Skip to main content

Diagnostic Imaging in Space Medicine

  • Chapter
  • First Online:
Principles of Clinical Medicine for Space Flight

Abstract

Each space mission is a defined part of an astronaut’s lifetime. The practice of space medicine, however, involves timeframes and matters much broader than the actual flights and deals with known deviations and risks, as well as with stochastic injury or illness. Practitioners of space medicine, like their colleagues in other medical disciplines, use imaging for purposes of primary and secondary prevention and diagnostic assessment and to guide and follow therapeutic interventions. Imaging also helps to visualize variable acute and chronic effects of exposure to weightlessness that meld into the continuity of lifetime health and physiological patterns of the individual and to control health and medical risks inherent in this occupational setting, including those related to the technical systems of the spacecraft.

All medical considerations related to a given astronaut are modulated by the profile of the mission (including duration), the perception of technical and environmental risks, and the flight program’s risk tolerance. These considerations include the choice of preventive measures and capabilities to monitor health, physical fitness, and environmental conditions and the boundaries of diagnostic and therapeutic measures available onboard.

The utility of imaging in space medicine extends beyond acute medical care. As flight duration and distance from Earth increase and spaceflight physiology is better understood, the occupational medicine dimension of medical monitoring moves to the forefront. Practitioners of space medicine follow the trends in structural and functional adaptations to assure detection of added risks or overt pathology. Another notable development of the recent decades is the gradual transition of crew medical selection and certification standards from a risk-averse and rigid binary system to one that practices assessment of individual risks and aggressive prevention and lifestyle modification measures to reduce them to acceptable levels. The legitimacy of this approach relies on scientifically sound risk quantification, which, in turn, depends on the quality and completeness of objective diagnostic data, including those from diagnostic visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray GW, Sargsyan AE, Davis JR. Clinical risk management approach for long-duration space missions. Aviat Space Environ Med. 2010;81(12):1128–32.

    Article  PubMed  Google Scholar 

  2. Sargsyan AE, Hamilton DR, Melton S, Young, J. The International Space Station ultrasound imaging capability overview for prospective users. Houston: NASA Johnson Space Center; 2006. Report No.: TP-2006-213731, S-989.

    Google Scholar 

  3. Law J, Mathers CH, Fondy SR, Vanderploeg JM, Kerstman EL. NASA’s human system risk management approach and its applicability to commercial spaceflight. Aviat Space Environ Med. 2013;84(1):68–73.

    Article  PubMed  Google Scholar 

  4. Gazenko OG, Grigor’ev AI, Egorov AD. [Medical studies concerning the program of long-term manned space flights on “Saliut-7”-“Soiuz-T” orbital complex]. Kosm Biol Aviakosm Med. 1990;24:9–15.

    Google Scholar 

  5. Atkov OY, Bednenko VS, Fomina GA. Ultrasound techniques in space medicine. Aviat Space Environ Med. 1987;58(9 Pt 2):A69–73.

    PubMed  Google Scholar 

  6. Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakov V, Arbeille P. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol. 2000;81(5):384–90.

    Article  CAS  PubMed  Google Scholar 

  7. Arbeille P, Fomina G, Roumy J, Alferova I, Tobal N, Herault S. Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J Appl Physiol. 2001;86(2):157–68.

    Article  CAS  PubMed  Google Scholar 

  8. Pasdeloup T, Mas M, Stevenin H. Remote assistance experiment during the manned space flight Altair. Acta Astronautica. 1995;36:625–8.

    Article  CAS  PubMed  Google Scholar 

  9. Pourcelot L, Pottier JM, Arbeille P, Patat F, Berson M, Roncin A, et al. [Cardiovascular function in astronauts (Mission STG 51 G--June 1985)]. Bull Acad Natl Med. 1986;170(3–4):341–4.

    Google Scholar 

  10. Jones JA, Kirkpatrick AW, Hamilton DR, Sargsyan AE, Campbell M, Melton S, et al. Percutaneous bladder catheterization in microgravity. Can J Urol. 2007;14(2):3493.

    PubMed  Google Scholar 

  11. Benninger MS, McFarlin K, Hamilton DR, Rubinfeld I, Sargsyan AE, Melton SL, et al. Ultrasonographic evaluation of sinusitis during microgravity in a novel animal model. Arch Otolaryngol Head Neck Surg. 2010;136(11):1094–8.

    Article  PubMed  Google Scholar 

  12. Hamilton DR, Sargsyan AE, Kirkpatrick AW, Nicolaou S, Campbell M, Dawson DL, et al. Sonographic detection of pneumothorax and hemothorax in microgravity. Aviat Space Environ Med. 2004;75(3):272–7.

    PubMed  Google Scholar 

  13. Williams DR, Bashshur RL, Pool SL, Doarn CR, Merrell RC, Logan JS. A strategic vision for telemedicine and medical informatics in space flight. Telemed J E Health. 2000;6(4):441–8.

    Article  CAS  PubMed  Google Scholar 

  14. Jadvar H. Medical imaging in microgravity. Aviat Space Environ Med. 2000;71(6):640–6.

    CAS  PubMed  Google Scholar 

  15. Hart R, Campbell MR. Digital radiography in space. Aviat Space Environ Med. 2002;73(6):601–6.

    PubMed  Google Scholar 

  16. Clifford SM, Crisp D, Fisher DA, Herkenhoff KE, Smrekar SE, Thomas PC, et al. The state and future of Mars polar science and exploration. Icarus. 2000;144(2):210–42.

    Article  CAS  PubMed  Google Scholar 

  17. Houtchens BA. Medical-care systems for long-duration space missions. Clin Chem. 1993;39(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  18. Stewart DF, Lujan BF. Medical concerns for exploration-class missions. Acta Astronaut. 1993;29(8):633–8.

    Article  CAS  PubMed  Google Scholar 

  19. Billica RD, Doarn CR. A health maintenance facility for space station freedom. Cutis. 1991;48(4):315–8.

    CAS  PubMed  Google Scholar 

  20. Pool SL. The health maintenance facility for space station. Rinsho Byori. 1988;36:592–7.

    CAS  PubMed  Google Scholar 

  21. Khan-Mayberry N, James JT, Tyl R, Lam CW. Space toxicology: protecting human health during space operations. Int J Toxicol. 2011;30(1):3–18.

    Article  PubMed  Google Scholar 

  22. Todd P, Sklar V, Ramirez WF, Smith GJ, Morgenthaler GW, McKinnon JT, et al. Inhalation risk in low-gravity spacecraft. Acta Astronaut. 1994;33:305–15.

    Article  CAS  PubMed  Google Scholar 

  23. DeJournette RL. Rocket propellant inhalation in the Apollo-Soyuz astronauts. Radiology. 1977;125(1):21–4.

    Article  CAS  PubMed  Google Scholar 

  24. Ritman EL. Medical x-ray imaging, current status and some future challenges. In: Advances in X-ray analysis, vol 49. JCPDS-International Centre for Diffraction Data 2006 ISSN 1097-0002. p. 1–12.

    Google Scholar 

  25. Fuchs T, Kachelriess M, Kalender WA. Technical advances in multi-slice spiral CT. Eur J Radiol. 2000;36(2):69–73.

    Article  CAS  PubMed  Google Scholar 

  26. RadiologyInfo.org. Radiation Dose in X-Ray and CT Exams. Site sponsored by the American College of Radiology and the Radiological Society of North America. https://www.radiologyinfo.org/en/info.cfm?pg=safety-xray.

  27. Li W, Kezele I, Collins DL, Zijdenbos A, Keyak J, Kornak J, et al. Voxel-based modeling and quantification of the proximal femur using inter-subject registration of quantitative CT images. Bone. 2007;41(5):888–95.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lang TF, Leblanc AD, Evans HJ, Lu Y. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res. 2006;21(8):1224–30.

    Article  PubMed  Google Scholar 

  29. Lang T, Leblanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19(6):1006–12.

    Article  PubMed  Google Scholar 

  30. Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, et al. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone. 1997;20(6):547–51.

    Article  CAS  PubMed  Google Scholar 

  31. Whalen R. Musculoskeletal adaptation to mechanical forces on Earth and in space. Physiologist. 1993;36(1 Suppl):S127–30.

    CAS  PubMed  Google Scholar 

  32. Leblanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013;24(7):2105–14.

    Article  CAS  PubMed  Google Scholar 

  33. Damadian R, Minkoff L, Goldsmith M, et al. Tumor imaging in a live animal by focusing NMR (FONAR). Physiol Chem Phys. 1976;8:61–5.

    CAS  PubMed  Google Scholar 

  34. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.

    Article  PubMed  Google Scholar 

  35. Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR. Orbital and intracranial effects of microgravity: findings at 3-T MR imaging. Radiology. 2012;263(3):819–27.

    Article  PubMed  Google Scholar 

  36. Chen TS, Crues JV III, Ali M, Troum OM. Magnetic resonance imaging is more sensitive than radiographs in detecting change in size of erosions in rheumatoid arthritis. J Rheumatol. 2006;33(10):1957–67.

    PubMed  Google Scholar 

  37. Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg. 1997;87(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  38. Tsung JW, Blaivas M, Cooper A, Levick NR. A rapid noninvasive method of detecting elevated intracranial pressure using bedside ocular ultrasound: application to 3 cases of head trauma in the pediatric emergency department. Pediatr Emerg Care. 2005;21(2):94–8.

    Article  PubMed  Google Scholar 

  39. Karakitsos D, Soldatos T, Gouliamos A, Armaganidis A, Poularas J, Kalogeromitros A, et al. Transorbital sonographic monitoring of optic nerve diameter in patients with severe brain injury. Transplant Proc. 2006;38(10):3700–6.

    Article  CAS  PubMed  Google Scholar 

  40. Geeraerts T, Merceron S, Benhamou D, Vigue B, Duranteau J. Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med. 2008;34(11):2062–7.

    Article  PubMed  Google Scholar 

  41. Geeraerts T, Duranteau J, Benhamou D. Ocular sonography in patients with raised intracranial pressure: the papilloedema revisited. Crit Care. 2008;12(3):150.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Geeraerts T, Dubost C. Theme: neurology--optic nerve sheath diameter measurement as a risk marker for significant intracranial hypertension. Biomark Med. 2009;3(2):129–37.

    Article  PubMed  Google Scholar 

  43. Blaivas M, Theodoro D, Sierzenski PR. A study of bedside ocular ultrasonography in the emergency department. Acad Emerg Med. 2002;9(8):791–9.

    Article  PubMed  Google Scholar 

  44. Hansen HC, Helmke K. The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. Surg Radiol Anat. 1996;18(4):323–8.

    Article  CAS  PubMed  Google Scholar 

  45. ACR Committee on Drugs and Contrast Media. ACR manual on contrast media. Version 10.3. American College of Radiology; 2018. https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf.

  46. Okigawa T, Utsunomiya D, Tajiri S, Okumura S, Sasao A, Wada H, et al. Incidence and severity of acute adverse reactions to four different gadolinium-based MR contrast agents. Magn Reson Med Sci. 2014;13(1):1–6.

    Article  PubMed  Google Scholar 

  47. Bruder O, Schneider S, Nothnagel D, Pilz G, Lombardi M, Sinha A, et al. Acute adverse reactions to gadolinium-based contrast agents in CMR: multicenter experience with 17,767 patients from the EuroCMR Registry. JACC Cardiovasc Imaging. 2011;4(11):1171–6.

    Article  PubMed  Google Scholar 

  48. Prince MR, Zhang H, Zou Z, Staron RB, Brill PW. Incidence of immediate gadolinium contrast media reactions. AJR Am J Roentgenol. 2011;196(2):W138–43.

    Article  PubMed  Google Scholar 

  49. Morgan DE, Spann JS, Lockhart ME, Winningham B, Bolus DN. Assessment of adverse reaction rates during gadoteridol-enhanced MR imaging in 28,078 patients. Radiology. 2011;259(1):109–16.

    Article  PubMed  Google Scholar 

  50. Kanal E, Tweedle MF. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015;275(3):630–4.

    Article  PubMed  Google Scholar 

  51. Rocklage SM, Worah D, Kim SH. Metal ion release from paramagnetic chelates: what is tolerable? Magn Reson Med. 1991;22(2):216–21.

    Article  CAS  PubMed  Google Scholar 

  52. Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015;276(1):228–32.

    Article  PubMed  Google Scholar 

  53. Kanda T, Matsuda M, Oba H, Toyoda K, Furui S. Gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;277(3):924–5.

    Article  PubMed  Google Scholar 

  54. Kanda T, Oba H, Toyoda K, Furui S. Recent advances in understanding gadolinium retention in the brain. AJNR Am J Neuroradiol. 2016;37(1):E1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270(3):834–41.

    Article  PubMed  Google Scholar 

  56. Nelson HD, Haney EM, Chou R, Dana T, Fu R, Bougatsos C. Screening for osteoporosis. Systematic review to update the 2002 U.S. Preventive Services Task Force recommendation. Evidence syntheses 77. Rockville: Agency for Healthcare Research and Quality (US); 2010.

    Google Scholar 

  57. Curry SJ. Screening for Osteoporosis to Prevent Fractures. US Preventive Services Task Force Recommendation Statement JAMA. 2018;319(24):2521–2531. https://doi.org/10.1001/jama.2018.7498.

  58. Jones JA, Johnston S, Campbell M, Miles B, Billica R. Endoscopic surgery and telemedicine in microgravity: developing contingency procedures for exploratory class spaceflight. Urology. 1999;53(5):892–7.

    Article  CAS  PubMed  Google Scholar 

  59. Campbell MR. A review of surgical care in space. J Am Coll Surg. 2002;194(6):802–12.

    Article  PubMed  Google Scholar 

  60. Kirkpatrick AW, Campbell MR, Jones JA, Broderick TJ, Ball CG, McBeth PB, et al. Extraterrestrial hemorrhage control: terrestrial developments in technique, technology, and philosophy with applicability to traumatic hemorrhage control in long-duration spaceflight. J Am Coll Surg. 2005;200(1):64–76.

    Article  PubMed  Google Scholar 

  61. Crump WJ, Levy BJ, Billica RD. A field trial of the NASA Telemedicine Instrument Pack in a family practice. Aviat Space Environ Med. 1996;67(11):1080–5.

    CAS  PubMed  Google Scholar 

  62. Otto C, Comtois JM, Sargsyan A, Dulchavsky A, Rubinfeld I, Dulchavsky S. The Martian chronicles: remotely guided diagnosis and treatment in the arctic circle. Surg Endosc. 2010;24(9):2170–7.

    Article  PubMed  Google Scholar 

  63. Broderick TJ, Harnett BM, Merriam NR, Kapoor V, Doarn CR, Merrell RC. Impact of varying transmission bandwidth on image quality. Telemed J E Health. 2001;7(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  64. Rosser JC Jr, Bell RL, Harnett B, Rodas E, Murayama M, Merrell R. Use of mobile low-bandwith telemedical techniques for extreme telemedicine applications. J Am Coll Surg. 1999;189(4):397–404.

    Article  PubMed  Google Scholar 

  65. Vano-Galvan S, Hidalgo A, Aguayo-Leiva I, Gil-Mosquera M, Rios-Buceta L, Plana MN, et al. [Store-and-forward teledermatology: assessment of validity in a series of 2000 observations]. Actas Dermosifiliogr. 2011;102(4):277–83.

    Google Scholar 

  66. Sargsyan A. Future of the portable ultrasound. In: Levitov A, Dallas P, Slonim T, editors. Bedside ultrasonography in clinical medicine. New York: McGraw Hill; 2010. p. 52–69.

    Google Scholar 

  67. Research and Markets. Global ultrasound devices market—growth, trends and forecasts (2014–2019). Dublin, Ireland; 2015. Report No.: 3241422.

    Google Scholar 

  68. Jensen J, Holten-Lund H, Nilsson R, Hansen M, Larsen U, Domsten R, et al. SARUS: a synthetic aperture real-time ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(9):1838–52.

    Article  PubMed  Google Scholar 

  69. Jensen JA, Oddershede N. Estimation of velocity vectors in synthetic aperture ultrasound imaging. IEEE Trans Med Imaging. 2006;25(12):1637–44.

    Article  PubMed  Google Scholar 

  70. Eranki A, Sikdar S. Experimental characterization of a vector Doppler system based on a clinical ultrasound scanner. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2260–3.

    Google Scholar 

  71. Salim MS, Abd Malek MF, Heng RBW, Juni KM, Sabri N. Capacitive micromachined ultrasonic transducers: technology and application. J Med Ultrasound. 2012;20(1):8–31. ISSN 0929-6441.

    Article  Google Scholar 

  72. Khuri-Yakub BT, Oralkan O, Nikoozadeh A, et al. Capacitive micromachined ultrasonic transducers for medical imaging and therapy. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5987–90.

    CAS  Google Scholar 

  73. Lueck GJ, Kim TK, Burns PN, Martel AL. Hepatic perfusion imaging using factor analysis of contrast enhanced ultrasound. IEEE Trans Med Imaging. 2008;27(10):1449–57.

    Article  CAS  PubMed  Google Scholar 

  74. Tremblay-Darveau C, Williams R, Burns PN. Measuring absolute blood pressure using microbubbles. Ultrasound Med Biol. 2014;40(4):775–87.

    Article  PubMed  Google Scholar 

  75. Reznik N, Lajoinie G, Shpak O, Gelderblom EC, Williams R, de Jong N, et al. On the acoustic properties of vaporized submicron perfluorocarbon droplets. Ultrasound Med Biol. 2014;40(6):1379–84.

    Article  PubMed  Google Scholar 

  76. Burns PN, Wilson SR. Microbubble contrast for radiological imaging: 1. Principles. Ultrasound Q. 2006;22(1):5–13.

    PubMed  Google Scholar 

  77. Goertz DE, Cherin E, Needles A, Karshafian R, Brown AS, Burns PN, et al. High frequency nonlinear B-scan imaging of microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(1):65–79.

    Article  PubMed  Google Scholar 

  78. Benacerraf BR, Benson CB, Abuhamad AZ, Copel JA, Abramowicz JS, Devore GR, et al. Three- and 4-dimensional ultrasound in obstetrics and gynecology: proceedings of the American Institute of Ultrasound in Medicine Consensus Conference. J Ultrasound Med. 2005;24(12):1587–97.

    Article  PubMed  Google Scholar 

  79. Merz E, Abramowicz JS. 3D/4D ultrasound in prenatal diagnosis: is it time for routine use? Clin Obstet Gynecol. 2012;55(1):336–51.

    Article  PubMed  Google Scholar 

  80. Downey DB, Nicolle DA, Levin MF, Fenster A. Three-dimensional ultrasound imaging of the eye. Eye (Lond). 1996;10(Pt 1):75–81.

    Article  Google Scholar 

  81. Downey DB, Nicolle DA, Fenster A. Three-dimensional orbital ultrasonography. Can J Ophthalmol. 1995;30(7):395–8.

    CAS  PubMed  Google Scholar 

  82. Dentinger A, MacDonald M, Ebert D, Garcia K, Sargsyan A. Volumetric ophthalmic ultrasound for inflight monitoring of visual impairment and intracranial pressure. Acta Neurochir Suppl. 2018;126:97–101.

    Article  PubMed  Google Scholar 

  83. Stallkamp J, Wapler M. UltraTrainer—a training system for medical ultrasound examination. Stud Health Technol Inform. 1998;50:298–301.

    CAS  PubMed  Google Scholar 

  84. Jensen JA, Holm O, Jensen LJ, Bendsen H, Nikolov SI, Tomov BG, et al. Ultrasound research scanner for real-time synthetic aperture data acquisition. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(5):881–91.

    Article  PubMed  Google Scholar 

  85. Morgan MR, Broder JS, Dahl JJ, Herickhoff CD. Versatile low-cost volumetric 3-D ultrasound platform for existing clinical 2-D systems. IEEE Trans Med Imaging. 2018;37(10):2248–56.

    Article  PubMed  Google Scholar 

  86. Sargsyan A, Melton S, Hurst V, Martin D. Evaluation of Human Factors, Interfaces, and Remote Guidance Techniques for Collection of Ultrasound Images in Microgravity, NASA CR 208932, KC-135 and Other Microgravity Simulations Summary Report, National Aeronautics and SPace Administration, Houston, USA. Aug 2002.

    Google Scholar 

  87. Melton SL, Hamilton D, Martin D, and Sargsyan A. Remote ultrasound diagnosis for the International Space Station. Telemedicine Journal and e-Health 2001 Summer 7(2):132.

    Google Scholar 

  88. Hurst VW, Peterson S, Garcia K, Ebert D, Ham D, Amponsah D, et al. Concept of operations evaluation for using remote-guidance ultrasound for exploration spaceflight. Aerosp Med Hum Perform. 2015;86(12):1034–8.

    Article  PubMed  Google Scholar 

  89. Vilchis A, Masuda K, Troccaz J, Cinquin P. Robot-based tele-echography: the TER system. Stud Health Technol Inform. 2003;95:212–7.

    PubMed  Google Scholar 

  90. Masuda K, Tateishi N, Kimura E, Ishihara K. Development of a tele-echography system by using an echographic diagnosis robot. Igaku Butsuri. 2003;23(1):24–9.

    PubMed  Google Scholar 

  91. Georgescu M, Sacccomandi A, Baudron B, Arbeille PL. Remote sonography in routine clinical practice between two isolated medical centers and the university hospital using a robotic arm: a 1-year study. Telemed J E Health. 2016;22(4):276–81.

    Article  PubMed  Google Scholar 

  92. Yoshinaga T, Horiguchi T, Miyazaki W, Masuda K. Development of 3D space-sharing interface using augmented reality technology for domestic tele-echography. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6103–6.

    Google Scholar 

  93. Vieyres P, Poisson G, Courreges F, Merigeaux O, Arbeille P. The TERESA project: from space research to ground tele-echography. Ind Rob. 2003;30(1):77–82.

    Article  PubMed  Google Scholar 

  94. Oelze ML, Mamou J. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(2):336–51.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Qin YX, Lin W, Mittra E, Xia Y, Cheng J, Judex S, et al. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound. Acta Astronaut. 2013;92(1):79–88.

    Article  PubMed  Google Scholar 

  96. Baroncelli GI. Quantitative ultrasound methods to assess bone mineral status in children: technical characteristics, performance, and clinical application. Pediatr Res. 2008;63(3):220–8.

    Article  PubMed  Google Scholar 

  97. Dhainaut A, Hoff M, Syversen U, Haugeberg G. Technologies for assessment of bone reflecting bone strength and bone mineral density in elderly women: an update. Womens Health (Lond Engl). 2016;12(2):209–16.

    Article  CAS  Google Scholar 

  98. Krieg MA, Cornuz J, Ruffieux C, Sandini L, Buche D, Dambacher MA, et al. Comparison of three bone ultrasounds for the discrimination of subjects with and without osteoporotic fractures among 7562 elderly women. J Bone Miner Res. 2003;18(7):1261–6.

    Article  CAS  PubMed  Google Scholar 

  99. Krieg MA, Cornuz J, Ruffieux C, Van MG, Buche D, Dambacher MA, et al. Prediction of hip fracture risk by quantitative ultrasound in more than 7000 Swiss women > or =70 years of age: comparison of three technologically different bone ultrasound devices in the SEMOF study. J Bone Miner Res. 2006;21(9):1457–63.

    Article  PubMed  Google Scholar 

  100. Si L, Winzenberg TM, Chen M, Jiang Q, Neil A, Palmer AJ. Screening for osteoporosis in Chinese post-menopausal women: a health economic modelling study. Osteoporos Int. 2016;27(7):2259–69.

    Article  CAS  PubMed  Google Scholar 

  101. Defontaine M, Bonneau S, Padilla F, Gomez MA, Nasser EM, Laugier P, et al. 2D arrays device for calcaneus bone transmission: an alternative technological solution using crossed beam forming. Ultrasonics. 2004;42(1–9):745–52.

    Article  CAS  PubMed  Google Scholar 

  102. Gomez MA, Defontaine M, Giraudeau B, Camus E, Colin L, Laugier P, et al. In vivo performance of a matrix-based quantitative ultrasound imaging device dedicated to calcaneus investigation. Ultrasound Med Biol. 2002;28(10):1285–93.

    Article  CAS  PubMed  Google Scholar 

  103. Ewertsen C, Saftoiu A, Gruionu LG, Karstrup S, Nielsen MB. Real-time image fusion involving diagnostic ultrasound. AJR Am J Roentgenol. 2013;200(3):W249–55.

    Article  PubMed  Google Scholar 

  104. Holupka EJ, Kaplan ID, Burdette EC, Svensson GK. Ultrasound image fusion for external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 1996;35(5):975–84.

    Article  CAS  PubMed  Google Scholar 

  105. Logan JK, Rais-Bahrami S, Turkbey B, Gomella A, Amalou H, Choyke PL, et al. Current status of MRI and ultrasound fusion software platforms for guidance of prostate biopsies. BJU Int. 2013;114(5):641–52.

    Article  Google Scholar 

  106. Marks L, Young S, Natarajan S. MRI-ultrasound fusion for guidance of targeted prostate biopsy. Curr Opin Urol. 2013;23(1):43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Schlaier JR, Warnat J, Dorenbeck U, Proescholdt M, Schebesch KM, Brawanski A. Image fusion of MR images and real-time ultrasonography: evaluation of fusion accuracy combining two commercial instruments, a neuronavigation system and a ultrasound system. Acta Neurochir (Wien). 2004;146(3):271–6.

    Article  CAS  Google Scholar 

  108. Hakime A, Deschamps F, De Carvalho EG, Teriitehau C, Auperin A, De BT. Clinical evaluation of spatial accuracy of a fusion imaging technique combining previously acquired computed tomography and real-time ultrasound for imaging of liver metastases. Cardiovasc Intervent Radiol. 2011;34(2):338–44.

    Article  PubMed  Google Scholar 

  109. Helck A, Notohamiprodjo M, Danastasi M, Meinel F, Reiser M, Clevert DA. Ultrasound image fusion—clinical implementation and potential benefits for monitoring of renal transplants. Clin Hemorheol Microcirc. 2012;52(2–4):179–86.

    Article  CAS  PubMed  Google Scholar 

  110. Sandulescu DL, Dumitrescu D, Rogoveanu I, Saftoiu A. Hybrid ultrasound imaging techniques (fusion imaging). World J Gastroenterol. 2011;17(1):49–52.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhu L, Ding H, Zhu L, Wang G. A robust registration method for real-time ultrasound image fusion with pre-acquired 3D dataset. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:2638–41.

    Google Scholar 

  112. Digital Imaging and Communications in Medicine (DICOM) Homepage. Conf. Proc. IEEE Eng Med. Biol. Soc. 2014. National Electrical Manufacturers Association (NEMA). 2014.

    Google Scholar 

  113. Bogomolov VV, Castrucci F, Comtois JM, Damann V, Davis JR, Duncan JM, et al. International Space Station medical standards and certification for space flight participants. Aviat Space Environ Med. 2007;78(12):1162–9.

    PubMed  Google Scholar 

  114. Billica RD, Voronkov YI, Sargsyan AE, Voronin LI. Medical monitoring in pre- and postflight periods. Space biology and medicine. Joint U.S.-Russian edition. Washington: American Institute of Aeronautics and Astronautics; 2001.

    Google Scholar 

  115. Duncan JM, Bogomolov VV, Sargsyan AE, Pool SL. Medical support of the international space station crews. Space biology and medicine. Joint U.S.-Russian edition. Washington: American Institute of Aeronautics and Astronautics; 2009.

    Google Scholar 

  116. International Space Station Medical Operations Requirements Document, Revision C. ISS MORD. SSP 50260, 4–5. 2006. Houston: International Space Station Program Office; 2012.

    Google Scholar 

  117. Woo KM, Schneider JI. High-risk chief complaints I: chest pain—the big three. Emerg Med Clin North Am. 2009;27(4):685–712, x.

    Article  PubMed  Google Scholar 

  118. Arntfield RT, Millington SJ. Point of care cardiac ultrasound applications in the emergency department and intensive care unit—a review. Curr Cardiol Rev. 2012;8(2):98–108.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schneider C, Nguan C, Longpre M, Rohling R, Salcudean S. Motion of the kidney between preoperative and intraoperative positioning. IEEE Trans Biomed Eng. 2013;60(6):1619–27.

    Article  PubMed  Google Scholar 

  120. Heizmann O, Zidowitz S, Bourquain H, Potthast S, Peitgen HO, Oertli D, et al. Assessment of intraoperative liver deformation during hepatic resection: prospective clinical study. World J Surg. 2010;34(8):1887–93.

    Article  PubMed  Google Scholar 

  121. Vogel MN, Brechtel K, Klein MD, Aschoff P, Horger M, Eschmann S, et al. [Evaluation of different breathing and contrast-protocols concerning quality and alignment in 18F-FDG PET/CT]. Rofo. 2007;179(1):72–9.

    Google Scholar 

  122. Prisk GK. Microgravity and the respiratory system. Eur Respir J. 2014;43(5):1459–71.

    Article  PubMed  Google Scholar 

  123. Krudy AG, Doppman JL, Herdt JR. Failure to detect a 1.5 centimeter lung nodule by chest computed tomography. J Comput Assist Tomogr. 1982;6(6):1178–80.

    Article  CAS  PubMed  Google Scholar 

  124. Ehman RL, McNamara MT, Brasch RC, Felmlee JP, Gray JE, Higgins CB. Influence of physiologic motion on the appearance of tissue in MR images. Radiology. 1986;159(3):777–82.

    Article  CAS  PubMed  Google Scholar 

  125. Larciprete G, Valli E, Meloni P, Malandrenis I, Romanini ME, Jarvis S, et al. Ultrasound detection of the “sliding viscera” sign promotes safer laparoscopy. J Minim Invasive Gynecol. 2009;16(4):445–9.

    Article  PubMed  Google Scholar 

  126. Estenne M, Gorini M, Van MA, Ninane V, Paiva M. Rib cage shape and motion in microgravity. J Appl Physiol (1985). 1992;73(3):946–54.

    Article  CAS  Google Scholar 

  127. Prisk GK. Microgravity. Compr Physiol. 2011;1(1):485–97.

    Article  PubMed  Google Scholar 

  128. Edyvean J, Estenne M, Paiva M, Engel LA. Lung and chest wall mechanics in microgravity. J Appl Physiol (1985). 1991;71(5):1956–66.

    Article  CAS  Google Scholar 

  129. Paiva M, Estenne M, Engel LA. Lung volumes, chest wall configuration, and pattern of breathing in microgravity. J Appl Physiol (1985). 1989;67(4):1542–50.

    Article  CAS  Google Scholar 

  130. Paiva M. Perspectives for studying the respiratory system in microgravity. Bull Eur Physiopathol Respir. 1987;23(5):413–5.

    CAS  PubMed  Google Scholar 

  131. Sa RC, Prisk GK, Paiva M. Microgravity alters respiratory abdominal and rib cage motion during sleep. J Appl Physiol (1985). 2009;107(5):1406–12.

    Article  Google Scholar 

  132. Wantier M, Estenne M, Verbanck S, Prisk GK, Paiva M. Chest wall mechanics in sustained microgravity. J Appl Physiol (1985). 1998;84(6):2060–5.

    Article  CAS  Google Scholar 

  133. Bahadori AA, Van BM, Shavers MR, Dodge C, Semones EJ, Bolch WE. The effect of anatomical modeling on space radiation dose estimates: a comparison of doses for NASA phantoms and the 5th, 50th, and 95th percentile male and female astronauts. Phys Med Biol. 2011;56(6):1671–94.

    Article  PubMed  Google Scholar 

  134. Sargsyan AE, Dulchavsky SA, Jones JA, Hamilton DR, Roden SK, Melton SL, et al. Abdominal imaging with ultrasound on the International Space Station. Aviat Space Environ Med. 2006;77(3):248.

    Google Scholar 

  135. Sargsyan AE, Hamilton DR, Jones JA, Melton S, Whitson PA, Kirkpatrick AW, et al. FAST at MACH 20: clinical ultrasound aboard the International Space Station. J Trauma Acute Care Surg. 2005;58(1):35–9.

    Article  Google Scholar 

  136. Hamilton DR, Sargsyan AE, Fincke EM, Lonchakov YV, Alferova IV, Voronkov YI, et al. Right ventricular tissue Doppler assessment in space during circulating volume modification using the Braslet device. Acta Astronautica. 2012;68(9–10):1501–8.

    Google Scholar 

  137. Hamilton DR, Alferova IV, Sargsyan AE, Fincke EM, Magnus SH, Lonchakov YV, et al. Right ventricular tissue Doppler assessment in space during circulating volume modification using the Braslet device. Acta Astronautica. 2011;68(9-10):1501–8.

    Google Scholar 

  138. Melton S, Sargsyan A, Center LBJS. Evaluation of the human research facility ultrasound with the ISS video system. National Aeronautics and Space Administration, Lyndon B. Johnson Space Center; 2003.

    Google Scholar 

  139. Jones JA, Sargsyan AE, Barr YR, Melton S, Hamilton DR, Dulchavsky SA, et al. Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space. Ultrasound Med Biol. 2009;35(7):1059–67.

    Article  CAS  PubMed  Google Scholar 

  140. Foale CM, Kaleri AY, Sargsyan AE, Hamilton DR, Melton S, Martin D, et al. Diagnostic instrumentation aboard ISS: just-in-time training for non-physician crewmembers. Aviat Space Environ Med. 2005;76(6):594–8.

    PubMed  Google Scholar 

  141. Foale CM, Kaleri AY, Sargsyan AE, Hamilton DR, Melton S, Martin D, Dulchavsky SA. Accelerated Training at Mach 20: A Brief Communication Submitted from the International Space Station. NASA TEchnical Report Server, NASA Johnson Space Center; Houston, TX, United States. 2004; https://ntrs.nasa.gov/search.jsp?R=20050217485.

  142. Kwon D, Bouffard JA, van Holsbeeck M, Sargsyan AE, Hamilton DR, Melton SL, et al. Battling fire and ice: remote guidance ultrasound to diagnose injury on the International Space Station and the ice rink. Am J Surg. 2007;193(3):417–20.

    Article  PubMed  Google Scholar 

  143. Chiao L, Sharipov S, Sargsyan AE, Melton S, Hamilton DR, McFarlin K, et al. Ocular examination for trauma; clinical ultrasound aboard the International Space Station. J Trauma Acute Care Surg. 2005;58(5):885–9.

    Article  Google Scholar 

  144. Fincke EM, Padalka G, Lee D, van Holsbeeck M, Sargsyan AE, Hamilton DR, et al. Evaluation of shoulder integrity in space: first report of musculoskeletal US on the International Space Station. Radiology. 2005;234(2):319–22.

    Article  PubMed  Google Scholar 

  145. Dulchavsky SA, Sargsyan AE, Garcia KM, Melton SL, Ebert D, Hamilton DR. Intuitive ultrasonography for autonomous medical care in limited-resource environments. Acta Astronautica. 2011;68(9):1595–607.

    Article  Google Scholar 

  146. Kirkpatrick AW, Jones JA, Sargsyan A, Hamilton DR, Melton S, Beck G, et al. Trauma sonography for use in microgravity. Aviat Space Environ Med 2007;78(4):A38-A42.

    Google Scholar 

  147. Hamilton DR, Sargsyan AE, Martin DS, Garcia KM, Melton SL, Feiveson A, et al. On-orbit prospective echocardiography on International Space Station crew. Echocardiography. 2011;28(5):491–501.

    Article  PubMed  Google Scholar 

  148. De AG, Clowdsley MS, Singleterry RC, Wilson JW. A new Mars radiation environment model with visualization. Adv Space Res. 2004;34(6):1328–32.

    Article  CAS  Google Scholar 

  149. Singleterry RC Jr, Wilson JW, Shinn JL, Tripathi RK, Thibeault SA, Noor AK, et al. Creation and utilization of a World Wide Web based space radiation effects code: SIREST. Phys Med. 2001;17(Suppl 1):90–3.

    PubMed  Google Scholar 

  150. Aghara SK, Sriprisan SI, Singleterry RC, Sato T. Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes. Life Sci Space Res (Amst). 2015;4:79–91.

    Article  CAS  Google Scholar 

  151. Washburn SA, Blattnig SR, Singleterry RC, Westover SC. Active magnetic radiation shielding system analysis and key technologies. Life Sci Space Res (Amst). 2015;4:22–34.

    Article  CAS  Google Scholar 

  152. International Space Station Technical Specifications. Boeing, https://www.boeing.com/space/international-space-station/#/tech-spec.

  153. Dulchavsky SA, Hamilton DR, Diebel LN, Sargsyan AE, Billica RD, Williams DR. Thoracic ultrasound diagnosis of pneumothorax. J Trauma. 1999;47(5):970–1.

    Article  CAS  PubMed  Google Scholar 

  154. Targhetta R, Bourgeois JM, Chavagneux R, Marty-Double C, Balmes P. Ultrasonographic approach to diagnosing hydropneumothorax. Chest. 1992;101(4):931–4.

    Article  CAS  PubMed  Google Scholar 

  155. Dulchavsky SA, Schwarz KL, Kirkpatrick AW, Billica RD, Williams DR, Diebel LN, et al. Prospective evaluation of thoracic ultrasound in the detection of pneumothorax. J Trauma. 2001;50(2):201–5.

    Article  CAS  PubMed  Google Scholar 

  156. Sargsyan AE, Hamilton DR, Nicolaou S, Kirkpatrick AW, Campbell MR, Billica RD, et al. Ultrasound evaluation of the magnitude of pneumothorax: a new concept. Am Surg. 2001;67(3):232–5.

    CAS  PubMed  Google Scholar 

  157. Kirkpatrick AW, Nicolaou S, Rowan K, Liu D, Cunningham J, Sargsyan AE, et al. Thoracic sonography for pneumothorax: the clinical evaluation of an operational space medicine spin-off. Acta Astronaut. 2005;56(9–12):831–8.

    Article  PubMed  Google Scholar 

  158. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38(4):577–91.

    Article  PubMed  Google Scholar 

  159. Hamilton DR, Sargsyan AE, Kirkpatrick AW, Nicolaou S, Campbell M, Dawson DL, et al. Sonographic detection of pneumothorax and hemothorax in microgravity. Aviat Space Environ Med. 2004;75(3):272–7.

    Google Scholar 

  160. Kirkpatrick A, Hamilton DR, Melton S, Dulchavsky SA, Campbell MR, Sargsyan AE, et al. The fast exam in weightlessness. Acad Emerg Med. 2006;13(3):372.

    Article  Google Scholar 

  161. Kirkpatrick AW, Hamilton DR, Nicolaou S, Sargsyan AE, Campbell MR, Feiveson A, et al. Focused assessment with sonography for trauma in weightlessness: a feasibility study. J Am Coll Surg. 2003;196(6):833–44.

    Article  PubMed  Google Scholar 

  162. Kirkpatrick AW, Nicolaou S, Campbell MR, Sargsyan AE, Dulchavsky SA, Melton S, et al. Percutaneous aspiration of fluid for management of peritonitis in space. Aviat Space Environ Med. 2002;73(9):925–30.

    CAS  PubMed  Google Scholar 

  163. Lai-Fook SJ. Pleural mechanics and fluid exchange. Physiol Rev. 2004;84(2):385–410.

    Article  CAS  PubMed  Google Scholar 

  164. Targhetta R, Chavagneux R, Bourgeois JM, Dauzat M, Balmes P, Pourcelot L. Sonographic approach to diagnosing pulmonary consolidation. J Ultrasound Med. 1992;11(12):667–72.

    Article  CAS  PubMed  Google Scholar 

  165. Yang PC, Luh KT, Chang DB, Yu CJ, Kuo SH, Wu HD. Ultrasonographic evaluation of pulmonary consolidation. Am Rev Respir Dis. 1992;146(3):757–62.

    Article  CAS  PubMed  Google Scholar 

  166. Teigen CL, Maus TP, Sheedy PF II, et al. Pulmonary embolism: diagnosis with contrast-enhanced electron-beam CT and comparison with pulmonary angiography. Radiology. 1995;194:313–9.

    Article  CAS  PubMed  Google Scholar 

  167. Yang PC, Lee LN, Luh KT, Kuo SH, Yang SP. Ultrasonography of Pancoast tumor. Chest. 1988;94(1):124–8.

    Article  CAS  PubMed  Google Scholar 

  168. Yang PC, Luh KT, Lee YC, Chang DB, Yu CJ, Wu HD, et al. Lung abscesses: US examination and US-guided transthoracic aspiration. Radiology. 1991;180(1):171–5.

    Article  CAS  PubMed  Google Scholar 

  169. Boulanger BR, Kearney PA, Brenneman FD, Tsuei B, Ochoa J. Utilization of FAST (Focused Assessment with Sonography for Trauma) in 1999: results of a survey of North American trauma centers. Am Surg. 2000;66(11):1049–55.

    CAS  PubMed  Google Scholar 

  170. Polk JD, Fallon WF Jr. The use of focused assessment with sonography for trauma (FAST) by a prehospital air medical team in the trauma arrest patient. Prehosp Emerg Care. 2000;4(1):82–4.

    Article  CAS  PubMed  Google Scholar 

  171. Polk JD, Fallon WF Jr, Kovach B, Mancuso C, Stephens M, Malangoni MA. The “Airmedical F.A.S.T.” for trauma patients—the initial report of a novel application for sonography. Aviat Space Environ Med. 2001;72(5):432–6.

    CAS  PubMed  Google Scholar 

  172. Kirkpatrick AW, Ng AK, Dulchavsky SA, Lyburn I, Harris A, Torregianni W, Simons RK, Nicolaou S. Sonographic diagnosis of a pneumothorax inapparent on plain radiography: confirmation by computed tomography. J Trauma. 2001;50(4):750–2.

    Article  CAS  PubMed  Google Scholar 

  173. Campbell MR, Billica RD, Johnston SL III. Surgical bleeding in microgravity. Surg Gynecol Obstet. 1993;177(2):121–5.

    CAS  PubMed  Google Scholar 

  174. Campbell MR, Billica RD, Johnston SL III. Animal surgery in microgravity. Aviat Space Environ Med. 1993;64(1):58–62.

    CAS  PubMed  Google Scholar 

  175. Campbell MR. Surgical care in space. Aviat Space Environ Med. 1999;70(2):181–4.

    CAS  PubMed  Google Scholar 

  176. Campbell MR, Billica RD, Jennings R, Johnston S III. Laparoscopic surgery in weightlessness. Surg Endosc. 1996;10(2):111–7.

    Article  CAS  PubMed  Google Scholar 

  177. Campbell MR, Kirkpatrick AW, Billica RD, Johnston SL, Jennings R, Short D, et al. Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space. Surg Endosc. 2001;15(12):1413–8.

    Article  CAS  PubMed  Google Scholar 

  178. Shaffer HA Jr. Perforation and obstruction of the gastrointestinal tract. Assessment by conventional radiology. Radiol Clin North Am. 1992;30(2):405–26.

    PubMed  Google Scholar 

  179. Verroken R, Penninckx F, Van HL, Marchal G, Geboes K, Kerremans R. Diagnostic accuracy of ultrasonography and surgical decision-making in patients referred for suspicion of appendicitis. Acta Chir Belg. 1996;96(4):158–60.

    CAS  PubMed  Google Scholar 

  180. Van HL, Miserez M. Effectiveness of imaging studies in acute appendicitis: a simplified decision model. Eur J Emerg Med. 2000;7(1):25–30.

    Article  Google Scholar 

  181. Lee SL, Ho HS. Ultrasonography and computed tomography in suspected acute appendicitis. Semin Ultrasound CT MR. 2003;24(2):69–73.

    Article  PubMed  Google Scholar 

  182. Puylaert JB. Mesenteric adenitis and acute terminal ileitis: US evaluation using graded compression. Radiology. 1986;161(3):691–5.

    Article  CAS  PubMed  Google Scholar 

  183. Puylaert JB, van der Werf SD, Ulrich C, Veldhuizen RW. Crohn disease of the ileocecal region: US visualization of the appendix. Radiology. 1988;166(3):741–3.

    Article  CAS  PubMed  Google Scholar 

  184. Puylaert JB. Imaging and intervention in patients with acute right lower quadrant disease. Baillieres Clin Gastroenterol. 1995;9(1):37–51.

    Article  CAS  PubMed  Google Scholar 

  185. Lee SL, Walsh AJ, Ho HS. Computed tomography and ultrasonography do not improve and may delay the diagnosis and treatment of acute appendicitis. Arch Surg. 2001;136(5):556–62.

    Article  CAS  PubMed  Google Scholar 

  186. Garcia-Aguayo FJ, Gil P. Sonography in acute appendicitis: diagnostic utility and influence upon management and outcome. Eur Radiol. 2000;10(12):1886–93.

    Article  CAS  PubMed  Google Scholar 

  187. Rosen MP, Ding A, Blake MA, Baker ME, Cash BD, Fidler JL, et al. ACR Appropriateness Criteria(R) right lower quadrant pain—suspected appendicitis. J Am Coll Radiol. 2011;8(11):749–55.

    Article  PubMed  Google Scholar 

  188. Broderick TJ, Privitera MB, Parazynski SE, Cuttino M. Simulated hand-assisted laparoscopic surgery (HALS) in microgravity. J Laparoendosc Adv Surg Tech A. 2005;15(2):145–8.

    Article  PubMed  Google Scholar 

  189. Pilmanis AA, Meissner FW, Olson RM. Left ventricular gas emboli in six cases of altitude-induced decompression sickness. Aviat Space Environ Med. 1996;67(11):1092–6.

    CAS  PubMed  Google Scholar 

  190. Webb JT, Pilmanis AA, Kannan N, Olson RM. The effect of staged decompression while breathing 100% oxygen on altitude decompression sickness. Aviat Space Environ Med. 2000;71(7):692–8.

    CAS  PubMed  Google Scholar 

  191. Webb JT, Krause KM, Pilmanis AA, Fischer MD, Kannan N. The effect of exposure to 35,000 ft on incidence of altitude decompression sickness. Aviat Space Environ Med. 2001;72(6):509–12.

    CAS  PubMed  Google Scholar 

  192. Kumar KV, Billica RD. Classification of decompression sickness. Aviat Space Environ Med. 1995;66(9):912.

    CAS  PubMed  Google Scholar 

  193. Kumar VK, Billica RD, Waligora JM. Utility of Doppler-detectable microbubbles in the diagnosis and treatment of decompression sickness. Aviat Space Environ Med. 1997;68(2):151–8.

    CAS  PubMed  Google Scholar 

  194. Conkin J, Foster PP, Powell MR, Waligora JM. Relationship of the time course of venous gas bubbles to altitude decompression illness. Undersea Hyperb Med. 1996;23(3):141–9.

    CAS  PubMed  Google Scholar 

  195. Conkin J, Powell MR, Foster PP, Waligora JM. Information about venous gas emboli improves prediction of hypobaric decompression sickness. Aviat Space Environ Med. 1998;69(1):8–16.

    CAS  PubMed  Google Scholar 

  196. Fuchs G, Schwarz G, Stein J, Kaltenbock F, Baumgartner A, Oberbauer RW. Doppler color-flow imaging: screening of a patent foramen ovale in children scheduled for neurosurgery in the sitting position. J Neurosurg Anesthesiol. 1998;10(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  197. Montessuit M, Pretre R, Bruschweiler I, Faidutti B. Screening for patent foramen ovale and prevention of paradoxical embolus. Ann Vasc Surg. 1997;11(2):168–72.

    Article  CAS  PubMed  Google Scholar 

  198. Stendel R, Gramm HJ, Schroder K, Lober C, Brock M. Transcranial Doppler ultrasonography as a screening technique for detection of a patent foramen ovale before surgery in the sitting position. Anesthesiology. 2000;93(4):971–5.

    Article  CAS  PubMed  Google Scholar 

  199. Sargsyan AE, Hamilton DR, Melton SL, Amponsah D, Marshall NE, Dulchavsky SA. Ultrasonic evaluation of pupillary light reflex. Crit Ultrasound J. 2009;1(2):53–7.

    Article  Google Scholar 

  200. Geeraerts T. Noninvasive surrogates of intracranial pressure: another piece added with magnetic resonance imaging of the cerebrospinal fluid thickness surrounding the optic nerve. Crit Care. 2013;17(5):187.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Marketing Clearance of Diagnostic Ultrasound Systems and Transducers: Guidance for Industry and Food and Drug Administration Staff. FDA-2017-D-5372. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health. Rockville, USA. 2019.

    Google Scholar 

  202. Safety Group of the British Medical Ultrasound Society. Guidelines for the safe use of diagnostic ultrasound equipment. Ultrasound. 2010;18:52–9.

    Article  Google Scholar 

  203. Jones, JA, Sargsyan, A, Pietrzyk, R, Sams, C, Stepaniak, P and Whitson, P. Urolithiasis and Genitourinary System Issues for Spaceflight, in Renal Stone Disease 2, 2nd International Urolithiasis Research Symposium. Edited by A.P.Evan, J.P. Lingeman, J.A. McAteer and J.C. Williams, Jr. Springer Publisher, New York, New York. 2009; 293–307.

    Google Scholar 

  204. Whitson PA, Pietrzyk RA, Sams CF. Urine volume and its effects on renal stone risk in astronauts. Aviat Space Environ Med. 2001;72(4):368–72.

    CAS  PubMed  Google Scholar 

  205. Whitson PA, Pietrzyk RA, Sams CF. Space flight and the risk of renal stones. J Gravit Physiol. 1999;6(1):87–8.

    Google Scholar 

  206. Whitson PA, Pietrzyk RA, Pak CY, Cintron NM. Alterations in renal stone risk factors after space flight. J Urol. 1993;150(3):803–7.

    Article  CAS  PubMed  Google Scholar 

  207. Coursey CA, Casalino DD, Remer EM, Arellano RS, Bishoff JT, Dighe M, et al. ACR Appropriateness Criteria(R) acute onset flank pain—suspicion of stone disease. Ultrasound Q. 2012;28(3):227–33.

    Article  PubMed  Google Scholar 

  208. Smith-Bindman R, Aubin C, Bailitz J, Bengiamin RN, Camargo CA Jr, Corbo J, et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med. 2014;371(12):1100–10.

    Article  CAS  PubMed  Google Scholar 

  209. Evan AP, Worcester EM, Coe FL, Williams J Jr, Lingeman JE. Mechanisms of human kidney stone formation. Urolithiasis. 2015;43(Suppl 1):19–32.

    Article  PubMed  Google Scholar 

  210. Daudon M, Bazin D, Letavernier E. Randall’s plaque as the origin of calcium oxalate kidney stones. Urolithiasis. 2015;43(Suppl 1):5–11.

    Article  CAS  PubMed  Google Scholar 

  211. Stepaniak PC, Ramchandani SR, Jones JA. Acute urinary retention among astronauts. Aviat Space Environ Med. 2007;78(4 Suppl):A5–8.

    PubMed  Google Scholar 

  212. Roehrborn CG. Benign prostatic hyperplasia: an overview. Rev Urol. 2005;7(Suppl 9):S3–S14.

    PubMed  PubMed Central  Google Scholar 

  213. Dulchavsky SA, Henry SE, Moed BR, Diebel LN, Marshburn T, Hamilton DR, et al. Advanced ultrasonic diagnosis of extremity trauma: the FASTER examination. J Trauma. 2002;53(1):28–32.

    Article  PubMed  Google Scholar 

  214. Kirkpatrick AW, Brown R, Diebel LN, Nicolaou S, Marshburn T, Dulchavsky SA. Rapid diagnosis of an ulnar fracture with portable hand-held ultrasound. Mil Med. 2003;168(4):312–3.

    Article  PubMed  Google Scholar 

  215. Marshburn TH, Legome E, Sargsyan A, Li SM, Noble VA, Dulchavsky SA, et al. Goal-directed ultrasound in the detection of long-bone fractures. J Trauma. 2004;57(2):329–32.

    Article  PubMed  Google Scholar 

  216. Johnston SL, Campbell MR, Scheuring R, Feiveson AH. Risk of herniated nucleus pulposus among U.S. astronauts. Aviat Space Environ Med. 2010;81(6):566–74.

    Article  PubMed  Google Scholar 

  217. Scheuring RA, Mathers CH, Jones JA, Wear ML. Musculoskeletal injuries and minor trauma in space: incidence and injury mechanisms in U.S. astronauts. Aviat Space Environ Med. 2009;80(2):117–24.

    Article  PubMed  Google Scholar 

  218. Marshburn TH, Hadfield CA, Sargsyan AE, Garcia K, Ebert D, Dulchavsky SA. New heights in ultrasound: first report of spinal ultrasound from the international space station. J Emerg Med. 2014;46(1):61–70.

    Article  PubMed  Google Scholar 

  219. Harrison MF, Garcia KM, Sargsyan AE, Ebert D, Riascos-Castaneda RF, Dulchavsky SA. Preflight, inflight, and postflight imaging of the cervical and lumbar spine in astronauts. Aerosp Med Hum Perform. 2018;89(1):32–40.

    Article  PubMed  Google Scholar 

  220. Garcia KM, Harrison MF, Sargsyan AE, Ebert D, Dulchavsky SA. Real-time ultrasound assessment of astronaut spinal anatomy and disorders on the International Space Station. J Ultrasound Med. 2018;37(4):987–99.

    Article  PubMed  Google Scholar 

  221. Kirkpatrick AW, Nicolaou S, Campbell MR, Sargsyan AE, Dulchavsky SA, Melton S, et al. Ultrasound-guided percutaneous aspiration of fluid for management of peritonitis in space. Acad Emerg Med. 2006;13(3):353.

    Article  Google Scholar 

  222. Chun R, Kirkpatrick AW, Sirois M, Sargasyn AE, Melton S, Hamilton DR, et al. Where’s the tube? Evaluation of hand-held ultrasound in confirming endotracheal tube placement. Prehosp Disaster Med. 2004;19(4):366–9.

    Article  PubMed  Google Scholar 

  223. Baldi G, Gargani L, Abramo A, D'Errico L, Caramella D, Picano E, et al. Lung water assessment by lung ultrasonography in intensive care: a pilot study. Intensive Care Med. 2013;39(1):74–84.

    Article  PubMed  Google Scholar 

  224. Gargani L, Frassi F, Soldati G, Tesorio P, Gheorghiade M, Picano E. Ultrasound lung comets for the differential diagnosis of acute cardiogenic dyspnoea: a comparison with natriuretic peptides. Eur J Heart Fail. 2008;10(1):70–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sargsyan, A.E. (2019). Diagnostic Imaging in Space Medicine. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics