Skip to main content

Neuro-ophthalmolmic Sequelae of Sustained Microgravity

  • Chapter
  • First Online:
Ophthalmology in Extreme Environments

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 786 Accesses

Abstract

Space travel has presented novel challenges both technologically and physiologically to the human passenger. Since the first manned spaceflight in 1961, the impact of atmospheric changes and a microgravity environment on the human body have been carefully studied and characterized. The Jules Verne novel “From the Earth to the Moon” published in 1865, nearly 100 years before the first manned mission, raised questions and theories about the weightlessness which would be experienced in space. As terrestrial beings who have evolved in earth’s gravity, the environment of weightlessness induces remarkable multisystem changes which affect the astronauts who venture into space. These changes cover a wide spectrum ranging from transient sensory imbalances and nausea to profound hemodynamic and metabolic alterations, to more chronic anemia, weakening of bones, muscles, and the immune system. Additionally, dramatic and unique ophthalmologic changes are experienced in varying degrees after time spent in a microgravity environment. Findings have included optic disk edema, choroidal folds and cotton wool spots, hyperopic refractive shifts after prolonged spaceflight, and globe flattening with increased CSF signal in the optic nerve sheaths. The retrospective observational report by Mader et al. in 2011 described these findings in a cohort of seven astronauts who had visited the International Space Station (ISS) for a period of 6 months, as well as reviewed and correlated the results of 300 postflight surveys regarding in-flight vision changes. The US National Aeronautics and Space Administration’s (NASA) Space Medicine Division has also evaluated and documented these changes through clinical exam, OCT, MRI, and ultrasound testing of astronauts. As will be discussed, many features of this phenomenon are ophthalmoscopically similar to terrestrial increased intracranial pressure (ICP), and elevated ICP is thought to play at least a partial role. In 2011, NASA held a visual impairment intracranial pressure (VIIP) summit to discuss this problem, and this conference raised significant concerns about longer missions or even visitation to planets with greatly reduced gravity, such as Mars. The pathogenesis of these findings is incompletely understood due to limitations of monitoring and testing during spaceflight. The purpose of this discussion is to review the pathology and discuss possible mechanisms, most importantly the phenomenon of cephalad fluid shifts in a microgravity environment, and to consider possible approaches to investigating adaptive responses. Further research in this area presents practical challenges, such as finding a suitable ground-based research model and/or monitoring ICP during spaceflight, but is necessary to both characterize the physiology as well as to ultimately provide countermeasures for future long-duration space missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avery RA, Shah SS, Licht DJ, et al. Reference range for cerebrospinal fluid opening pressure in children. N Engl J Med. 2010;363:891–3. doi:10.1056/NEJMc1004957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barr YR. Lumbar puncture during spaceflight: operational considerations, constraints, concerns, and limitations. Aviat Space Environ Med. 2014;85:1209–13. doi:10.3357/ASEM.3674.2014.

    Article  PubMed  Google Scholar 

  3. Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115:763–8. doi:10.1016/j.ophtha.2008.01.013.

    Article  PubMed  Google Scholar 

  4. Berdahl JP, Yu DY, Morgan WH. The translaminar pressure gradient in sustained zero gravity, idiopathic intracranial hypertension, and glaucoma. Med Hypotheses. 2012;79:719–24. doi:10.1016/j.mehy.2012.08.009.

    Article  PubMed  Google Scholar 

  5. Buckey JC, Gaffney FA, Lane LD, et al. Central venous pressure in space. J Appl Physiol. 1996;81:19–25.

    PubMed  Google Scholar 

  6. Chiquet C, Custaud M-A, Le Traon AP, et al. Changes in intraocular pressure during prolonged (7-day) head-down tilt bedrest. J Glaucoma. 2003;12:204–8.

    Article  PubMed  Google Scholar 

  7. Chylack LT, Feiveson AH, Peterson LE, et al. NASCA report 2: longitudinal study of relationship of exposure to space radiation and risk of lens opacity. Radiat Res. 2012;178:25–32.

    Article  CAS  PubMed  Google Scholar 

  8. Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. Radiat Res. 2001;156:460–6.

    Article  CAS  PubMed  Google Scholar 

  9. Geary GG, Krause DN, Purdy RE, Duckles SP. Simulated microgravity increases myogenic tone in rat cerebral arteries. J Appl Physiol. 1998;85:1615–21.

    CAS  PubMed  Google Scholar 

  10. Iwasaki K-I, Levine BD, Zhang R, et al. Human cerebral autoregulation before, during and after spaceflight. J Physiol Lond. 2007;579:799–810. doi:10.1113/jphysiol.2006.119636.

    Article  CAS  PubMed  Google Scholar 

  11. Kattah JC, Pula JH, Mejico LJ, et al. CSF pressure, papilledema grade, and response to acetazolamide in the idiopathic intracranial hypertension treatment trial. J Neurol. 2015;262:2271–4. doi:10.1007/s00415-015-7838-9.

    Article  CAS  PubMed  Google Scholar 

  12. Kawai Y, Murthy G, Watenpaugh DE, et al. Cerebral blood flow velocity in humans exposed to 24 h of head-down tilt. J Appl Physiol. 1993;74:3046–51.

    CAS  PubMed  Google Scholar 

  13. Killer HE, Subramanian PS. Compartmentalized cerebrospinal fluid. Int Ophthalmol Clin. 2014;54:95–102. doi:10.1097/IIO.0000000000000010.

    Article  PubMed  Google Scholar 

  14. Kramer LA, Sargsyan AE, Hasan KM, et al. Orbital and intracranial effects of microgravity: findings at 3-T MR imaging. Radiology. 2012;263:819–27. doi:10.1148/radiol.12111986.

    Article  PubMed  Google Scholar 

  15. Lakin WD, Stevens SA, Penar PL. Modeling intracranial pressures in microgravity: the influence of the blood-brain barrier. Aviat Space Environ Med. 2007;78:932–6.

    Article  PubMed  Google Scholar 

  16. Lee SCM, Lueck CJ. Cerebrospinal fluid pressure in adults. J Neuroophthalmol. 2014;34:278–83. doi:10.1097/WNO.0000000000000155.

    Article  CAS  PubMed  Google Scholar 

  17. Macias BR, Liu JHK, Grande-Gutierrez N, Hargens AR. Intraocular and intracranial pressures during head-down tilt with lower body negative pressure. Aerosp Med Hum Perform. 2015;86:3–7. doi:10.3357/AMHP.4044.2015.

    PubMed  Google Scholar 

  18. Mader TH, Gibson CR, Pass AF, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118:2058–69. doi:10.1016/j.ophtha.2011.06.021.

    Article  PubMed  Google Scholar 

  19. Marshall-Goebel K, Ambarki K, Eklund A, et al. Effects of short-term exposure to head-down tilt on cerebral hemodynamics: a prospective evaluation of a spaceflight analog using phase-contrast MRI. J Appl Physiol. 2016;120:1466–73. doi:10.1152/japplphysiol.00841.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michael AP, Marshall-Bowman K. Spaceflight-induced intracranial hypertension. Aerosp Med Hum Perform. 2015;86:557–62. doi:10.3357/AMHP.4284.2015.

    Article  PubMed  Google Scholar 

  21. Murthy G, Marchbanks RJ, Watenpaugh DE, et al. Increased intracranial pressure in humans during simulated microgravity. Physiologist. 1992;35:S184–5.

    CAS  PubMed  Google Scholar 

  22. Norsk P. Cardiovascular and fluid volume control in humans in space. Curr Pharm Biotechnol. 2005;6:325–30.

    Article  CAS  PubMed  Google Scholar 

  23. Norsk P, Asmar A, Damgaard M, Christensen NJ. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol Lond. 2015;593:573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nusbaum DM, Wu SM, Frankfort BJ. Elevated intracranial pressure causes optic nerve and retinal ganglion cell degeneration in mice. Exp Eye Res. 2015;136:38–44. doi:10.1016/j.exer.2015.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pavy-Le Traon A, Heer M, Narici MV, et al. From space to earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol. 2007;101:143–94. doi:10.1007/s00421-007-0474-z.

    Article  CAS  PubMed  Google Scholar 

  26. Prata TS, De Moraes CGV, Kanadani FN, et al. Posture-induced intraocular pressure changes: considerations regarding body position in glaucoma patients. Surv Ophthalmol. 2010;55:445–53. doi:10.1016/j.survophthal.2009.12.002.

    Article  PubMed  Google Scholar 

  27. Ragauskas A, Matijosaitis V, Zakelis R, et al. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology. 2012; doi:10.1212/WNL.0b013e3182574f50.

    PubMed  Google Scholar 

  28. Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma a prospective study. Ophthalmology. 2009; doi:10.1016/j.ophtha.2009.06.058.

    PubMed  Google Scholar 

  29. Roberts DR, Zhu X, Tabesh A, et al. Structural brain changes following long-term 6° head-down tilt bed rest as an analog for spaceflight. Am J Neuroradiol. 2015;36:2048–54. doi:10.3174/ajnr.A4406.

    Article  CAS  PubMed  Google Scholar 

  30. Shiraishi M, Schou M, Gybel M, et al. Comparison of acute cardiovascular responses to water immersion and head-down tilt in humans. J Appl Physiol. 2002;92:264–8.

    PubMed  Google Scholar 

  31. Taibbi G, Cromwell RL, Kapoor KG, et al. The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol. 2013;58:155–63. doi:10.1016/j.survophthal.2012.04.002.

    Article  PubMed  Google Scholar 

  32. Taibbi G, Cromwell RL, Zanello SB, et al. Ocular outcomes comparison between 14- and 70-day head-down-tilt bed rest. Invest Ophthalmol Vis Sci. 2016;57:495–501. doi:10.1167/iovs.15-18530.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Taibbi G, Kaplowitz K, Cromwell RL, et al. Effects of 30-day head-down bed rest on ocular structures and visual function in a healthy subject. Aviat Space Environ Med. 2013;84:148–54.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tatebayashi K, Asai Y, Maeda T, et al. Effects of head-down tilt on the intracranial pressure in conscious rabbits. Brain Res. 2003;977:55–61.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor CR, Hanna M, Behnke BJ, et al. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J. 2013;27:2282–92. doi:10.1096/fj.12-222687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilkerson MK, Muller-Delp J, Colleran PN, Delp MD. Effects of hindlimb unloading on rat cerebral, splenic, and mesenteric resistance artery morphology. J Appl Physiol. 1999;87:2115–21.

    CAS  PubMed  Google Scholar 

  37. Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology. CMAJ. 2009;180:1317–23. doi:10.1503/cmaj.090628.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang R, Zuckerman JH, Pawelczyk JA, Levine BD. Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress. J Appl Physiol. 1997;83:2139–45.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Requirements

E. Lacey Echalier declares no conflict of interest. Prem S. Subramanian has served as a consultant to NASA for the VIIP syndrome. No human or animal studies were carried out by the authors for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem S. Subramanian MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Echalier, E.L., Subramanian, P.S. (2017). Neuro-ophthalmolmic Sequelae of Sustained Microgravity. In: Subramanian, P. (eds) Ophthalmology in Extreme Environments. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-57600-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57600-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57599-5

  • Online ISBN: 978-3-319-57600-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics