Skip to main content

Cardiovascular Physiology and Fluid Shifts in Space

  • Chapter
  • First Online:
Spaceflight and the Central Nervous System

Abstract

Central nervous system vasculature (venous and arterial blood) and the cerebrospinal fluid dynamics are predominant systems which are hugely affected during spaceflight by many factors such as radiation and microgravity. Therefore, the human body should adapt by various mechanisms in such an environment. In this chapter, we will highlight the normal physiology and dynamics of cardiovascular system on Earth and how the body adapt in the long- and short-term space flights, in addition to the importance of these adaptations to the central nervous system and discuss common syndromes such as space adaptation syndrome and visual impairment intracranial pressure (VIIP) syndrome that may affect the mission quality, and effective countermeasures to mitigate these effects such as artificial gravity and lower body negative pressure (LBNP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gunga H-C, Ahlefeld VW von, Coriolano H-JA, Werner A, Hoffmann U. Cardiovascular system, red blood cells, and oxygen transport in microgravity. 2016.

    Google Scholar 

  2. Kanas N, Manzey D. Space psychology and psychiatry. Space Psychol Psychiatry. 2008.

    Google Scholar 

  3. Hughson RL, Helm A, Durante M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system [Internet], vol. 15. Nature Publishing Group; 2018. p. 167–80.

    Google Scholar 

  4. Leguay G, Seigneuric A. Cardiac arrhythmias in space. Role of vagotonia. Acta Astronaut. 1981;8(7):795–801.

    Article  CAS  Google Scholar 

  5. Urban J. Systems biology and cardiac arrhythmias Andrew. Lancet. 2010;5(3):379–90.

    Google Scholar 

  6. Vernice NA, Meydan C, Afshinnekoo E, Mason CE. Long-term spaceflight and the cardiovascular system. Precis Clin Med. 2020;3:284–91.

    Article  Google Scholar 

  7. Anzai T, Frey MA, Nogami A. Cardiac arrhythmias during long-duration spaceflights [internet]. J Arrhythmia. 2014;30:139–49.

    Google Scholar 

  8. Hargens AR, Richardson S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir Physiol Neurobiol. 2009;169:S30–3.

    Article  Google Scholar 

  9. Blanchette M, Daneman R. Formation and maintenance of the BBB. Mech Dev. 2015;138:8–16.

    Article  CAS  Google Scholar 

  10. Mao XW, Nishiyama NC, Byrum SD, Stanbouly S, Jones T, Holley J, et al. Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model. FASEB J. 2020;34(11):15516–30.

    Article  CAS  Google Scholar 

  11. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40(3):648–77.

    Article  CAS  Google Scholar 

  12. Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood -brain barrier [Internet]. Trends Neurosci. 2001;24:719–25.

    Google Scholar 

  13. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967;34(1):207–17.

    Article  CAS  Google Scholar 

  14. Rubin LL, Staddon JM. The cell biology of the blood-brain barrier [Internet]. Annu Rev Neurosci. 1999;22:11–28.

    Google Scholar 

  15. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier [Internet]. Neurobiol Dis. 2010;37:13–25.

    Google Scholar 

  16. Bertler A, Falck B, Owman C, Rosengrenn E. The localization of monoaminergic blood-brain barrier mechanisms. Pharmacol Rev. 1966;18(1):369–85.

    CAS  Google Scholar 

  17. Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Rev. 1991;16:65–82.

    Google Scholar 

  18. Haqqani AS, Hill JJ, Mullen J, Stanimirovic DB. The blood-brain and other neural barriers. Methods Mol Biol. 2011;686(1):337–53.

    Article  CAS  Google Scholar 

  19. Laterra J, Keep R, Betz LA, Goldstein GW. Blood-cerebrospinal fluid barrier. In: Encyclopedia of psychopharmacology. Lippincott-Raven; 2015. p. 308.

    Google Scholar 

  20. Johanson CE. Choroid plexus-CSF neuropeptide involvement in intracranial pressure regulation: implications for the putative intracranial hypertension of spaceflight. Eur J Anat. 2013.

    Google Scholar 

  21. Zhang LF, Hargens AR. Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev. 2018;98(1):59–87.

    Article  Google Scholar 

  22. Hargens AR, Watenpaugh DE. Cardiovascular adaptation to spaceflight. Med Sci Sports Exerc. 1996;28:977–82.

    Article  CAS  Google Scholar 

  23. Kirsch KA, Baartz FJ, Gunga HC, Röcker L, Wicke HJ, Bünsch B. Fluid shifts into and out of superficial tissues under microgravity and terrestrial conditions. Clin Investig. 1993;71(9):687–9.

    Article  CAS  Google Scholar 

  24. Dunn CDR, Johnson PC, Lange RD. Regulation of hematopoiesis in rats exposed to antiorthostatic hypokinetic/hypodynamia. II. Mechanisms of the “anemia.”. Aviat Sp Environ Med. 1986;57(1):36–44.

    CAS  Google Scholar 

  25. McKeon J. Principles of clinical medicine for space flight. JAMA. 2009;301(8):884.

    Article  Google Scholar 

  26. Ertl AC, Diedrich A, Biaggioni I, Levine BD, Robertson RM, Cox JF, et al. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol. 2002;538(1):321–9.

    Article  CAS  Google Scholar 

  27. Sahm PR, Keller MH, Schiewe B. Research in space: the German spacelab missions. Köln Germany: Wissenschaftliche Projektfuhrung D-2; 1993.

    Google Scholar 

  28. Gauer OH, Henry JP. Circulatory basis of fluid volume control. Physiol Rev. 1963;43:423–81.

    Article  CAS  Google Scholar 

  29. Christensen NJ, Drummer C, Norsk P. Renal and sympathoadrenal responses in space. Am J Kidney Dis. 2001;38(3):679–83.

    Article  CAS  Google Scholar 

  30. Cirillo M, De Santo NG, Heer M, Norsk P, Elmann-Larsen B, Bellini L, et al. Low urinary albumin excretion in astronauts during space missions. Nephron. 2003;93(4):p102–5.

    Article  CAS  Google Scholar 

  31. Risso A, Turello M, Antonutto G. Effects of spaceflight on erithropoiesis: a study on neocytolysis. In: European Space Agency, (Special Publication) ESA SP 2008.

    Google Scholar 

  32. Churchill S. Fundamentals of space life sciences. Choice Rev Online. 1997;35(01):35-0262.

    Google Scholar 

  33. Coupé M, Fortrat JO, Larina I, Gauquelin-Koch G, Gharib C, Custaud MA. Cardiovascular deconditioning: from autonomic nervous system to microvascular dysfunctions. Respir Physiol Neurobiol. 2009;169(SUPPL):S10–2.

    Article  Google Scholar 

  34. Grigoriev AI, Kotovskaya AR, Fomina GA. The human cardiovascular system during space flight. Acta Astronaut. 2011;68:1495–500.

    Article  Google Scholar 

  35. Levine BD, Lane LD, Watenpaugh DE, Gaffney FA, Buckey JC, Blomqvist CG. Maximal exercise performance after adaptation to microgravity. J Appl Physiol. 1996;81(2):686–94.

    Article  CAS  Google Scholar 

  36. Frey MAB. Space research activities during missions of the past. Med Sci Sports Exerc. 1996;28(10 SUPPL):3–8.

    Article  Google Scholar 

  37. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell Cell Press. 2015;163:1064–78.

    Google Scholar 

  38. Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93(1):105–13.

    Article  CAS  Google Scholar 

  39. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders [Internet]. Blood Am Soc Hematol. 1998;91:3527–61.

    Google Scholar 

  40. Maier JAM, Cialdai F, Monici M, Morbidelli L. The impact of microgravity and hypergravity on endothelial cells. Biomed Res Int. 2015;2015:1–13.

    Article  Google Scholar 

  41. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–92.

    Article  CAS  Google Scholar 

  42. Versari S, Longinotti G, Barenghi L, Maier JAM, Bradamante S. The challenging environment on board the international Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB J. 2013;27(11):4466–75.

    Article  CAS  Google Scholar 

  43. Hughson RL, Robertson AD, Arbeille P, Shoemaker JK, Rush JWE, Fraser KS, et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am J Physiol Heart Circ Physiol. 2016;310(5):H628–38.

    Article  Google Scholar 

  44. Delp MD, Charvat JM, Limoli CL, Globus RK, Ghosh P. Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. Sci Rep. 2016;6.

    Google Scholar 

  45. Arbeille P, Provost R, Zuj K. Carotid and femoral artery intima-media thickness during 6 months of spaceflight. Aerosp Med Hum Perform. 2016;87(5):449–53.

    Article  Google Scholar 

  46. Raichle ME, Gusnard DA. Appraising the brain’s energy budget [Internet]. Vol. 99, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences; 2002. p. 10237–9.

    Google Scholar 

  47. Nelson GA, Simonsen L, Huff JL, Cucinotta FA, Kim M-HY, Saha J, et al. Risk of acute (in-flight) or late central nervous system effects from radiation exposure. Sp Radiat Progr Elem 2016;NASA SP-20.

    Google Scholar 

  48. Andrews RN, Metheny-Barlow LJ, Peiffer AM, Hanbury DB, Tooze JA, Bourland JD, et al. Cerebrovascular remodeling and neuroinflammation is a late effect of radiation-induced brain injury in non-human primates. Radiat Res. 2017;187(5):599–611.

    Article  CAS  Google Scholar 

  49. Craver BM, Acharya MM, Allen BD, Benke SN, Hultgren NW, Baulch JE, et al. 3D surface analysis of hippocampal microvasculature in the irradiated brain. Environ Mol Mutagen. 2016;57(5):341–9.

    Article  CAS  Google Scholar 

  50. Cucinotta FA, Alp M, Sulzman FM, Wang M. Space radiation risks to the central nervous system. Vol. 2, Life sciences in space research. Elsevier Ltd; 2014. p. 54–69.

    Google Scholar 

  51. Cekanaviciute E, Rosi S, Costes SV. Central nervous system responses to simulated galactic cosmic rays [internet]. Int J Mol Sci MDPI AG. 2018;19.

    Google Scholar 

  52. Hanbury DB, Robbins ME, Bourland JD, Wheeler KT, Peiffer AM, Mitchell EL, et al. Pathology of fractionated whole-brain irradiation in rhesus monkeys (Macaca mulatta). Radiat Res. 2015;183(3):367–74.

    Article  CAS  Google Scholar 

  53. Fauquette W, Amourette C, Dehouck MP, Diserbo M. Radiation-induced blood-brain barrier damages: an in vitro study. Brain Res. 2012;1433:114–26.

    Article  CAS  Google Scholar 

  54. Lumniczky K, Szatmári T, Sáfrány G. Ionizing radiation-induced immune and inflammatory reactions in the brain [Internet]. Front Immunol. 2017;8.

    Google Scholar 

  55. Grabham P, Sharma P, Bigelow A, Geard C. Two distinct types of the inhibition of vasculogenesis by different species of charged particles. Vasc Cell. 2013;5(1).

    Google Scholar 

  56. Avolio A, Butlin M, Liu YY, Viegas K, Avadhanam B, Lindesay G. Regulation of arterial stiffness: cellular, molecular and neurogenic mechanisms. Vol. 5, Artery Research No longer published by Elsevier; 2011. p. 122–7.

    Google Scholar 

  57. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness [Internet]. Vol. 25, Arteriosclerosis, thrombosis, and vascular biology. Lippincott Williams & Wilkins; 2005. p. 932–43.

    Google Scholar 

  58. Tuday EC, Nyhan D, Shoukas AA, Berkowitz DE. Simulated microgravity-induced aortic remodeling. J Appl Physiol. 2009 Jun;106(6):2002–8.

    Article  Google Scholar 

  59. Michael AP. Spaceflight induced changes in the central nervous system. In: Into space–a journey of how humans adapt and live in microgravity. InTech; 2018.

    Google Scholar 

  60. Scallan J, Huxley V, Korthuis R. Pathophysiology of edema formation. Capill Fluid Exch Regul Funct Pathol. 2010:58–9.

    Google Scholar 

  61. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4:147ra111.

    Article  Google Scholar 

  62. Leinonen V, Vanninen R, Rauramaa T. Cerebrospinal fluid circulation and hydrocephalus. Handb Clin Neurol. 2018.

    Google Scholar 

  63. Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS. 2019;16(1):1–18.

    Article  Google Scholar 

  64. Van Ombergen A, Jillings S, Jeurissen B, Tomilovskaya E, Rühl RM, Rumshiskaya A, et al. Brain tissue–volume changes in cosmonauts. N Engl J Med. 2018.

    Google Scholar 

  65. Van Ombergen A, Jillings S, Jeurissen B, Tomilovskaya E, Rumshiskaya A, Litvinova L, et al. Brain ventricular volume changes induced by long-duration spaceflight. Proc Natl Acad Sci U S A. 2019;116(21):10531–6.

    Article  Google Scholar 

  66. Dreha-Kulaczewski S, Konopka M, Joseph AA, Kollmeier J, Merboldt KD, Ludwig HC, et al. Respiration and the watershed of spinal CSF flow in humans. Sci Rep. 2018; 8.

    Google Scholar 

  67. Dreha-Kulaczewski S, Joseph AA, Merboldt KD, Ludwig HC, Gärtner J, Frahm J. Identification of the upward movement of human CSF in vivo and its relation to the brain venous system. J Neurosci. 2017;37:2395–402.

    Article  CAS  Google Scholar 

  68. Ludwig HC, Frahm J, Gärtner J, Dreha-Kulaczewski S. Breathing drives CSF: Impact on spaceflight disease and hydrocephalus [Internet]. Vol. 116, Proceedings of the National Academy of Sciences of the United States of America. 2019. p. 20263–4.

    Google Scholar 

  69. Kawai Y, Doi M, Setogawa A, Shimoyama R, Ueda K, Asai Y, et al. Effects of microgravity on cerebral hemodynamics. Yonago Acta Medica. 2003.

    Google Scholar 

  70. Lee AG, Mader TH, Gibson CR, Tarver W. Space flight-associated neuro-ocular syndrome. JAMA Ophthalmol. 2017;135:992–4.

    Article  Google Scholar 

  71. Wilson MH, Imray CHE, Hargens AR. The headache of high altitude and microgravity-similarities with clinical syndromes of cerebral venous hypertension. High Alt Med Biol. 2011;12(4):379–86.

    Article  Google Scholar 

  72. Martin DS, Lee SMC, Matz TP, Westby CM, Scott JM, Stenger MB, et al. Internal jugular pressure increases during parabolic flight. Physiol Rep. 2016;4(24):e13068.

    Article  Google Scholar 

  73. Taibbi G, Cromwell RL, Kapoor KG, Godley BF, Vizzeri G. The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol. 2013;58:155–63.

    Article  Google Scholar 

  74. Previtali E, Bucciarelli P, Passamonti SM, Martinelli I. Risk factors for venous and arterial thrombosis. Blood Transfus. 2011.

    Google Scholar 

  75. de Bastos M, Stegeman BH, Rosendaal FR, Van Hylckama Vlieg A, Helmerhorst FM, Stijnen T, et al. Combined oral contraceptives: venous thrombosis. Cochrane Database Syst Rev. 2014.

    Google Scholar 

  76. Van Hylckama VA, Helmerhorst FM, Vandenbroucke JP, Doggen CJM, Rosendaal FR. The venous thrombotic risk of oral contraceptives, effects of oestrogen dose and progestogen type: results of the MEGA case-control study. BMJ. 2009;339:b2921.

    Article  Google Scholar 

  77. Heer M, Paloski WH. Space motion sickness: incidence, etiology, and countermeasures. Auton Neurosci Basic Clin. 2006;129:77–9.

    Article  Google Scholar 

  78. Hargens AR. Fluid shifts in vascular and extravascular spaces during and after simulated weightlessness. Med Sci Sports Exerc. 1983;15:421–7.

    Article  CAS  Google Scholar 

  79. Thornton W, Bonato F. The human body and weightlessness: operational effects, problems and countermeasures. The human body and weightlessness: operational effects, problems and countermeasures. Springer International Publishing; 2017. 1–320 p.

    Google Scholar 

  80. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.

    Article  Google Scholar 

  81. Alexander DJ, Gibson CR, Hamilton DR, Lee SMC, Mader TH, Otto C, et al. Risk of spaceflight-induced intracranial hypertension and vision alterations. HumanresearchroadmapNasaGov; 2012.

    Google Scholar 

  82. Mader TH, Gibson CR, Pass AF, Lee AG, Killer HE, Hansen HC, et al. Optic disc edema in an astronaut after repeat long-duration space flight. J Neuro-Ophthalmol. 2013;33:249–55.

    Article  Google Scholar 

  83. Marshall-Bowman K, Barratt MR, Gibson CR. Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight: an emerging understanding. Acta Astronaut. 2013;87:77–87.

    Article  CAS  Google Scholar 

  84. Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR. Orbital and intracranial effects of microgravity: findings at 3-T MR imaging. Radiology. 2012;263:819–27.

    Article  Google Scholar 

  85. Nicogossian AE, Williams RS, Huntoon CL, Doarn CR, Polk JD, Schneider VS. Space physiology and medicine: from evidence to practice, fourth edition. Space physiology and medicine: from evidence to practice, 4th edn. New York: Springer; 2016. 1–509 p.

    Google Scholar 

  86. Hargens AR, Bhattacharya R, Schneider SM. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol. 2013;113:2183–92.

    Google Scholar 

  87. Iwase S, Takada H, Watanabe Y, Ishida K, Akima H, Katayama K, et al. Effect of centrifuge-induced artificial gravity and ergometric exercise on cardiovascular deconditioning, myatrophy, and osteoporosis induced by a −6 degrees head-down bedrest. J Gravit Physiol. 2004;11:P243–4.

    Google Scholar 

  88. Petersen LG, Hargens A, Bird EM, Ashari N, Saalfeld J, Petersen JCG, et al. Mobile lower body negative pressure suit as an integrative countermeasure for spacelight. Aerosp Med Hum Perform. 2019;90(12):993–9.

    Article  Google Scholar 

  89. Auñón-Chancellor SM, Pattarini JM, Moll S, Sargsyan A. Venous thrombosis during spaceflight. N Engl J Med. 2020;382(1):89–90.

    Article  Google Scholar 

  90. Campbell MR, Charles JB. Historical review of lower body negative pressure research in space medicine. Aerosp Med Hum Perform. 2015;86(7):633–40.

    Article  Google Scholar 

  91. Marshall-Goebel K, Terlević R, Gerlach DA, Kuehn S, Mulder E, Rittweger J. Lower body negative pressure reduces optic nerve sheath diameter during head-down tilt. J Appl Physiol. 2017;123:1139–44.

    Article  CAS  Google Scholar 

  92. Murthy G, Watenpaugh DE, Ballard RE, Hargens AR. Exercise against lower body negative pressure as a countermeasure for cardiovascular and musculoskeletal deconditioning. Acta Astronaut. 1994;33(C):89–96.

    Article  CAS  Google Scholar 

  93. Aratow M, Fortney SM, Watenpaugh DE, Crenshaw AG, Hargens AR. Transcapillary fluid responses to lower body negative pressure. J Appl Physiol. 1993;74:2763–70.

    Article  CAS  Google Scholar 

  94. Lee SMC, Schneider SM, Boda WL, Watenpaugh DE, Macias BR, Meyer RS, et al. Supine LBNP exercise maintains exercise capacity in male twins during 30-d bed rest. Med Sci Sports Exerc. 2007;39:1315–26.

    Article  Google Scholar 

  95. Hargens AR, Whalen RT, Watenpaugh DE, Schwandt DF, Krock LP. Lower body negative pressure to provide load bearing in space. Aviat Sp Environ Med. 1991.

    Google Scholar 

  96. Guinet P, Schneider SM, Macias BR, Watenpaugh DE, Hughson RL, Le Traon AP, et al. WISE-2005: effect of aerobic and resistive exercises on orthostatic tolerance during 60 days bed rest in women. Eur J Appl Physiol. 2009;106:217–27.

    Article  Google Scholar 

  97. Zwart SR, Hargens AR, Lee SMC, Macias BR, Watenpaugh DE, Tse K, et al. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins. Bone. 2007;40:529–37.

    Article  Google Scholar 

  98. Smith SM, Davis-Street JE, Fesperman JV, Calkins DS, Bawa M, Macias BR, et al. Evaluation of treadmill exercise in a lower body negative pressure chamber as a countermeasure for weightlessness-induced bone loss: a bed rest study with identical twins. J Bone Miner Res. 2003;18:2223–30.

    Article  Google Scholar 

  99. Dorfman TA, Levine BD, Tillery T, Peshock RM, Hastings JL, Schneider SM, et al. Cardiac atrophy in women following bed rest. J Appl Physiol. 2007;103:8–16.

    Article  Google Scholar 

  100. Lee SMC, Schneider SM, Boda WL, Watenpaugh DE, Macias BR, Meyer RS, et al. LBNP exercise protects aerobic capacity and sprint speed of female twins during 30 days of bed rest. J Appl Physiol. 2009;106:919–28.

    Article  Google Scholar 

  101. Goswami N, Taucher AA, Brix B, Roessler A, Koestenberger M, Reibnegger G, et al. Coagulation changes during central hypovolemia across seasons. J Clin Med. 2020;9(11):3461.

    Article  CAS  Google Scholar 

  102. Zaar M, Johansson PI, Nielsen LB, Crandall CG, Shibasaki M, Hilsted L, et al. Early activation of the coagulation system during lower body negative pressure. Clin Physiol Funct Imaging. 2009;29:427–30.

    Article  CAS  Google Scholar 

  103. van Helmond N, Johnson BD, Curry TB, Cap AP, Convertino VA, Joyner MJ. Coagulation changes during lower body negative pressure and blood loss in humans. Am J Physiol Heart Circ Physiol. 2015;309:H1591–7.

    Article  Google Scholar 

  104. Cvirn G, Schlagenhauf A, Leschnik B, Koestenberger M, Roessler A, Jantscher A, et al. Coagulation changes during presyncope and recovery. PLoS One. 2012;7:e42221.

    Article  CAS  Google Scholar 

  105. Lane HW, Bourland C, Barrett A, Heer M, Smith SM. The role of nutritional research in the success of human space flight. Adv Nutr. 2013;4:521–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aya Hesham Sayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sayed, A.H., Hargens, A.R. (2022). Cardiovascular Physiology and Fluid Shifts in Space. In: Michael, A.P., Otto, C., Reschke, M.F., Hargens, A.R. (eds) Spaceflight and the Central Nervous System. Springer, Cham. https://doi.org/10.1007/978-3-031-18440-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18440-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18439-0

  • Online ISBN: 978-3-031-18440-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics