Skip to main content

Effects of Microgravity and Space Radiation on the Nervous System

  • Chapter
  • First Online:
Spaceflight and the Central Nervous System

Abstract

Humankind has always focused on outer space, especially the planetary system of our solar system. Space exploration exposes travelers to a variety of gravitational stresses. Examples include increased acceleration forces during launch and landing, partial gravity on extra-terrestrial locations such as the Moon or Mars, and microgravity during orbital missions and flights between planetary bodies. Space flight environments usually have additional stressors associated with them in addition to the lack of a gravitational vector. Isolation, noise, radiation, toxin buildup, and operational pressures all combine to create a uniquely stressful environment.

Short-duration spaceflight onboard the space shuttle is a unique experience that includes a unique set of stressors that contribute to the dysregulation of nervous system. Astronauts on ISS missions experience many similar stressors for a much longer duration. In this chapter, we have discussed the physiological effects of microgravity and space radiations on the nervous system. Emphasis is laid on understanding the neurological alterations that could occur in outer space. It gives an overview of how nervous system that evolved in a gravitational field changes its function upon exposure to microgravity and space radiations. Furthermore, accessible countermeasures will be deliberated, including a description of microgravity analogs. Eventually, the knowledge of changes in the nervous system due to microgravity and radiation will provide vision into the functioning of nervous system on our planet earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D, Sams C. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol. 2013;33:456–65.

    Article  CAS  Google Scholar 

  2. Grenon SM, Saary J, Gray G, Vanderploeg JM, Hughes-Fulford M. Can I take a space flight? Considerations for doctors. BMJ. 2012;345:e8124.

    Article  Google Scholar 

  3. Sonnenfeld G. The immune system in space and microgravity. Med Sci Sports Exerc. 2002;34:2021–7.

    Article  CAS  Google Scholar 

  4. Moore ST, et al. Long-duration spaceflight adversely affects post-landing operator proficiency. Sci Rep. 2019;9:2677.

    Article  Google Scholar 

  5. De la Torre GG. Cognitive neuroscience in space. Life (Basel). 2014;4:281–94.

    Google Scholar 

  6. van Loon JJWA. Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res. 2007;39:1161–5.

    Article  Google Scholar 

  7. Schwarz RP, Goodwin TJ, Wolf DA. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods. 1992;14(2):51–7.

    Article  CAS  Google Scholar 

  8. Gaboyard S, Blanchard MP, Travo C, Viso M, Sans A, Lehouelleur J. Weightlessness affects cytoskeleton of rat utricular hair cells during maturation in vitro. Neuroreport. 2002;13:2139–42.

    Article  Google Scholar 

  9. He J, Zhang X, Gao Y, Li S, Sun Y. Effects of altered gravity on the cell cycle, actin cytoskeleton and proteome in Physarum polycephalum. Acta Astronaut. 2008;63:915–22.

    Article  Google Scholar 

  10. Huang Y, Dai ZQ, Ling SK, Zhang HY, Wan YM, Li YH. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. J Biomed Sci. 2009;16:87.

    Article  Google Scholar 

  11. Sarkar P, Sarkar S, Ramesh V, Hayes BE, Thomas RL, Wilson BL, et al. Proteomic analysis of mice hippocampus in simulated microgravity environment. J Proteome Res. 2006;5:548–53.

    Article  CAS  Google Scholar 

  12. Mann V, Grimm D, Corydon TJ, Krüger M, Wehland M, Riwaldt S, Sahana J, Kopp S, Bauer J, Reseland JE, Infanger M, Mari Lian A, Okoro E, Sundaresan A. Changes in human foetal osteoblasts exposed to the random positioning machine and bone construct tissue engineering. Int J Mol Sci. 2019;20(6):1357.

    Article  CAS  Google Scholar 

  13. Demertzi A, et al. Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Struct Funct. 2016;221:2873–6.

    Article  Google Scholar 

  14. Kohn FPM, Ritzmann R. Gravity and neuronal adaptation, in vitro and in vivo–from neuronal cells up to neuromuscular responses: a first model. Eur Biophys J. 2018;47:97–107.

    Article  Google Scholar 

  15. Fujii MD, Patten BM. Neurology of microgravity and space travel. Neurol Clin. 1992;10:999–1013.

    Article  CAS  Google Scholar 

  16. Lee AG, Mader TH, Gibson CR, Tarver W. Space flight-associated neuro-ocular syndrome. JAMA Ophthalmol. 2017;135(9):992–4.

    Article  Google Scholar 

  17. Wostyn P, De Deyn PP. Intracranial pressure-induced optic nerve sheath response as a predictive biomarker for optic disc edema in astronauts. Biomark Med. 2017;11:1003–8.

    Article  CAS  Google Scholar 

  18. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.

    Article  Google Scholar 

  19. Alexander DJ, Gibson CR, Hamilton DR, Lee SMC, Mader TH, Otto C, et al. Risk of spaceflight-induced intracranial hypertension and vision alterations. Lyndon B. Houston, Texas: National Aeronautics and Space Administration, Johnson Space Center; 2012.

    Google Scholar 

  20. Corydon TJ, Mann V, Slumstrup L, Kopp S, Sahana J, Askou AL, Magnusson NE, Echegoyen D, Bek T, Sundaresan A, Riwaldt S, Bauer J, Infanger M, Grimm D. Reduced expression of cytoskeletal and extracellular matrix genes in human adult retinal pigment epithelium cells exposed to simulated microgravity. Cell Physiol Biochem. 2016;40(1–2):1–17.

    Article  CAS  Google Scholar 

  21. Kramer LA, Hasan KM, Sargsyan AE, Wolinsky JS, Hamilton DR, Riascos RF, et al. MR-derived cerebral spinal fluid hydrodynamics as a marker and a risk factor for intracranial hypertension in astronauts exposed to microgravity. J Magn Reson Imaging. 2015;42:1560–71.

    Article  Google Scholar 

  22. Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR. Orbital, and intracranial effects of microgravity: findings at 3-T MR imaging. Radiology. 2012;263:819–27.

    Article  Google Scholar 

  23. Vein AA, Koppen H, Haan J, Terwindt GM, Ferrari MD. Space headache: a new secondary headache. Cephalalgia. 2009;29:683–6.

    Article  CAS  Google Scholar 

  24. Pechenkova E, et al. Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI. Front Physiol. 2019;10:761.

    Article  Google Scholar 

  25. Block HJ, Bastian AJ. Sensory weighting and realignment: independent compensatory processes. J Neurophysiol.

    Google Scholar 

  26. Hasan KM, Mwangi B, Keser Z, Riascos R, Sargsyan AE, Kramer LA. Brain quantitative MRI metrics in astronauts as a unique professional group. J Neuroimaging. 2018;28:256–68.

    Article  Google Scholar 

  27. Manzey D, Lorenz B, Poljakov V. Mental performance in extreme environments: results from a performance monitoring study during a 438-day spaceflight. Ergonomics. 1998;41:537–59.

    Article  CAS  Google Scholar 

  28. Kramer LA, et al. Intracranial effects of microgravity: a prospective longitudinal MRI study. Radiology. 191413.

    Google Scholar 

  29. Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD. Brain structural plasticity with spaceflight. NPJ Microgravity. 2016;2:2.

    Article  Google Scholar 

  30. Jillings S, et al. Macro- and microstructural changes in cosmonauts’ brains after long-duration spaceflight. Sci Adv. 6.

    Google Scholar 

  31. Lee JK, et al. Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurol. 2019;76:412–9.

    Article  Google Scholar 

  32. Van Ombergen A, Demertzi A, Tomilovskaya E, et al. The effect of spaceflight and microgravity on the human brain. J Neurol. 2017;264:18–22.

    Article  Google Scholar 

  33. Cassady K, Koppelmans V, Reuter-Lorenz P, De Dios Y, Gadd N, Wood S, RiascosCastenada R, Kofman I, Bloomberg J, Mulavara A, Seidler R. Effects of a spaceflight analog environment on brain connectivity and behavior. NeuroImage. 2016;141:18–30.

    Article  Google Scholar 

  34. Vestibular function in microgravity. Lancet. 1984;324, 8402, 561.

    Google Scholar 

  35. Cebolla A, Petieau M, Dan B, et al. Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness. Sci Rep. 2016;6:37824.

    Article  CAS  Google Scholar 

  36. Tanaka K, Nishimura N, Kawai Y. Adaptation to microgravity, deconditioning, and countermeasures. J Physiol Sci. 2017;67:271–81.

    Article  Google Scholar 

  37. Walton KD, Harding S, Anschel D, Harris YT, Llinás R. The effects of microgravity on the development of surface righting in rats. J Physiol. 2005;565(Pt 2):593–608. https://doi.org/10.1113/jphysiol.2004.074385.

    Article  CAS  Google Scholar 

  38. Curtis SB, Vazquez ME, Wilson JW, Atwell W, Kim M, Capala J. Cosmic ray hit frequencies in critical sites in the central nervous system. Adv Space Res. 1998;22(2):197–207.

    Article  CAS  Google Scholar 

  39. Stein TP, Leskiw MJ, Schluter MD, Hoyt RW, Lane HW, Gretebeck RE, LeBlanc AD. Energy expenditure and balance during spaceflight on the space shuttle. Am J Phys. 1999;276(6 Pt 2):R1739–48.

    CAS  Google Scholar 

  40. Cohen S, Janicki-Deverts D, Doyle WJ, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A. 2012;109(16):5995–9.

    Article  CAS  Google Scholar 

  41. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci. 1991;14:453–501.

    Article  CAS  Google Scholar 

  42. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7.

    Article  CAS  Google Scholar 

  43. Enokido Y, Araki T, Tanaka K, Aizawa S, Hatanaka H. Involvement of p53 in DNA strand break-induced apoptosis in postmitotic CNS neurons. Eur J Neurosci. 1996;8(9):1812–21.

    Article  CAS  Google Scholar 

  44. Martin LJ, Kaiser A, Yu JW, Natale JE, Al-Abdulla NA. Injury-induced apoptosis of neurons in adult brain is mediated by p53-dependent and p53-independent pathways and requires Bax. J Comp Neurol. 2001;433:299–311.

    Article  CAS  Google Scholar 

  45. Gill JS, Windebank AJ. Activation of the high affinity nerve growth factor receptor by two polyanionic chemotherapeutic agents: role in drug induced neurotoxicity. J Neuro-Oncol. 1998;40(1):19–27.

    Article  CAS  Google Scholar 

  46. Nakajima M, Kashiwagi K, Ohta J, Furukawa S, Hayashi K, Kawashima T, Hayashi Y. Nerve growth factor and epidermal growth factor rescue PC12 cells from programmed cell death induced by etoposide: distinct modes of protection against cell death by growth factors and a protein-synthesis inhibitor. Neurosci Lett. 1994;176:161–4.

    Article  CAS  Google Scholar 

  47. Park IS, Ahn MR, Suh SK, Choi HS, Sohn SJ, Yang JS, Yoo TM, Kuh HJ. In vitro pharmacodynamics of CKD-602 in HT-29 cells. Arch Pharm Res. 2002;25:718–23.

    Article  CAS  Google Scholar 

  48. Mansfield SH, Castillo M. MR of cis-platinum-induced optic neuritis. AJNR Am J Neuroradiol. 1994;15:1178–80.

    CAS  Google Scholar 

  49. Chen J, Jin K, Chen M, Pei W, Kawaguchi K, Greenberg DA, Simon RP. Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem. 1997;69(1):232–45.

    Article  CAS  Google Scholar 

  50. Farinelli SE, Greene LA. Cell cycle blockers mimosine, ciclopirox, and deferoxamine prevent the death of PC12 cells and postmitotic sympathetic neurons after removal of trophic support. J Neurosci. 1996;16:1150–62.

    Article  CAS  Google Scholar 

  51. Keramaris E, Stefanis L, MacLaurin J, Harada N, Takaku K, Ishikawa T, Taketo MM, Robertson GS, Nicholson DW, Slack RS, Park DS. Involvement of caspase 3 in apoptotic death of cortical neurons evoked by DNA damage. Mol Cell Neurosci. 2000;15(4):368–79.

    Article  CAS  Google Scholar 

  52. Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS. Evidence for p53-mediated modulation of neuronal viability. J Neurosci. 1996;16:6753–65.

    Article  CAS  Google Scholar 

  53. Crumrine RC, Thomas AL, Morgan PF. Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab. 1994;14:887–91.

    Article  CAS  Google Scholar 

  54. Johnson MD, Kinoshita Y, Xiang H, Ghatan S, Morrison RS. Contribution of p53-dependent caspase activation to neuronal cell death declines with neuronal maturation. J Neurosci. 1999;19:2996–3006.

    Article  CAS  Google Scholar 

  55. Krebs W, Krebs I, Worgul BV. Effect of accelerated iron ions on the retina. Radiat Res. 1990;123:213–9.

    Article  CAS  Google Scholar 

  56. Cox AB, Kraft LM. Quantitation of heavy ion damage to the mammalian brain: some preliminary findings. Adv Space Res. 1984;4(10):247–50.

    Article  CAS  Google Scholar 

  57. Cox AB, Keng PC, Lee AC, Lett JT. Effects of heavy ions on rabbit tissues: damage to the forebrain. Int J Radiat Biol Relat Stud Phys Chem Med. 1982;42:355–67.

    Article  CAS  Google Scholar 

  58. Joseph JA, Erat S, Rabin BM. CNS effects of heavy particle irradiation in space: behavioral implications. Adv Space Res. 1998;22:209–16.

    Article  CAS  Google Scholar 

  59. Nelson AC, Tobias CA. Rapid development of corneal lesions in rats produced by heavy ions. Adv Space Res. 1983;3:195–209.

    Article  CAS  Google Scholar 

  60. Todd P. Stochastics of HZE-induced microlesions. Adv Space Res. 1989;9:31–4.

    Article  CAS  Google Scholar 

  61. Nelson AC, Hayes TL, Tobias CA, Yang TC. Some indications of structural damage in retina by heavy ion radiation. Scan Electron Microsc. 1981;4:79–85.

    CAS  Google Scholar 

  62. Worgul BV, Krebs W, Koniarek JP. Microlesions: theory and reality. Adv Space Res. 1989;9:315–23.

    Article  CAS  Google Scholar 

  63. Denisova NA, Shukitt-Hale B, Rabin BM, Joseph JA. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation. Radiat Res. 2002;158:725–34.

    Article  CAS  Google Scholar 

  64. Hunt WA, Dalton TK, Joseph JA, Rabin BM. Reduction of 3-methoxytyramine concentrations in the caudate nucleus of rats after exposure to high-energy iron particles: evidence for deficits in dopaminergic neurons. Radiat Res. 1990;121:169–74.

    Article  CAS  Google Scholar 

  65. Joseph JA, Shukitt-Hale B, McEwen J, Rabin B. Magnesium activation of GTP hydrolysis or incubation in S-adenosyl-l-methionine reverses iron-56-particle-induced decrements in oxotremorine enhancement of K+evoked striatal release of dopamine. Radiat Res. 1999;152:637–41.

    Article  CAS  Google Scholar 

  66. Joseph JA, Shukitt-Hale B, et al. CNS-induced deficits of heavy particle irradiation in space: the aging connection. Adv Space Res. 2000;25(10):2057–64.

    Article  CAS  Google Scholar 

  67. Kandasamy SB, Rabin BM, Hunt WA, Dalton TK, Joseph JA, Harris AH. Exposure to heavy charged particles affects thermoregulation in rats. Radiat Res. 1994;139:352–6.

    Article  CAS  Google Scholar 

  68. Rabin BM, Joseph JA, Shukitt-Hale B, McEwen J. Effects of exposure to heavy particles on a behavior mediated by the dopaminergic system. Adv Space Res. 2000;25:2065–74.

    Article  CAS  Google Scholar 

  69. Rabin BM, Shukitt-Hale B, Joseph JA, Denissova N. Effects of exposure to 56Fe particles on the acquisition of a conditioned place preference in rats. Phys Med. 2001;17(Suppl 1):196–7.

    Google Scholar 

  70. Rabin BM, Shukitt-Hale B, Szprengiel A, Joseph JA. Effects of heavy particle irradiation and diet on amphetamine- and lithium chloride-induced taste avoidance learning in rats. Brain Res. 2002;953:31–6.

    Article  CAS  Google Scholar 

  71. Rabin BM, Joseph JA, et al. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle. Adv Space Res. 2003;31(1):127–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Mann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mann, V., Sundaresan, A., Doursout, MF.J., Devakottai, S. (2022). Effects of Microgravity and Space Radiation on the Nervous System. In: Michael, A.P., Otto, C., Reschke, M.F., Hargens, A.R. (eds) Spaceflight and the Central Nervous System. Springer, Cham. https://doi.org/10.1007/978-3-031-18440-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18440-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18439-0

  • Online ISBN: 978-3-031-18440-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics