Skip to main content

Advertisement

Log in

From international ophthalmology to space ophthalmology: the threats to vision on the way to Moon and Mars colonization

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To report the ophthalmological risks of space travel.

Methods

The literature about the effect of microgravity and cosmic radiation on the human eye has been reviewed, focusing on the so-called “spaceflight related neuro-ocular syndrome (SANS)”, and possible remedies.

Results

The eye is the major candidate to suffer from the adverse space conditions, so much so that SANS is the main concern of the National Aeronautics and Space Administration (NASA). SANS, that affects astronauts engaged in long-duration spaceflights, is characterized by optic nerve head swelling, flattening of the posterior region of the scleral shell, choroidal folds, retinal cotton wool spots, and hyperopic shift. Even if it seems related to an increased volume of the cerebrospinal fluid in the brain and the optic nerve sheaths, its pathogenesis is still unclear. In addition, cataract is related to the effect of galactic cosmic rays on the lens. Centrifuges, pressurizing chambers, and mechanical counter-pressure suits have been advanced to counteract the upward fluid shift responsible for the SANS syndrome. Shields with a high content of hydrogen, magnetic shielding systems, and wearable radiation shielding devices are under study to mitigate the exposure to galactic cosmic rays.

Conclusions

Since 1961, the year of the first manned mission outside the Earth, history has shown that the human being may venture in space. Yet, visual impairment is the top health risk for long-duration spaceflight. Effective remediation is mandatory in anticipation of long space missions and Moon and Mars colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Microgravity is defined as 1 × 10−6 ge, that is, 1 μg.

  2. The best way to simulate a condition of microgravity on Earth is the "head-down tilt" (HDT), i.e., bed rest at a negative tilt angle of − 6° [28, 29]. However, it is worth recalling that although HDT is considered effective in recreating the microgravity-induced cephalad fluid shift, there are physiological differences with the real microgravity condition: sympathetic activity, in particular, decreases during HDT and increases in real microgravity, as indicated by platelet epinephrine and norepinephrine dosage [30].

References

  1. Vernikos J, Schneider VS (2010) Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology 56(2):157–166. https://doi.org/10.1159/000252852

    Article  PubMed  Google Scholar 

  2. Nelson ES, Mulugeta L, Myers JG (2014) Microgravity-induced fluid shift and ophthalmic changes. Life (Basel) 4(4):621–664. https://doi.org/10.3390/life4040621

    Article  Google Scholar 

  3. Demontis GC, Germani MM, Calani EG, Barravecchia I, Passino C, Angeloni D (2017) Human pathophysiological adaptations to space environment. Front Psysiol 8(547):1–17. https://doi.org/10.3389/fphys.2017.00547

    Article  Google Scholar 

  4. Strollo F, Gentile S, Strollo G, Mambro A, Vernikos J (2018) Recent progress in space physiology and aging. Physiol Front. https://doi.org/10.3389/fphys.2018.01551

    Article  Google Scholar 

  5. Chancellor JC, Scott GBI, Sutton JP (2014) Space radiation: the number one risk to astronaut health beyond low earth orbit. Life 4:491–510. https://doi.org/10.3390/life4030491

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cucinotta FA, Kim MH, Chappell LJ, Huff JL (2013) How safe is safe enough? Radiation risk for a human mission to Mars. PLoS ONE 8:e74988. https://doi.org/10.1371/journal.pone.0074988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. National Council of Radiation Protection and Measurements (NCRP) (1989) Guidance on radiation received in space activity. NCRP, Bethesda

    Google Scholar 

  8. Simpson JA (1983) Elemental and isotopic composition of the galactic cosmic rays. Ann Rev Nucl Part Sci 33:323–381

    Article  CAS  Google Scholar 

  9. Cucinotta FA, Kim MH, Ren L (2006) Evaluating shielding effectiveness for reducing space radiation cancer risks. Radiat Meas 41:1173–1185

    Article  CAS  Google Scholar 

  10. Tymko MM, Boulet LM, Donnelly J (2017) Intracranial pressure in outer space: preparing for the mission to Mars. J Physiol 595(14):4587–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duntley SQ, Austin RW, Taylor JL (1966) Experiments S-8/D-13, visual acuity and visibility. In: Gemini midprogram conference. NASA, Washington

  12. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, Tarver WJ, Dervay JP, Hamilton DR, Sargsyan A, Phillips JL, Tran D, Lipsky W, Choi J, Stern C, Kuyumjian R, Polk JD (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118:2058–2069

    Article  PubMed  Google Scholar 

  13. Mader TH, Gibson CR, Pass AF, Lee AG, Killer HE, Hansen HC, Dervay JP, Barratt MR, Tarver WJ, Sargsyan AE, Kramer LA, Riascos R, Bedi DG, Pettit DR (2013) Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol 33:249–255

    Article  PubMed  Google Scholar 

  14. Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR (2012) Orbital and intracranial effects of microgravity: findings at 3-T Mr imaging. Radiology 263:819–827

    Article  PubMed  Google Scholar 

  15. Tarver WJ, Otto C (2012) NASA’s spaceflight visual impairment intracranial pressure (VIIP) risk: clinical correlations and pathophysiology. In: Aerospace medicine grand rounds. NASA, Washington

  16. NASA (2015) Human exploration research opportunities (HERO) NNJ14ZSA001 N-MIDEXTOPICS appendix E: behavioral health & performance and human health countermeasures topics. NASA, Washington

  17. Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakov V, Arbeille P (2000) Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol 81(5):384–390

    Article  CAS  PubMed  Google Scholar 

  18. Arbeille P, Fomina G, Roumy J, Alferova I, Tobal N, Herault S (2001) Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J Appl Physiol 86(2):157–168

    Article  CAS  PubMed  Google Scholar 

  19. Wiener TC (2012) Space obstructive syndrome: intracranial hypertension, intraocular pressure, and papilledema in space. Aviat Space Environ Med 83(1):64–66

    Article  PubMed  Google Scholar 

  20. Alperin N, Lee SH, Mazda M, Hushek SG, Roitberg B, Goddwin J, Lichtor T (2005) Evidence for the importance of extracranial venous flow in patients with idiopathic intracranial hypertension (IIH). Acta Neurochir Suppl 95:129–132

    Article  CAS  PubMed  Google Scholar 

  21. Davson H, Hollingsworth G, Segal MB (1970) The mechanism of drainage of the cerebrospinal fluid. Brain 93:665–678

    Article  CAS  PubMed  Google Scholar 

  22. Hargens AR (1994) Recent bed rest results and countermeasure development at NASA. Acta Physiol Scand Suppl 616:103–114

    CAS  PubMed  Google Scholar 

  23. Murthy G, Marchbanks RJ, Watenpaugh DE, Meyer JU, Eliashberg N, Hargens AR (1992) Increased intracranial pressure in humans during simulated microgravity. Physiologist 35(1 Suppl):S184–S185

    CAS  PubMed  Google Scholar 

  24. Roberts DR, Albrecht MH, Collins HR, Asemani D, Chatterjee AR, Spampinato V, Zhu X, Chimowitz MI, Antonucci MU (2017) Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med 377(18):1746–1753

    Article  PubMed  Google Scholar 

  25. Alperin N, Bagci AM, Oliu CJ, Lee SH, Lam BL (2017) Role of cerebrospinal fluid in spaceflight-induced ocular changes and visual impairment in astronauts. Radiology. https://doi.org/10.1148/radiol.2017161981

    Article  PubMed  Google Scholar 

  26. Roberts DR, Zhu X, Tabesh A, Duffy EW, Ramsey DA, Brown TR (2015) Structural brain changes following long-term 6 head-down tilt bed rest as an analog for spaceflight. AJNR Am J Neuroradiol 36:2048–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu D, Kahn M (1993) Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol 116(5):548–556

    Article  CAS  PubMed  Google Scholar 

  28. Meck JV, Dreyer SA, Warren LE (2009) Long-duration head-down bed rest: project overview, vital signs, and fluid balance. Aviat Space Environ Med 80:A1–A8

    Article  PubMed  Google Scholar 

  29. Regnard J, Heer M, Drummer C, Norsk P (2001) Validity of microgravity simulation models on earth. Am J Kidney Dis 38:668–674

    Article  CAS  PubMed  Google Scholar 

  30. Christensen NJ, Heer M, Ivanova K, Norsk P (2005) Sympathetic nervous activity decreases during head down bed rest but not during microgravity. J Appl Physiol 99(4):1552–1557

    Article  PubMed  Google Scholar 

  31. Hayreh SS (1976) Pathogenesis of optic disc oedema in raised intracranial pressure. Trans Ophthalmol Soc UK 96:404–407

    CAS  PubMed  Google Scholar 

  32. Hayreh SS (1977) Optic disc edema in raised intracranial pressure. V. Pathogenesis. Arch Ophthalmol 95:1553–1565

    Article  CAS  PubMed  Google Scholar 

  33. Hayreh SS, March W, Anderson DR (1979) Pathogenesis of block of rapid orthograde axonal transport by elevated intraocular pressure. Exp Eye Res 28:515–523

    Article  CAS  PubMed  Google Scholar 

  34. Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29(2):144–168. https://doi.org/10.1016/j.preteyeres.2009.12.002

    Article  PubMed  Google Scholar 

  35. Lee AG, Tarver WJ, Mader TH, Gibson CR, Hart SF, Otto CA (2016) Neuro-ophthalmology of space flight. J Neuroophthalmol 36:85–91

    Article  PubMed  Google Scholar 

  36. Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR, Mironov A (2007) Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain 130(Pt 2):514–520

    Article  CAS  PubMed  Google Scholar 

  37. Killer HE, Jaggi GP, Miller NR (2009) Papilledema revisited: is its pathophysiology really understood? Clin Exp Ophthalmol 37(5):444–447. https://doi.org/10.1111/j.1442-9071.2009.02059.x

    Article  PubMed  Google Scholar 

  38. Killer HE, Subramanian PS (2014) Compartmentalized cerebrospinal fluid. Int Ophthalmol Clin 54(1):95–102. https://doi.org/10.1097/IIO.0000000000000010

    Article  PubMed  Google Scholar 

  39. Killer HE, Laeng HR, Flammer J, Groscurth P (2003) Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoidal space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol 87(6):777–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taibbi G, Cromwell RL, Kapoor KG, Godley BF, Vizzeri G (2013) The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol 58(2):155–163. https://doi.org/10.1016/j.survophthal.2012.04.002

    Article  PubMed  Google Scholar 

  41. Zwart SR, Gibson CR, Mader TH, Ericson K, Ploutz-Snyder R, Heer M, Smith SM (2012) Vision changes after spaceflight are related to alterations in folate- and vitamin B-12-dependent one-carbon metabolism. J Nutr 142(3):427–431. https://doi.org/10.3945/jn.111.154245

    Article  CAS  PubMed  Google Scholar 

  42. Zwart SR, Gibson CR, Gregory JF, Mader TH, Stover PJ, Zeisel SH, Smith SM (2017) Astronaut ophthalmic syndrome. FASEB J 31(9):3746–3756. https://doi.org/10.1096/fj.201700294

    Article  CAS  PubMed  Google Scholar 

  43. Alexander DJ, Gibson CR, Hamilton DR, Lee SMC, Mader TH, Otto C, Oubre CM, Pass AF, Platts S, Scott JM, Smith SM, Stenger MB, Westby CM, Zanello SB (2012) Evidence report: risk of spaceflight-induced intracranial hypertension and vision alterations. NASA, Washington

    Google Scholar 

  44. Smith SM, Kloeris VL, Heer M (2009) Nutritional biochemistry of space flight. Nova Science Publishers, New York

    Google Scholar 

  45. Kennedy AR (2014) Biological effects of space radiation and development of effective countermeasures. Life Sci Space Res (Amst) 1:10–43. https://doi.org/10.1016/j.lssr.2014.02.004

    Article  Google Scholar 

  46. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377. https://doi.org/10.1126/science.1241224

    Article  CAS  PubMed  Google Scholar 

  47. Berdahl JP, Fleischman D, Allingham RR, Fautsch M (2012) Disc swelling and space flight. Ophthalmology 119(6):1290

    Article  PubMed  Google Scholar 

  48. Zhang LF, Hargens AR (2014) Intraocular/intracranial pressure mismatch hypothesis for visual impairment syndrome in space. Aviat Space Environ Med J85(1):78–80

    Article  Google Scholar 

  49. Berdahl JP, Yu DY, Morgan WH (2012) The translaminar pressure gradient in sustained zero gravity, idiopathic intracranial hypertension, and glaucoma. Med Hypotheses 79(6):719–724. https://doi.org/10.1016/j.mehy.2012.08.009

    Article  PubMed  Google Scholar 

  50. Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH (2002) Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci 43(10):3236–3242

    PubMed  Google Scholar 

  51. Costa VP, Arcieri ES (2007) Hypotony maculopathy. Acta Ophthalmol Scand 85(6):586–597

    Article  PubMed  Google Scholar 

  52. Westfall AC, Ng JD, Samples JR, Weissman JL (2004) Hypotonus maculopathy: magnetic resonance appearance. Am J Ophthalmol 137(3):563–566

    Article  PubMed  Google Scholar 

  53. Draeger J, Schwartz R, Groenhoff S, Stern C (1995) Self-tonometry under microgravity conditions. Aviat Space Environ Med 66(6):568–570

    CAS  PubMed  Google Scholar 

  54. Jaworski A, Wolffsohn JS, Napper GA (1999) Aetiology and management of choroidal folds. Clin Exp Optom 82(5):169–176

    Article  PubMed  Google Scholar 

  55. Mader TH, Gibson CR, Lee AG (2016) Choroidal folds in astronauts. Invest Ophthalmol Vis Sci 57:592. https://doi.org/10.1167/iovs.15-18720

    Article  PubMed  Google Scholar 

  56. Newell FW (1973) Choroidal folds. The seventh Harry Searls Gradle Memorial lecture. Am J Ophthalmol 75(6):930–942

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt D (2008) The mystery of cotton-wool spots—a review of recent and historical descriptions. Eur J Med Res 13(6):231–266

    PubMed  Google Scholar 

  58. Carlson KH, McLaren JW, Topper JE, Brubaker RF (1987) Effect of body position on intraocular pressure and aqueous flow. Invest Ophthalmol Vis Sci 28(8):1346–1352

    CAS  PubMed  Google Scholar 

  59. Selvadurai D, Hodge D, Sit AJ (2010) Aqueous humor outflow facility by tonography does not change with body position. Invest Ophthalmol Vis Sci 51(3):1453–1457. https://doi.org/10.1167/iovs.09-4058

    Article  PubMed  Google Scholar 

  60. Mader TH, Taylor GR, Hunter N, Caputo M, Meehan RT (1990) Intraocular pressure, retinal vascular, and visual acuity changes during 48 hours of 10 degrees head-down tilt. Aviat Space Environ Med 61(9):810–813

    CAS  PubMed  Google Scholar 

  61. Mader TH, Gibson CR, Caputo M, Hunter N, Taylor G, Charles J, Meehan RT (1993) Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am J Ophthalmol 115(3):347–350

    Article  CAS  PubMed  Google Scholar 

  62. Xu X, Li L, Cao R, Tao Y, Guo Q, Geng J, Li Y, Zhang Z (2010) Intraocular pressure and ocular perfusion pressure in myopes during 21 min head-down rest. Aviat Space Environ Med 81(4):418–422

    Article  PubMed  Google Scholar 

  63. Chiquet C, Custaud MA, Le Traon AP, Millet C, Gharib C, Denis P (2003) Changes in intraocular pressure during prolonged (7-day) head-down tilt bedrest. J Glaucoma 12(3):204–208

    Article  PubMed  Google Scholar 

  64. Friberg TR, Sanborn G, Weinreb RN (1987) Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol 103(4):523–526

    Article  CAS  PubMed  Google Scholar 

  65. Kiel JW (1994) Choroidal myogenic autoregulation and intraocular pressure. Exp Eye Res 58(5):529–543

    Article  CAS  PubMed  Google Scholar 

  66. Ansari RR, Manuel FK, Suh KI, King JF, Messer RK, Moret F (2003) Choroidal blood flow measurements in zero gravity (space-like) environment using laser-doppler flowmetry. Invest Ophthalmol Vis Sci 44:960

    Google Scholar 

  67. Shinojima A, Iwasaki K-I, Aoki K, Ogawa Y, Yanagida R, Yuzawa M (2012) Subfoveal choroidal thickness and foveal retinal thickness during head-down tilt. Aviat Space Environ Med 83:388–393. https://doi.org/10.3357/ASEM.3191.2012

    Article  PubMed  Google Scholar 

  68. Longo A, Geiser MH, Riva CE (2004) Posture changes and subfoveal choroidal blood flow. Invest Ophthalmol Vis Sci 45(2):546–551

    Article  PubMed  Google Scholar 

  69. Woo SJ, Kim TW, Chung KY (2012) Intraocular pressure elevation during space flight. J Glaucoma 21(5):349. https://doi.org/10.1097/IJG.0b013e318252d5cb

    Article  PubMed  Google Scholar 

  70. Pinsky LS, Osborne WZ, Bailey JV, Benson RE, Thompson LF (1974) Light flashes observed by astronauts on Apollo 11 through Apollo 17. Science 183(4128):957–959. https://doi.org/10.1126/science.183.4128.957

    Article  CAS  PubMed  Google Scholar 

  71. Fuglesang C, Narici L, Picozza P, Sannita WG (2006) Phosphenes in low earth orbit: survey responses from 59 astronauts. Aviat Space Environ Med 77(4):449–452

    PubMed  Google Scholar 

  72. Avdeev S, Bidoli V, Casolino M, De Grandis E, Furano G, Morselli A, Narici L, De Pascale MP, Picozza P, Reali E, Sparvoli R, Boezio M, Carlson P, Bonvicini W, Vacchi A, Zampa N, Castellini G, Fuglesang C, Galper A, Khodarovich A, Ozerov Y, Popov A, Vavilov N, Mazzenga G, Ricci M, Sannita WG, Spillantini P (2002) Eye light flashes on the Mir space station. Acta Astronaut 50(8):511–525. https://doi.org/10.1016/S0094-5765(01)00190-4

    Article  CAS  PubMed  Google Scholar 

  73. Hoffman RA, Pinsky LA, Osborne WZ, Bailey JZ (1977) NASA report SP-377, pp 127–130

  74. Casolino M, Bidoli V, Morselli A, Narici L, De Pascale MP, Picozza P, Reali E, Sparvoli R, Mazzenga G, Ricci M, Spillantini P, Boezio M, Bonvicini V, Vacchi A, Zampa N, Castellini G, Sannita WG, Carlson P, Galper A, Korotkov M, Popov A, Vavilov N, Avdeev S, Fuglesang C (2003) Dual origins of light flashes seen in space. Nature 422:680

    Article  CAS  PubMed  Google Scholar 

  75. Fazio GG, Jelley JV, Charman WN (1970) Generation of Cherenkov light flashes by cosmic radiation within the eyes of the Apollo astronauts. Nature 228:260–264

    Article  CAS  PubMed  Google Scholar 

  76. Yamaguchi H, Uchihori Y, Yasuda N, Takada M, Kitamura H (2005) Estimation of yields of OH radicals in water irradiated by ionizing radiation. J Radiat Res 46(3):333–341

    Article  CAS  PubMed  Google Scholar 

  77. Catalá A (2006) An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 38(9):1482–1495

    Article  CAS  PubMed  Google Scholar 

  78. Narici L, Paci M, Brunetti V, Rinaldi A, Sannita WG, Carozzo S, Demartino A (2013) Bovine rod rhodopsin: 2. Bleaching in vitro upon 12C ions irradiation as source of effects as light flash for patients and for humans in space. Int J Radiat Biol 89(10):765–769. https://doi.org/10.3109/09553002.2013.800245

    Article  CAS  PubMed  Google Scholar 

  79. Cucinotta FA, Manuel FK, Jones J, Iszard G, Murrey J, Djojonegro B, Wear M (2001) Space radiation and cataracts in astronauts. Radiat Res 156(5 Pt 1):460–466 (Erratum in Radiat Res 2001, 156(6):811)

    Article  CAS  PubMed  Google Scholar 

  80. Worgul BV (1986) Cataract analysis and the assessment of radiation risk in space. Adv Space Res 6(11):285–293. https://doi.org/10.1016/0273-1177(86)90304-2

    Article  CAS  PubMed  Google Scholar 

  81. Chylack LT Jr, Peterson LE, Feiveson AH, Wear ML, Manuel FK, Tung WH, Hardy DS, Marak LJ, Cucinotta FA (2009) NASA study of cataract in astronauts (NASCA). Report 1: cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res 172:10–20

    Article  CAS  PubMed  Google Scholar 

  82. Jones JA, McCarten M, Manuel K, Djojonegoro B, Murray J, Feiversen A, Wear M (2007) Cataract formation mechanisms and risk in aviation and space crews. Aviat Space Environ Med 78(4 Suppl):A56–A66

    PubMed  Google Scholar 

  83. Rastegar N, Eckart P, Mertz M (2002) Radiation-induced cataract in astronauts and cosmonauts. Graefes Arch Clin Exp Ophthalmol 240(7):543–547

    Article  PubMed  Google Scholar 

  84. Frey MA (2009) Radiation health: mechanisms of radiation-induced cataracts in astronauts. Aviat Space Environ Med 80(6):575–576

    Article  PubMed  Google Scholar 

  85. Hargens AR, Bhattacharya R, Schneider SM (2013) Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol 113(9):2183–2192. https://doi.org/10.1007/s00421-012-2523-5

    Article  PubMed  Google Scholar 

  86. Iwase S (2005) Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans. Acta Astronaut 57(2–8):75–80

    Article  PubMed  Google Scholar 

  87. Clement GR, Bukley AP, Paloski W (2015) Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions. Front Syst Neurosci 9(92):1–11. https://doi.org/10.3389/fnsys.2015.00092

    Article  CAS  Google Scholar 

  88. Kozlovskaya IB, Grigoriev AI, Stepantzov VI (1995) Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights. Acta Astronaut 36(8–12):661–668

    Article  CAS  PubMed  Google Scholar 

  89. Guell A (1995) Lower body negative pressure (LBNP) as a countermeasure for long term spaceflight. Acta Astronaut 35(4–5):271–280

    Article  CAS  PubMed  Google Scholar 

  90. Cucinotta FA, Wilson JW, Williams JR, Dicello JF (2000) Analysis of Mir-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO. Radiat Meas 31:181–191

    Article  Google Scholar 

  91. Washburn SA, Blattnig SR, Singleterry RC, Westover SC (2015) Active magnetic radiation shielding system analysis and key technologies. Life Sci Space Res (Amst) 4:22–34. https://doi.org/10.1016/j.lssr.2014.12.004

    Article  CAS  Google Scholar 

  92. Baiocco G, Bocchini L, Giraudo M, Barbieri S, Narici L, Lobascio C, Ottolenghi A (2019) Innovative solutions for personal radiation shielding in space. Radiat Prot Dosimetry 183(1–2):228–232. https://doi.org/10.1093/rpd/ncy216

    Article  CAS  PubMed  Google Scholar 

  93. Kennedy AR, Weissman D, Sanzari JK, Krigsfeld GS, Wan XS, Romero-Weaver AL, Diffenderfer ES, Lin L, Cengel K (2014) Acute effects of solar particle event radiation. J Radiat Res 55(Suppl 1):i66–i67. https://doi.org/10.1093/jrr/rrt196

    Article  PubMed Central  Google Scholar 

  94. Wambi C, Sanzari J, Wan XS, Nuth M, Davis J, Ko Y, Sayers CM, Baran M, Jware JH, Kennedy AR (2008) Dietary antioxidants protect hematopoietic cells and improve animal survival after total-body irradiation. Radiat Res 169(4):384–396. https://doi.org/10.1667/RR1204.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Langell J, Jennings R, Clark J, Ward JB Jr (2008) Pharmacological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat Space Environ Med 79(7):651–660

    Article  CAS  PubMed  Google Scholar 

  96. Kaway Y, Doi M, Setogawa A, Shimoyama R, Ueda K, Asai Y, Tatebayashi K (2003) Effect of microgravity on cerebral hemodynamics. Yanago Acta Med 46:1–468

    Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Aleci.

Ethics declarations

Conflict of interest

All authors certify that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleci, C. From international ophthalmology to space ophthalmology: the threats to vision on the way to Moon and Mars colonization. Int Ophthalmol 40, 775–786 (2020). https://doi.org/10.1007/s10792-019-01212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-019-01212-7

Keywords

Navigation