Skip to main content
Log in

Petrogenesis of HED clan meteorites: Constraints from crystal size distribution

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Two diogenites (Johnstown and ALHA 77256) and two eucrites (Malotas (b) and Stannern) meteorites from the Howardite–Eucrite–Diogenite (HED) clan are investigated by petrography, mineral chemistry and using crystal size distribution (CSD) technique applied to pyroxene grains to demonstrate their crystallization history and post-magmatic processes. Among the dominant mineral phases, plagioclase is invariably anorthitic in all the samples. However, pyroxene has variable compositional ranges: En66-84Fs16-34Wo2-4 in Johnstown, En65-83Fs17-35Wo2-4 in ALHA 77256, En26-40Fs60-74Wo0-21 in Malotas (b), and En44-58Fs42-66Wo2-48 in Stannern, indicating diogenite pyroxenes are more Mg-rich and Ca-poor than the eucrite pyroxenes. The CSD result indicates that the diogenites show a near-linear slope with a major turning down of the curves at finer grains, which can be attributed to the onset of thermal annealing. Concave-up trends in the slopes of the diogenites are indicative of crystal accumulation at larger sizes leading to textural coarsening. The CSD plot of Malotas (b) eucrite suggests multiple mixing of magmas at a relatively deeper part of Vesta, whereas the lack of kink in the CSD pattern of Stannern eucrite indicates the crystal fractionation trend at smaller sizes above the diogenitic layer and its subsequent eruption on the surface of parent Vesta. This study suggests multiple stages of melting, crystallization, and subsequent sub-solidus recrystallization in the deep-seated diogenites, while the eucrites underwent a lesser amount of metamorphism at a shallower crustal level than the deep-seated diogenites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Armienti P, Pareschi M T, Innocenti F and Pompilio M 1994 Effects of magma storage and ascent on the kinetics of crystal growth; Contrib. Mineral. Petrol. 115 402–414.

    Article  Google Scholar 

  • Barrat J A, Beck P, Bohn M, Cotten J, Gillet P, Greenwood R C and Franchi I A 2006 Petrology and geochemistry of the fine-grained, unbrecciated diogenite, Northwest Africa 4215; Meteorit. Planet. Sci. 41 1045–1057.

    Article  Google Scholar 

  • Barrat J A, Yamaguchi A, Greenwood R C, Bohn M, Cotten J, Benoit M and Franchi I A 2007 The Stannern trend eucrites: Contamination of main group eucritic magmas by crustal partial melts; Geochim. Cosmochim. Acta 71 4108–4124.

    Article  Google Scholar 

  • Barrat J A, Yamaguchi A, Greenwood R C, Benoit M, Cotten J, Bohn M and Franchi I A 2008 Geochemistry of diogenites: Still more diversity in their parental melts; Meteorit. Planet. Sci. 43 1759–1775.

    Article  Google Scholar 

  • Barrat J A, Yamaguchi A, Zanda B, Bollinger C and Bohn M 2010 Relative chronology of crust formation on asteroid Vesta: Insights from the geochemistry of diogenites; Geochim. Cosmochim. Acta 74 6218–6231.

    Article  Google Scholar 

  • Basu Sarbadhikari A, Day J M D, Liu Y, Rumble D III and Taylor L A 2009 Petrogenesis of olivine–phyric shergottite Larkman Nunatak 06319: Implications for enriched components in Martian basalts; Geochim. Cosmochim. Acta 73 2190–2214.

    Article  Google Scholar 

  • Basu Sarbadhikari A, Mahajan R R, Misquita J, Sisodia M S, Shyam Prasad M and Bhandari N 2016 Lohawat howardite: Carbonaceous chondrite impactors and re-equilibrated components of various exposure ages on Vesta; Meteorit. Planet. Sci. 51 A156.

    Google Scholar 

  • Basu Sarbadhikari A, Mahajan R R, Das P, Chakraborty S, Babu E V S S K, Vijaya Kumar T and Sisodia M S 2017 New constraints of the petrogenesis of Piplia Kalan eucrite; Meteorit. Planet. Sci. 52 A17.

    Google Scholar 

  • Batchelor J D and Sears D W G 1991 Thermoluminescence constraints on the metamorphic, shock and brecciation history of basaltic meteorites; Geochim. Cosmochim. Acta 55 3831–3844.

    Article  Google Scholar 

  • Beck A W and McSween H Y Jr 2010 Diogenites as polymict breccias composed of orthopyroxenite and harzburgite; Meteorit. Planet. Sci. 45 850–872.

    Article  Google Scholar 

  • Beck A W, McCoy T J, Sunshine J M, Viviano C E, Corrigan C M, Hiroi T and Mayne R G 2013 Challenges in detecting olivine on the surface of 4 Vesta; Meteorit. Planet. Sci. 48 2155–2165.

    Article  Google Scholar 

  • Bindeman I N 2003 Crystal sizes in evolving silicic magma chambers; Geology 31 367–370.

    Article  Google Scholar 

  • Binzel R P and Xu S 1993 Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites; Science 260 186–191.

    Article  Google Scholar 

  • Bowman L E, Spilde M N and Papike J J 1997 Automated energy dispersive spectrometer modal analysis applied to the diogenites; Meteorit. Planet. Sci. 32 869–875.

    Article  Google Scholar 

  • Bowman L E, Papike J J and Spilde M N 1999 Diogenites as asteroidal cumulates: Insights from spinel chemistry; Am. Mineral. 84 1020–1026.

    Article  Google Scholar 

  • Cashman K V 1993 Relationship between plagioclase crystallization and cooling rate in basaltic melts; Contrib. Mineral. Petrol. 113 126–142.

    Article  Google Scholar 

  • Cashman K V and Marsh B D 1988 Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake; Contrib. Mineral. Petrol. 99(3) 292–305.

    Article  Google Scholar 

  • Chen M and El Goresy A 2000 The nature of maskelynite in shocked meteorites: Not diaplectic glass but a glass quenched from shock-induced dense melt at high pressures; Earth Planet. Sci. Lett. 179 489–502.

    Article  Google Scholar 

  • Consolmagno G J and Drake M J 1977 Composition and evolution of the eucrite parent body: Evidence from rare earth elements; Geochim. Cosmochim. Acta 41 1271–1282.

    Article  Google Scholar 

  • Crossley S D, Mayne R G, Lunning N G, McCoy T J, Greenwood R C and Franchi I A 2016 Stannern–trend eucrite petrogenesis: An assessment of partial melt contamination models via experimental petrology; In: 47th Lunar and Planetary Science Conference, 2821p.

  • Crossley S D, Lunning N G, Mayne R G, McCoy T J, Yang S, Humayan M, Ash R D, Sunshine J M, Greenwood R C and Franchi I A 2018 Experimental insights into Stannern-trend eucrite petrogenesis; Meteorit. Planet. Sci. 53(10) 2122–2137.

    Article  Google Scholar 

  • Day J M D and Taylor L A 2007 On the structure of mare basalt lava flows from textural analysis of the LaPaz Ice field and northwest Africa 032 lunar meteorites; Meteorit. Planet. Sci. 42 3–17.

    Article  Google Scholar 

  • Drake M J 2001 The eucrite/Vesta story; Meteorit. Planet. Sci. 36 501–513.

    Article  Google Scholar 

  • Duke M B and Silver L T 1967 Petrology of eucrites, howardites and mesosiderites; Geochim. Cosmochim. Acta 31 1637–1665.

    Article  Google Scholar 

  • Ennis M E and McSween H Y 2014 Crystallization kinetics of olivine–phyric shergottites; Meteorit. Planet. Sci. 49(8) 1440–1455.

    Article  Google Scholar 

  • Floran R J, Prinz M, Hlava P F, Keil K, Spettel B and Wänke H 1981 Mineralogy, petrology, and trace element geochemistry of the Johnstown meteorite: A brecciated orthopyroxenite with siderophile and REE–rich components; Geochim. Cosmochim. Acta 45 2385–2391.

    Article  Google Scholar 

  • Fowler G W, Papike J J, Spilde M N and Shearer C K 1995 Diogenites as asteroidal cumulates. Insights from orthopyroxene trace element chemistry; Geochim. Cosmochim. Acta 59 3071–3084.

    Article  Google Scholar 

  • Fuhrman M and Papike J J 1981 Howardites and polymict eucrites: Regolith samples from the eucrite parent body. Petrology of Bholgati, Bununu: Kapoeta and ALHA76005; Proceedings of the Lunar and Planetary Science Conference, pp. 1257–1279.

  • Gardner K G and Mittlefehldt D W 2004 Petrology of New Stannern–trend Eucrites and Eucrite Genesis; 35th Lunar and Planetary Science Conference Lunar and Planetary Institute Houston, 1349p.

  • Greenwood R C, Barrat J A, Yamaguchi A, Franchi I A, Scott E R D, Bottke W F and Gibson J M 2014 The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body; Earth Planet. Sci. Lett. 390 165–174.

    Article  Google Scholar 

  • Grove T L and Bertels K S 1992 Relation between diogenite cumulates and eucrite magmas; Proc. Lunar Planet. Sci. 22 437–445.

    Google Scholar 

  • Higgins M D 1991 The origin of laminated and massive anorthosite, Sept Iles intrusion, Quebec, Canada; Contrib. Mineral. Petrol. 106 340–354.

    Article  Google Scholar 

  • Higgins M D 1996 Magma dynamics beneath Kameni volcano, Greece, as revealed by crystal size and shape measurements; J. Volcanol. Geotherm. Res. 70 37–48.

    Article  Google Scholar 

  • Higgins M D 2000 Measurement of crystal size distributions; Am. Mineral. 85(9) 1105–1116.

    Article  Google Scholar 

  • Higgins M D 2002 Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans; Am. Mineral. 87 171–175.

    Article  Google Scholar 

  • Higgins M D 2006 Quantitative textural measurements in igneous and metamorphic petrology; Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Higgins M D and Chandrasekharam D 2007 Nature of sub–volcanic magma chambers, Deccan Province, India: Evidence from quantitative textural analysis of plagioclase megacrysts in the Giant Plagioclase Basalts; J. Petrol. 48 885–900.

    Article  Google Scholar 

  • Higgins M D and Roberge J 2003 Crystal size distribution of plagioclase and amphibole from Soufrie’re Hills Volcano, Monserrat: Evidence for dynamic crystallization–textural coarsening cycles; J. Petrol. 44 1401–1411.

    Article  Google Scholar 

  • Hutchison R 2004 Meteorites: A petrologic, chemical and isotope synthesis; Cambridge Univ. Press, Cambridge, 506p.

    Google Scholar 

  • Jaret S J, Mayne R G and McSween H Y 2008 Demystifying crystal size distribution (CSD): A comparison of methodologies using eucrite meteorites; 39th Lunar and Planetary Science Conference, Houston, TX #1412 (abstract).

  • Keil K 2002 Geological history of asteroid 4 Vesta: The smallest terrestrial planet; In: Asteroids I I I (eds) Bottke J W F, Cellino A, Paolicchi P and Binzel R P, University of Arizona Press, Tucson, pp. 573–584.

    Google Scholar 

  • Kunz J, Trieloff M, Bobe K D, Metzler K, Stöffler D and Jessberger E K 1995 The collisional history of the HED parent body inferred from 39Ar–40Ar ages of eucrites; Planet. Space Sci. 43 527–543.

    Article  Google Scholar 

  • Labotka T C and Papike J J 1980 Howardites – samples of the regolith of the eucrites parent body; petrology of Frankfort, Pavlovka, Yurtuk, Malvern, and ALHA77302; Proceedings of the Lunar and Planetary Science Conference, pp. 1103–1130.

  • Lentz R C and McSween H Y Jr 2000 Crystallization of the basaltic shergottites: Insights from crystal size distribution (CSD) analysis of pyroxenes; Meteorit. Planet. Sci. 35(5) 919–927.

    Article  Google Scholar 

  • Mangan M T 1990 Crystal size distribution systematics and the determination of magma storage times: The 1959 eruption of Kilauea Volcano, Hawaii; J. Volcanol. Geotherm. Res. 44 295–302.

    Article  Google Scholar 

  • Marsh B D 1988 Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization; Contrib. Mineral. Petrol. 99(3) 277–291.

    Article  Google Scholar 

  • Marsh B D 1998 On the interpretation of crystal size distributions in magmatic systems; J. Petrol. 39(4) 553–599.

    Article  Google Scholar 

  • Mayne R G, Jaret S J and McSween H Y 2008 Crystal Size Distributions in the unbrecciated eucrites: A preliminary study; 39th Lunar and Planetary Science Conference, Houston, TX #1410 (abstract).

  • McCord T B, Adams J B and Johnson T V 1970 Asteroid Vesta: Spectral reflectivity and compositional implications; Science 168 1445–1447.

    Article  Google Scholar 

  • McSween H Y Jr, Mittlefehldt D W, Beck A W, Mayne R G and McCoy T J 2011 HED meteorites and their relationship to the geology of Vesta and the dawn mission; Space Sci. Rev. 163 141–174.

    Article  Google Scholar 

  • McSween H Y Jr, Binzel R P, De Sanctis M C, Ammannito E, Prettyman T H, Beck A W, Reddy V, Le Corre L, Gaffey M, McCord T B, Raymond C A and Russell C T 2013 Dawn, the Vesta–HED connection, and the geologic context for eucrites, diogenites, and howardites; Meteorit. Planet. Sci. 48 2090–2104.

    Article  Google Scholar 

  • Melnik O E, Blundy J D, Rust A C and Muir D D 2011 Subvolcanic plumbing systems imaged through crystal size distributions; Geology 39(4) 403–406.

    Article  Google Scholar 

  • Metzler K, Bobe K D, Palme H, Spettel B and Stöffler D 1995 Thermal and impact metamorphism on the HED parent asteroid; Planet. Space Sci. 43 499–525.

    Article  Google Scholar 

  • Mittlefehldt D W 1994 The genesis of diogenites and HED parent body petrogenesis; Geochim. Cosmochim. Acta 58 1537–1552.

    Article  Google Scholar 

  • Mittlefehldt D W 2000 Petrology and geochemistry of the Elephant MoraineA79002 diogenite: A genomict breccia containing a magnesian harzburgite component; Meteorit. Planet. Sci. 35 901–912.

    Article  Google Scholar 

  • Mittlefehldt D W 2005 Ibitira: A basaltic achondrite from a distinct parent asteroid and implications for the Dawn mission; Meteorit. Planet. Sci. 40 665–677.

    Article  Google Scholar 

  • Mittlefehldt D W 2015 Asteroid (4) Vesta: I. The Howardite–Eucrite–Diogenite (HED) clan of meteorites; Chemie Der Erde Geochem. 75(2) 155–183.

    Article  Google Scholar 

  • Mittlefehldt D W and Lindstrom M M 1989 Diogenite petrogenesis: Geochemistry and petrology of whole rocks and coarse grained separates; Lunar Planet. Sci. 20 697–698.

    Google Scholar 

  • Mittlefehldt D W, Beck A W, Lee C T A, McSween H Y and Buchanan P C 2012 Compositional constraints on the genesis of diogenites; Meteorit. Planet. Sci. 47 72–98.

    Article  Google Scholar 

  • Molin G M, Saxena S K and Brizi E 1991 Iron–magnesium order disorder in an orthopyroxene crystal from the Johnstown meteorite; Earth Planet. Sci. Lett. 105 260–265.

    Article  Google Scholar 

  • Morgan D J and Jerram D A 2006 On estimating crystal shape for crystal size distribution analysis; J. Volcanol. Geotherm. Res. 154(1) 1–7.

    Article  Google Scholar 

  • Morgan D J, Jerram D A, Chertkoff D G, Davidson J P, Pearson D G, Kronz A and Nowell G M 2007 Combining CSD and isotopic micro-analysis: Magma supply and mixing processes at Stromboli Volcano, Aeolian Islands, Italy; Earth Planet. Sci. Lett. 260 419–431.

    Article  Google Scholar 

  • Mori H and Takeda H 1981 Thermal and deformational histories of diogenites as inferred from their micro–textures of orthopyroxene; Earth Planet. Sci. Lett. 53 266–274.

    Article  Google Scholar 

  • Mukherjee A B and Viswanath T A 1987 Thermometry of diogenites; Memoir Nat. Inst. Polar Res. Spec. Issue 46 205–215.

    Google Scholar 

  • Norton O R 2002 The Cambridge Encyclopedia of Meteorites; Cambridge University Press, Cambridge, 347p.

    Google Scholar 

  • Ono H, Takenouchi A, Mikouchi T, Yamaguchi A, Yasutake M, Miyake A and Tsuchiyama A 2021 Association of silica phases as geothermobarometer for eucrites: Implication for two–stage thermal metamorphism in the eucritic crust; Meteorit. Planet. Sci., https://doi.org/10.1111/maps.13664.

    Article  Google Scholar 

  • Pouchou J L and Pichoir F 1991 Quantitative analysis of homogeneous or stratified microvolumes applying the model 'PAP'; Electron Probe Quantitation, pp. 31–75.

  • Pupier E, Duchene S and Toplis M J 2008 Experimental quantification of plagioclase crystal size distribution during cooling of basaltic liquid; Contrib. Mineral. Petrol. 155 555–570.

    Article  Google Scholar 

  • Randolph A D and Larson M A 1971 Theory of particulate processes; Academic Press, New York, 251p.

    Google Scholar 

  • Russell C T, Raymond C A, Coradini A, McSween H Y, Zuber M T, Nathues A, De Sanctis M C, Jaumann R, Konopliv A S, Preusker F, Asmar S W, Park R S, Gaskell R, Keller H U, Mottola S, Roatsch T, Scully J E C, Smith D E, Tricarico P, Toplis M J, Christensen U R, Feldman W C, Lawrence D J, McCoy T J, Prettyman T H, Reedy R C, Sykes M E and Titus T N 2012 Dawn at Vesta: Testing the protoplanetary paradigm; Science 336 684–686.

    Article  Google Scholar 

  • Ruzicka A, Snyder G A and Taylor L A 1997 Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large-scale differentiation; Meteorit. Planet. Sci. 32 825–840.

    Article  Google Scholar 

  • Sahagian D L and Proussevitch A A 1998 3D particle size distributions from 2D observations; stereology for natural applications; J. Volcanol. Geotherm. Res. 84 173–196.

    Article  Google Scholar 

  • Shearer C K, Fowler G W and Papike J J 1997 Petrogenetic models for magmatism on the eucrite parent body: Evidence from orthopyroxene in diogenites; Meteorit. Planet. Sci. 32 877–889.

    Article  Google Scholar 

  • Shearer C K, Burger P and Papike J J 2010 Petrogenetic relationships between diogenites and olivine diogenites: Implications for magmatism on the HED parent body; Geochim. Cosmochim. Acta 74 4865–4880.

    Article  Google Scholar 

  • Stolper E 1977 Experimental petrology of eucritic meteorites; Geochim. Cosmochim. Acta 41 587–611.

    Article  Google Scholar 

  • Takahashi K and Masuda A 1990 Young ages of two diogenites and their genetic implications; Nature 343 540–542.

    Article  Google Scholar 

  • Takeda H and Graham A L 1991 Degree of equilibration of eucritic pyroxenes and thermal metamorphism of the earliest planetary crust; Meteoritics 26 129–134.

    Article  Google Scholar 

  • Takeda H, Mom H, Dewy D S, Prum M, Harlow G E and Ism T 1983 Mineralogical comparison of Antarctic and non-Antarctic HED (Howardites–Eucrites–Diogenites) achondrites; Memoir Nat. Inst. Polar Res. Spec. Issue 30 181–205.

    Google Scholar 

  • Turner S, George R, Jerram D A, Carpenter N and Hawkesworth C 2003 Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the Lesser Antilles, and a model to reconcile discordant age information; Earth Planet. Sci. Lett. 214 279–294.

    Article  Google Scholar 

  • Walton E L, Spray J G and Bartoschewitz R 2005 A new Martian meteorite from Oman: Mineralogy, petrology, and shock metamorphism of olivine–phyric basaltic shergottite Sayh al Uhaymir 150; Meteorit. Planet. Sci. 40 1195–1214.

    Article  Google Scholar 

  • Warren P H and Kallemeyn G W 2001 Eucrite Bluewing 001: A Stannern–like bulk composition and its linkage with other unequilibrated HED basalts (abstract); 32nd Lunar and Planetary Science Conference, 2114p.

  • Yamaguchi A, Taylor G J and Keil K 1996 Global crustal metamorphism of the eucrite parent body; Icarus 124 97–112.

    Article  Google Scholar 

  • Yamaguchi A, Taylor G J and Keil K 1997 Metamorphic history of the eucritic crust of 4 Vesta; J. Geophys. Res. 102 13,381–13,386.

    Article  Google Scholar 

  • Yamaguchi A, Taylor G J, Keil K, Floss C, Crozaz G, Nyquist L E, Bogard D D, Garrison D H, Reese Y D, Wiesmann H and Shih C Y 2001 Post-crystallization reheating and partial melting of eucrite EET90020 by impact into the hot crust of asteroid 4Vesta ∼4.50 Ga ago; Geochim. Cosmochim. Acta 65 3577–3599.

    Article  Google Scholar 

  • Yamaguchi A, Barrat J A, Ito M and Bohn M 2011 Posteucritic magmatism on Vesta: Evidence from the petrology and thermal history of diogenites; J. Geophys. Res. 116 E08009.

    Google Scholar 

  • Zieg M J and Lofgren G E 2006 An experimental investigation of texture evolution during continuous cooling; J. Volcanol. Geotherm. Res. 154 74–88.

    Article  Google Scholar 

  • Zingg T 1935 Beitrag zur Schotteranalyse; Schweizeriscke Mineralogische Und Petrologische Mitteilungen 15 39–140.

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Department of Space, Government of India. We are thankful to the editor for editorial handling and the two anonymous reviewers for journal reviews.

Author information

Authors and Affiliations

Authors

Contributions

BPD and ABS: Problem visualization, laboratory analysis, data acquisition and tabulation, figure construction and manuscript writing. YS, NGR and DKP: Laboratory analysis, data acquisition and scientific input.

Corresponding author

Correspondence to Amit Basu Sarbadhikari.

Additional information

Communicated by Ramananda Chakrabarti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B.P., Basu Sarbadhikari, A., Srivastava, Y. et al. Petrogenesis of HED clan meteorites: Constraints from crystal size distribution. J Earth Syst Sci 132, 33 (2023). https://doi.org/10.1007/s12040-023-02051-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02051-y

Keywords

Navigation