Mission: D1, Nordenerney, Germany, August 27–29, 1986. Koln: Wissenschaftliche Projektführung DI c/o DFVLR; 1987. p. 503–9.

    Google Scholar 

  82. Mader TH, Taylor GR, Hunter N, et al. Intraocular pressure, retinal vascular, and visual acuity changes during 48 hours of 10 degrees head-down tilt. Aviat Space Environ Med. 1990;61:810–3.

    CAS  PubMed  Google Scholar 

  83. Chiquet C, Custaud MA, Le Traon AP, et al. Changes in intraocular pressure during prolonged (7-day) head-down tilt bedrest. J Glaucoma. 2003;12:204–8.

    Article  PubMed  Google Scholar 

  84. Drozdova NT, Grishin EP. State of the visual analyzer during hypokinesia [in Russian]. Kosm Biol Med. 1972;6(4):46–9.

    CAS  PubMed  Google Scholar 

  85. Mader TH, Gibson CR, Caputo M, et al. Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am J Ophthalmol. 1993;115:347–50.

    Article  CAS  PubMed  Google Scholar 

  86. Nicogossian AE, Parker JF Jr. Space physiology and medicine. Washington, DC: NASA, Technical Information Branch; 1982;158,165, 166. NASA SP-447.

    Google Scholar 

  87. Costa VP, Arcieri ES. Hypotony maculopathy. Acta Ophthalmol Scand. 2007;85:586–97.

    Article  PubMed  Google Scholar 

  88. Westfall AC, Ng JD, Samples JR, Weissman JL. In reply to: Brodsky MC. Flattening of the posterior sclera: hypotony or elevated intracranial pressure [letter]? Am J Ophthalmol. 2004;138:511–2.

    Article  Google Scholar 

  89. Berdahl J, Fleischman D, Allingham RR, Fautsch M. Disc swelling and space flight. (letter to the editor). Ophthalmology. 2012;119(6):1290.

    Article  PubMed  Google Scholar 

  90. Draeger J, Wirt H, Schwartz R. Tonometry under microgravity conditions. In: Sahm PR, Jansen R, Keller MH, editors. Proceedings of the Norderney Symposium on Scientific Results of the German Spacelab Mission D-1. 27–29 August 1986; Norderney, Germany. Koln: Wissenschaftliche Projektfuhrung D1; 1987. p. 503–9.

    Google Scholar 

  91. Draeger J, Wirt H, Schwartz RTOMEX, Messung d. Augeninnendrucks unter micro-G Bedingungen [“TOMEX” monitoring of intraocular pressure under microG conditions]. Naturwissenschaften. 1986;73:450–2.

    Article  CAS  PubMed  Google Scholar 

  92. Draeger J, Schwartz R, Groenhoff S, et al. Self-tonometry under microgravity conditions. Clin Investig. 1993;71:700–3.

    Article  CAS  PubMed  Google Scholar 

  93. Draeger J, Schwartz R, Groenhoff S, Stern C. Self tonometry during the German 1993 Spacelab D2 mission. Ophthalmologe. 1994;91(5):697–9.

    CAS  PubMed  Google Scholar 

  94. Chung K, Woo SF, Yi S, et al. Diurnal pattern of intraocular pressure is affected by microgravity when measured in space with the pressure phosphene tonometer (PPT). J Glaucoma. 2011;20:488–91.

    Article  PubMed  Google Scholar 

  95. Hoffler GW, Bergman SA, Nicogossian AE. In flight lower limb volume measurements. In: Nicogossian AE, editor. The Apollo-Soyuz test project medical report. Washington, DC: US Government Printing Office; 1977. p. 63–8. NASA SP-411.

    Google Scholar 

  96. Thornton WE, Hoffler GW, Rummel JA. Anthropometric changes and fluid shifts. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington, DC: US Government Printing Office; l977. p. 886–90. NASA SP-377.

    Google Scholar 

  97. Smith TJ, Lewis J. Effective inverted body position on intraocular pressure. Am J Ophthalmol. 1985;99:618–9.

    Google Scholar 

  98. Mader TH. Intraocular pressure in microgravity. J Clin Pharmacol. 1991;31:947–50.

    Article  CAS  PubMed  Google Scholar 

  99. Moses RA, Hart WM, editors. Adler’s physiology of the eye. St. Louis: C.V. Mosby; 1987. p. 229–38.

    Google Scholar 

  100. Pattinson TJ, Gibson CR, Manuel FK, et al. The effects of betaxolol hydrochloride ophthalmic solution on intraocular pressures during transient microgravity. Aviat Space Environ Med. 1999;70:1012–7.

    CAS  PubMed  Google Scholar 

  101. Silver DM, Geyer O. Pressure-volume relation for the living human eye. Curr Eye Res. 2000;20:115–20.

    Article  CAS  PubMed  Google Scholar 

  102. Kergoat H, Lovasik JV. Seven-degree head-down tilt reduces choroidal pulsatile ocular blood flow. Aviat Space Environ Med. 2005;76:930–4.

    PubMed  Google Scholar 

  103. Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. Radiat Res. 2001;156:460–6.

    Article  CAS  PubMed  Google Scholar 

  104. Chylack LT, Peterson LE, Feiveson AH, et al. NASA Study of cataract in astronauts (NASCA) Report 1: cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res. 2009;172:10–20.

    Article  CAS  PubMed  Google Scholar 

  105. Schein OD, Glynn RJ, Poggio EC, et al. The relative risk of ulcerative keratitis among users of daily wear and extended wear soft contact lenses. N Engl J Med. 1989;321:773–8.

    Article  CAS  PubMed  Google Scholar 

  106. Matthews TD, Frazer DG, Minassian DC, et al. The risks of keratitis and patterns of use with disposable contact lenses. Arch Ophthalmol. 1992;110:1559–62.

    Article  CAS  PubMed  Google Scholar 

  107. Buehler PO, Schein OD, Stamler JF, et al. The increased risk of ulcerative keratitis among disposable soft contact lens users. Arch Ophthalmol. 1992;110:1555–8.

    Article  CAS  PubMed  Google Scholar 

  108. Willcox MD. Management and treatment of contact lens-related Pseudomonas keratitis. Clinc Ophthalmol. 2012;6:919–24.

    Article  CAS  Google Scholar 

  109. Robertson DM, Petroll WM, Jester JV, Cavanagh HD. Current concepts: contact lens related Pseudomonas keratitis. Cont Lens Anterior Eye. 2007;30(2):94–107.

    Article  PubMed  Google Scholar 

  110. Robertson DM, Petroll WM, Jester JV, Cavanagh HD. The role of contact lens type, oxygen transmission, and care-related solutions in mediating epithelial homeostasis and pseudomonas binding to corneal cells: an overview. Eye Contact Lens. 2007;33:394–8.

    Article  PubMed  Google Scholar 

  111. Hyndiuk RK, Eiferman RA, Caldwell DR, et al. Comparison of ciprofloxacin ophthalmic solution 0.3% to fortified tobramycin-cefazolin in treating bacterial corneal ulcers. Ophthalmology. 1996;103:1854–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mader, T.H., Gibson, C.R., Manuel, F.K. (2019). Ophthalmologic Concerns. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics