ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Colloidal CuInSe2 Nanocrystals in the Quantum Confinement Regime: Synthesis, Optical Properties, and Electroluminescence

View Author Information
School of Materials Science and Engineering, 5 Zhongguancun South Street, Beijing Institute of Technology, Beijing 100081, China
Department of Chemistry, Institute for Optical Sciences, and Centre for Quantum Information and Quantum Control, 80 St. George Street, University of Toronto, Toronto, Ontario M5S 3E4, Canada
§ Department of Materials Science and Engineering, 184 College Street, University of Toronto, Toronto, Ontario M5S 3E4, Canada
Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6, Canada
E-mail: [email protected] (H.Z.); [email protected] (G.D.S.).
Cite this: J. Phys. Chem. C 2011, 115, 25, 12396–12402
Publication Date (Web):June 1, 2011
https://doi.org/10.1021/jp204249j
Copyright © 2011 American Chemical Society

    Article Views

    4450

    Altmetric

    -

    Citations

    175
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Photoluminescent, near-stoichiometric colloidal CuInSe2 nanocrystals are synthesized in large batches and with good colloidal quality. An organometallic method is used with a moderate reaction temperature (≤200 °C) to produce CuInSe2 nanocrystals with size-tunable photoluminescence spectra ranging from ∼600 to ∼850 nm. Two-dimensional photoluminescence excitation–emission maps are reported for the CuInSe2 nanocrystals, highlighting the size-tunable excitonic features. Type I heterostructured CuInSe2/ZnS nanocrystals are prepared and purified. They are found to have absolute photoluminescence quantum yields up to ∼26%. The potential to use CuInSe2/ZnS core/shell nanocrystals as a potential low toxicity active layer in light-emitting diodes is demonstrated by fabricating electroluminescent devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    (1) Theoretical calculations, (2) enlarged images of CuInSe2 nanocrystals, (3) EDS analysis results, (4) UV–vis absorption spectra and STEM image, (5) evolution of UV–vis and PL spectra during CuInSe2/ZnS NCs growth, (6) EDS spectra of CuInSe2/ZnS NCs, and (7) PLE and line-narrowed PL spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 175 publications.

    1. Ankita Bora, Josephine Lox, René Hübner, Nelli Weiß, Houman Bahmani Jalali, Francesco di Stasio, Christine Steinbach, Nikolai Gaponik, Vladimir Lesnyak. Composition-Dependent Optical Properties of Cu–Zn–In–Se Colloidal Nanocrystals Synthesized via Cation Exchange. Chemistry of Materials 2023, 35 (10) , 4068-4077. https://doi.org/10.1021/acs.chemmater.3c00538
    2. Yingying Li, Peisen Zhang, Wen Tang, Kevin J. McHugh, Stephen V. Kershaw, Mingxia Jiao, Xiaodan Huang, Sergii Kalytchuk, Collin F. Perkinson, Saisai Yue, Yuanyuan Qiao, Lichong Zhu, Lihong Jing, Mingyuan Gao, Buxing Han. Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer. ACS Nano 2022, 16 (5) , 8076-8094. https://doi.org/10.1021/acsnano.2c01153
    3. Parna Roy, Arpita Mukherjee, Pritha Mondal, Biswajit Bhattacharyya, Awadhesh Narayan, Anshu Pandey. Electronic Structure and Spectroscopy of I–III–VI2 Nanocrystals: A Perspective. The Journal of Physical Chemistry C 2022, 126 (17) , 7364-7373. https://doi.org/10.1021/acs.jpcc.1c10922
    4. Samantha M. Harvey, Daniel W. Houck, Wen Liu, Yuzi Liu, David J. Gosztola, Brian A. Korgel, Michael R. Wasielewski, Richard D. Schaller. Synthetic Ligand Selection Affects Stoichiometry, Carrier Dynamics, and Trapping in CuInSe2 Nanocrystals. ACS Nano 2021, 15 (12) , 19588-19599. https://doi.org/10.1021/acsnano.1c06625
    5. Yang Li, Xiaoqi Hou, Yongmiao Shen, Ning Dai, Xiaogang Peng. Tuning the Reactivity of Indium Alkanoates by Tertiary Organophosphines for the Synthesis of Indium-Based Quantum Dots. Chemistry of Materials 2021, 33 (23) , 9348-9356. https://doi.org/10.1021/acs.chemmater.1c03219
    6. Chao Pang, Shiben Hu, Chan Guo, Jiantai Wang, Shenghan Zou, Zhangxu Pan, Jiucheng Liu, Liming Shen, Ningzhong Bao, Honglong Ning, Arunava Gupta, Zheng Gong. High-Performance Inorganically Connected CuInSe2 Nanocrystal Thin-Film Transistors and Integrated Circuits Based on the Solution Process of Colloidal Synthesis, Ligand Exchange, and Surface Treatment. Chemistry of Materials 2021, 33 (22) , 8775-8785. https://doi.org/10.1021/acs.chemmater.1c02877
    7. Jiajia Ning, Yuan Xiong, Fei Huang, Zonghui Duan, Stephen V. Kershaw, Andrey L. Rogach. Growth of Multinary Copper-Based Sulfide Shells on CuInSe2 Nanocrystals for Significant Improvement of Their Near-Infrared Emission. Chemistry of Materials 2020, 32 (18) , 7842-7849. https://doi.org/10.1021/acs.chemmater.0c02500
    8. Jiajia Ning, Zonghui Duan, Stephen V. Kershaw, Andrey L. Rogach. Phase-Controlled Growth of CuInS2 Shells to Realize Colloidal CuInSe2/CuInS2 Core/Shell Nanostructures. ACS Nano 2020, 14 (9) , 11799-11808. https://doi.org/10.1021/acsnano.0c04660
    9. Dmitry Aldakov, Peter Reiss. Safer-by-Design Fluorescent Nanocrystals: Metal Halide Perovskites vs Semiconductor Quantum Dots. The Journal of Physical Chemistry C 2019, 123 (20) , 12527-12541. https://doi.org/10.1021/acs.jpcc.8b12228
    10. Daniel W. Houck, Eli I. Assaf, Haein Shin, Randalynn M. Greene, Douglas R. Pernik, Brian A. Korgel. Pervasive Cation Vacancies and Antisite Defects in Copper Indium Diselenide (CuInSe2) Nanocrystals. The Journal of Physical Chemistry C 2019, 123 (14) , 9544-9551. https://doi.org/10.1021/acs.jpcc.9b00558
    11. Han Wang, Derrick J. Butler, Daniel B. Straus, Nuri Oh, Fengkai Wu, Jiacen Guo, Kun Xue, Jennifer D. Lee, Christopher B. Murray, Cherie R. Kagan. Air-Stable CuInSe2 Nanocrystal Transistors and Circuits via Post-Deposition Cation Exchange. ACS Nano 2019, 13 (2) , 2324-2333. https://doi.org/10.1021/acsnano.8b09055
    12. Viviana Sousa, Bruna F. Gonçalves, Miguel Franco, Yasmine Ziouani, Noelia González-Ballesteros, M. Fátima Cerqueira, Vincent Yannello, Kirill Kovnir, Oleg I. Lebedev, Yury V. Kolen’ko. Superstructural Ordering in Hexagonal CuInSe2 Nanoparticles. Chemistry of Materials 2019, 31 (1) , 260-267. https://doi.org/10.1021/acs.chemmater.8b04368
    13. Daniel W. Houck, Brian A. Korgel. Facile Exchange of Tightly Bonded L-Type Oleylamine and Diphenylphosphine Ligands on Copper Indium Diselenide Nanocrystals Mediated by Molecular Iodine. Chemistry of Materials 2018, 30 (22) , 8359-8367. https://doi.org/10.1021/acs.chemmater.8b04016
    14. Fei Chen, Zhenyang Liu, Zhongyuan Guan, Zheming Liu, Xu Li, Zhenbo Deng, Feng Teng, Aiwei Tang. Chloride-Passivated Mg-Doped ZnO Nanoparticles for Improving Performance of Cadmium-Free, Quantum-Dot Light-Emitting Diodes. ACS Photonics 2018, 5 (9) , 3704-3711. https://doi.org/10.1021/acsphotonics.8b00722
    15. Biswajit Bhattacharyya, Triloki Pandit, Guru Pratheep Rajasekar, Anshu Pandey. Optical Transparency Enabled by Anomalous Stokes Shift in Visible Light-Emitting CuAlS2-Based Quantum Dots. The Journal of Physical Chemistry Letters 2018, 9 (15) , 4451-4456. https://doi.org/10.1021/acs.jpclett.8b01787
    16. Josephine F. L. Lox, Zhiya Dang, Volodymyr M. Dzhagan, Daniel Spittel, Beatriz Martín-García, Iwan Moreels, Dietrich R. T. Zahn, Vladimir Lesnyak. Near-Infrared Cu–In–Se-Based Colloidal Nanocrystals via Cation Exchange. Chemistry of Materials 2018, 30 (8) , 2607-2617. https://doi.org/10.1021/acs.chemmater.7b05187
    17. Qingli Lin, Lei Wang, Zhaohan Li, Huaibin Shen, Lijun Guo, Yanmin Kuang, Hongzhe Wang, Lin Song Li. Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process. ACS Photonics 2018, 5 (3) , 939-946. https://doi.org/10.1021/acsphotonics.7b01195
    18. Olesya Yarema, Maksym Yarema, Vanessa Wood. Tuning the Composition of Multicomponent Semiconductor Nanocrystals: The Case of I–III–VI Materials. Chemistry of Materials 2018, 30 (5) , 1446-1461. https://doi.org/10.1021/acs.chemmater.7b04710
    19. Bingkun Chen, Narayan Pradhan, and Haizheng Zhong . From Large-Scale Synthesis to Lighting Device Applications of Ternary I–III–VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. The Journal of Physical Chemistry Letters 2018, 9 (2) , 435-445. https://doi.org/10.1021/acs.jpclett.7b03037
    20. Marina Gromova, Aurélie Lefrançois, Louis Vaure, Fabio Agnese, Dmitry Aldakov, Axel Maurice, David Djurado, Colette Lebrun, Arnaud de Geyer, Tobias U. Schülli, Stéphanie Pouget, and Peter Reiss . Growth Mechanism and Surface State of CuInS2 Nanocrystals Synthesized with Dodecanethiol. Journal of the American Chemical Society 2017, 139 (44) , 15748-15759. https://doi.org/10.1021/jacs.7b07401
    21. Annina Moser, Maksym Yarema, Weyde M. M. Lin, Olesya Yarema, Nuri Yazdani, and Vanessa Wood . In Situ Monitoring of Cation-Exchange Reaction Shell Growth on Nanocrystals. The Journal of Physical Chemistry C 2017, 121 (43) , 24345-24351. https://doi.org/10.1021/acs.jpcc.7b08571
    22. Gary Zaiats, Shingo Ikeda, Sachin Kinge, and Prashant V. Kamat . Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels. ACS Applied Materials & Interfaces 2017, 9 (36) , 30741-30745. https://doi.org/10.1021/acsami.7b07893
    23. Sungjun Koh, Taedaehyeong Eom, Whi Dong Kim, Kangha Lee, Dongkyu Lee, Young Kuk Lee, Hyungjun Kim, Wan Ki Bae, and Doh C. Lee . Zinc–Phosphorus Complex Working as an Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots. Chemistry of Materials 2017, 29 (15) , 6346-6355. https://doi.org/10.1021/acs.chemmater.7b01648
    24. Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117 (9) , 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
    25. Alexandra Raevskaya, Vladimir Lesnyak, Danny Haubold, Volodymyr Dzhagan, Oleksandr Stroyuk, Nikolai Gaponik, Dietrich R. T. Zahn, and Alexander Eychmüller . A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots. The Journal of Physical Chemistry C 2017, 121 (16) , 9032-9042. https://doi.org/10.1021/acs.jpcc.7b00849
    26. Kathryn E. Knowles, Kimberly H. Hartstein, Troy B. Kilburn, Arianna Marchioro, Heidi D. Nelson, Patrick J. Whitham, and Daniel R. Gamelin . Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. Chemical Reviews 2016, 116 (18) , 10820-10851. https://doi.org/10.1021/acs.chemrev.6b00048
    27. Peter Reiss, Marie Carrière, Christophe Lincheneau, Louis Vaure, and Sudarsan Tamang . Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews 2016, 116 (18) , 10731-10819. https://doi.org/10.1021/acs.chemrev.6b00116
    28. Jong-Hoon Kim and Heesun Yang . High-Efficiency Cu–In–S Quantum-Dot-Light-Emitting Device Exceeding 7%. Chemistry of Materials 2016, 28 (17) , 6329-6335. https://doi.org/10.1021/acs.chemmater.6b02669
    29. Riya Bose, Ashok Bera, Manas R. Parida, Aniruddha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, and Omar F. Mohammed . Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy. Nano Letters 2016, 16 (7) , 4417-4423. https://doi.org/10.1021/acs.nanolett.6b01553
    30. Gary Zaiats, Sachin Kinge, and Prashant V. Kamat . Origin of Dual Photoluminescence States in ZnS–CuInS2 Alloy Nanostructures. The Journal of Physical Chemistry C 2016, 120 (19) , 10641-10646. https://doi.org/10.1021/acs.jpcc.6b01905
    31. Zelong Bai, Wenyu Ji, Dengbao Han, Liangliang Chen, Bingkun Chen, Huaibin Shen, Bingsuo Zou, and Haizheng Zhong . Hydroxyl-Terminated CuInS2 Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes. Chemistry of Materials 2016, 28 (4) , 1085-1091. https://doi.org/10.1021/acs.chemmater.5b04480
    32. Atanu Jana, Katie N. Lawrence, Meghan B. Teunis, Manik Mandal, Amar Kumbhar, and Rajesh Sardar . Investigating the Control by Quantum Confinement and Surface Ligand Coating of Photocatalytic Efficiency in Chalcopyrite Copper Indium Diselenide Nanocrystals. Chemistry of Materials 2016, 28 (4) , 1107-1120. https://doi.org/10.1021/acs.chemmater.5b04521
    33. Junais Habeeb Mokkath, Nirpendra Singh, and U. Schwingenschlögl . Absorption Spectra of CuGaSe2 and CuInSe2 Semiconducting Nanoclusters. The Journal of Physical Chemistry C 2015, 119 (39) , 22732-22736. https://doi.org/10.1021/acs.jpcc.5b07350
    34. Bingkun Chen, Shuai Chang, Deyao Li, Liangliang Chen, Yongtian Wang, Tao Chen, Bingsuo Zou, Haizheng Zhong, and Andrey L. Rogach . Template Synthesis of CuInS2 Nanocrystals from In2S3 Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells. Chemistry of Materials 2015, 27 (17) , 5949-5956. https://doi.org/10.1021/acs.chemmater.5b01971
    35. Chuanzhen Zhao, Zelong Bai, Xiangyou Liu, Yijia Zhang, Bingsuo Zou, and Haizheng Zhong . Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications. ACS Applied Materials & Interfaces 2015, 7 (32) , 17623-17629. https://doi.org/10.1021/acsami.5b05503
    36. Beniamino Sciacca, Anil O. Yalcin, and Erik C. Garnett . Transformation of Ag Nanowires into Semiconducting AgFeS2 Nanowires. Journal of the American Chemical Society 2015, 137 (13) , 4340-4343. https://doi.org/10.1021/jacs.5b02051
    37. Riya Bose, Ghada H. Ahmed, Erkki Alarousu, Manas R. Parida, Ahmed L. Abdelhady, Osman M. Bakr, and Omar F. Mohammed . Direct Femtosecond Observation of Charge Carrier Recombination in Ternary Semiconductor Nanocrystals: The Effect of Composition and Shelling. The Journal of Physical Chemistry C 2015, 119 (6) , 3439-3446. https://doi.org/10.1021/acs.jpcc.5b00204
    38. Ki-Joong Kim, Richard P. Oleksak, Eric B. Hostetler, Daniel A. Peterson, Padmavathi Chandran, David M. Schut, Brian K. Paul, Gregory S. Herman, and Chih-Hung Chang . Continuous Microwave-Assisted Gas–Liquid Segmented Flow Reactor for Controlled Nucleation and Growth of Nanocrystals. Crystal Growth & Design 2014, 14 (11) , 5349-5355. https://doi.org/10.1021/cg500959m
    39. Po-Hsiang Chuang, Chun Che Lin, and Ru-Shi Liu . Emission-Tunable CuInS2/ZnS Quantum Dots: Structure, Optical Properties, and Application in White Light-Emitting Diodes with High Color Rendering Index. ACS Applied Materials & Interfaces 2014, 6 (17) , 15379-15387. https://doi.org/10.1021/am503889z
    40. Xin Tao, Elham Mafi, and Yi Gu . Synthesis and Ultrafast Carrier Dynamics of Single-Crystal Two-Dimensional CuInSe2 Nanosheets. The Journal of Physical Chemistry Letters 2014, 5 (16) , 2857-2862. https://doi.org/10.1021/jz501242m
    41. Yasushi Hamanaka, Kohei Ozawa, and Toshihiro Kuzuya . Enhancement of Donor–Acceptor Pair Emissions in Colloidal AgInS2 Quantum Dots with High Concentrations of Defects. The Journal of Physical Chemistry C 2014, 118 (26) , 14562-14568. https://doi.org/10.1021/jp501429f
    42. Marc-Antoine Langevin, Anna M. Ritcey, and Claudine Nì Allen . Air-Stable Near-Infrared AgInSe2 Nanocrystals. ACS Nano 2014, 8 (4) , 3476-3482. https://doi.org/10.1021/nn406439w
    43. Pearl L. Saldanha, Rosaria Brescia, Mirko Prato, Hongbo Li, Mauro Povia, Liberato Manna, and Vladimir Lesnyak . Generalized One-Pot Synthesis of Copper Sulfide, Selenide-Sulfide, and Telluride-Sulfide Nanoparticles. Chemistry of Materials 2014, 26 (3) , 1442-1449. https://doi.org/10.1021/cm4035598
    44. Wenjin Zhang, Qing Lou, Wenyu Ji, Jialong Zhao, and Xinhua Zhong . Color-Tunable Highly Bright Photoluminescence of Cadmium-Free Cu-Doped Zn–In–S Nanocrystals and Electroluminescence. Chemistry of Materials 2014, 26 (2) , 1204-1212. https://doi.org/10.1021/cm403584a
    45. Saikat Bhaumik and Amlan J. Pal . Quantum Dot Light-Emitting Diodes in the Visible Region: Energy Level of Ligands and Their Role in Controlling Interdot Spacing and Device Performance. The Journal of Physical Chemistry C 2013, 117 (48) , 25390-25396. https://doi.org/10.1021/jp409937z
    46. Olesya Yarema, Deniz Bozyigit, Ian Rousseau, Lea Nowack, Maksym Yarema, Wolfgang Heiss, and Vanessa Wood . Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals. Chemistry of Materials 2013, 25 (18) , 3753-3757. https://doi.org/10.1021/cm402306q
    47. Matthew G. Panthani, Tarik A. Khan, Dariya K. Reid, Daniel J. Hellebusch, Michael R. Rasch, Jennifer A. Maynard, and Brian A. Korgel . In Vivo Whole Animal Fluorescence Imaging of a Microparticle-Based Oral Vaccine Containing (CuInSexS2–x)/ZnS Core/Shell Quantum Dots. Nano Letters 2013, 13 (9) , 4294-4298. https://doi.org/10.1021/nl402054w
    48. Sungwoo Kim, Meejae Kang, Seajin Kim, Jin-Hyuk Heo, Jun Hong Noh, Sang Hyuk Im, Sang Il Seok, and Sang-Wook Kim . Fabrication of CuInTe2 and CuInTe2–xSex Ternary Gradient Quantum Dots and Their Application to Solar Cells. ACS Nano 2013, 7 (6) , 4756-4763. https://doi.org/10.1021/nn401274e
    49. Matthew G. Panthani, C. Jackson Stolle, Dariya K. Reid, Dong Joon Rhee, Taylor B. Harvey, Vahid A. Akhavan, Yixuan Yu, and Brian A. Korgel . CuInSe2 Quantum Dot Solar Cells with High Open-Circuit Voltage. The Journal of Physical Chemistry Letters 2013, 4 (12) , 2030-2034. https://doi.org/10.1021/jz4010015
    50. Danielle C. Reifsnyder, Xingchen Ye, Thomas R. Gordon, Chengyu Song, and Christopher B. Murray . Three-Dimensional Self-Assembly of Chalcopyrite Copper Indium Diselenide Nanocrystals into Oriented Films. ACS Nano 2013, 7 (5) , 4307-4315. https://doi.org/10.1021/nn4008059
    51. Haizheng Zhong, Zelong Bai, and Bingsuo Zou . Tuning the Luminescence Properties of Colloidal I–III–VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. The Journal of Physical Chemistry Letters 2012, 3 (21) , 3167-3175. https://doi.org/10.1021/jz301345x
    52. Mahshid Ahmadi, Stevin Snellius Pramana, Lifei Xi, Chris Boothroyd, Yeng Ming Lam, and Subodh Mhaisalkar . Evolution Pathway of CIGSe Nanocrystals for Solar Cell Applications. The Journal of Physical Chemistry C 2012, 116 (14) , 8202-8209. https://doi.org/10.1021/jp300187r
    53. Yang Yang, Haizheng Zhong, Zelong Bai, Bingsuo Zou, Yongfang Li, and Gregory D. Scholes . Transition from Photoconductivity to Photovoltaic Effect in P3HT/CuInSe2 Composites. The Journal of Physical Chemistry C 2012, 116 (13) , 7280-7286. https://doi.org/10.1021/jp300973c
    54. Jinxing Zhao, Fei Chen, Haoran Jia, Lijin Wang, Ping Liu, Tao Luo, Li Guan, Xu Li, Zhe Yin, Aiwei Tang. Boosting Cu─In─Zn─S‐based Quantum‐Dot Light‐Emitting Diodes Enabled by Engineering Cu─NiO x /PEDOT:PSS Bilayered Hole‐Injection Layer. Small 2024, 20 (18) https://doi.org/10.1002/smll.202307115
    55. Muralidharan Krishnamurthi, Sanyasinaidu Gottapu, Venkateswara Rao Velpuri. Single-step synthesis of ternary metal chalcogenides (sf-CuInS2 and sf-CuInSe2) stripped off the organic cover and their use as a catalyst for symmetric Glaser–Hay coupling reactions. Dalton Transactions 2024, 47 https://doi.org/10.1039/D4DT00442F
    56. Vasudevan Pillay R. Remya, Sundararajan Parani, Jose V. Rajendran, Rodney Maluleke, Thabang C. Lebepe, Olanrewaju A. Aladesuyi, Sabu Thomas, Oluwatobi S. Oluwafemi. Fabrication of Epoxy-CuInS-ZnS QDs- nanocomposite for fluorescent, transparent toughened coating applications. Materials Science and Engineering: B 2023, 297 , 116726. https://doi.org/10.1016/j.mseb.2023.116726
    57. Ahmed Yousef Mohamed, Byoung Gun Han, Hyeonseo Jang, Jun Oh Jeon, Yejin Kim, Haeseong Jang, Min Gyu Kim, Kug-Seung Lee, Deok-Yong Cho. Chemical states and local structure in Cu-deficient Cu x InSe ∼2 thin films: insights into engineering and bandgap narrowing. Journal of Materials Chemistry C 2023, 11 (35) , 12016-12028. https://doi.org/10.1039/D3TC02135A
    58. Nery Islas-Rodriguez, Raybel Muñoz, Jose A. Rodriguez, Rosa A. Vazquez-Garcia, Martin Reyes. Integration of ternary I-III-VI quantum dots in light-emitting diodes. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1106778
    59. Tsukasa Torimoto, Tatsuya Kameyama, Taro Uematsu, Susumu Kuwabata. Controlling optical properties and electronic energy structure of I–III–VI semiconductor quantum dots for improving their photofunctions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2023, 54 , 100569. https://doi.org/10.1016/j.jphotochemrev.2022.100569
    60. Shan He, Jun Du, Wenfei Liang, Boyu Zhang, Guijie Liang, Kaifeng Wu. Thermally Activated Delayed Near‐Infrared Photoluminescence from Functionalized Lead‐Free Nanocrystals. Angewandte Chemie 2023, 135 (6) https://doi.org/10.1002/ange.202217287
    61. Shan He, Jun Du, Wenfei Liang, Boyu Zhang, Guijie Liang, Kaifeng Wu. Thermally Activated Delayed Near‐Infrared Photoluminescence from Functionalized Lead‐Free Nanocrystals. Angewandte Chemie International Edition 2023, 62 (6) https://doi.org/10.1002/anie.202217287
    62. Neha Bisht, Pawan Kumar Khanna. Nano-inks for photovoltaics. 2023, 413-426. https://doi.org/10.1016/B978-0-323-91145-0.00009-8
    63. Xuhui Zhang, Tianyue Wang, Qingli Lin, Fei Chen, Lei Wang, Zuliang Du. Highly efficient near-infrared light-emitting diodes based on Zn:CuInSe 2 /ZnS//ZnS quantum dots with double shell engineering. Optics Express 2022, 30 (16) , 29449. https://doi.org/10.1364/OE.462444
    64. Fei Huang, Jiajia Ning, Jianjun Tian, Andrey L. Rogach. Nucleation Temperature‐Dependent Synthesis of Polytypic CuInSe 2 Nanostructures with Variable Tetrapod‐Like and Core‐Shell Morphologies. ChemNanoMat 2022, 8 (7) https://doi.org/10.1002/cnma.202200112
    65. Anuraj S. Kshirsagar, Pawan K. Khanna. Ternary metal selenides by use of 4-nitroacetophenone selenosemicarbazone: Application of selenium Schiff base in nanotechnology. Inorganic Chemistry Communications 2022, 139 , 109334. https://doi.org/10.1016/j.inoche.2022.109334
    66. Dina N. Oosthuizen. Introduction to compound semiconductor nanocrystals and their applications. 2022, 1-46. https://doi.org/10.1016/B978-0-12-824062-5.00004-X
    67. Gagandeep, Mukhtiyar Singh, Ramesh Kumar, Vinamrita Singh. Investigation of CH3NH3PbI3 and CH3NH3SnI3 based perovskite solar cells with CuInSe2 nanocrystals. Optik 2021, 246 , 167839. https://doi.org/10.1016/j.ijleo.2021.167839
    68. Liping Luo, Heng Huang, Pengyu Feng, Congyi Pan, Fantai Kong, Lanlan Zhai. Air-stable synthesis of near-infrared AgInSe2 quantum dots for sensitized solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 626 , 127071. https://doi.org/10.1016/j.colsurfa.2021.127071
    69. Dipanwita Roy, Piyush Kanti Sarkar, Amit Dalui, Uttam Kumar Ghorai, Dharmendra K. Gupta, Somobrata Acharya. Large Stokes shifted quaternary copper cadmium sulfide selenide quantum dot waveguides. Journal of Materials Chemistry C 2021, 9 (25) , 8066-8075. https://doi.org/10.1039/D1TC01844B
    70. Huaixiu Xu, Tianyuan Liang, Wenjie Ma, Xuan Ji, Ruonan Miao, Jiyang Fan. Experimental evidences of defect luminescence spanning red to near-infrared in strongly quantum confined sub-4 nm CuInSe 2 quantum dots approaching crystallization limit. Applied Physics Express 2021, 14 (7) , 075001. https://doi.org/10.35848/1882-0786/ac05da
    71. Yuxiu Jia, Hui Liu, Peng Cai, Xinran Liu, Luolisha Wang, Ling Ding, Guiyun Xu, Wei Wang, Mingxia Jiao, Xiliang Luo. Near-infrared emitting Cu–In–Se/ZnS core/shell quantum dots: aqueous synthesis and sulfur source effects. Chemical Communications 2021, 57 (34) , 4178-4181. https://doi.org/10.1039/D1CC01174J
    72. Qiqi Wang, Hongxia Li, Weina Cui, Huaixiu Xu, Jiyang Fan. Luminescent Photonic Crystals with Extreme‐UV Bandgaps Made of CuInSe 2 Quantum Dots. physica status solidi (a) 2021, 218 (6) https://doi.org/10.1002/pssa.202000757
    73. A.S. Rasal, Y.-H. Chen, K. Dehvari, G. Getachew, P.-J. Tseng, K. Waki, S. Bela, J.-Y. Chang. Efficient quantum-dot-sensitized solar cells with improved stability using thixotropic polymer/nanoparticles-based gel electrolyte. Materials Today Energy 2021, 19 , 100615. https://doi.org/10.1016/j.mtener.2020.100615
    74. Yang Sheng, Shuai Li, Yixin Sun, Rong Zhang, Xinyu Zhao, Mei Chee Tan. Synthesis of deep red emitting Cu–In–Zn–Se/ZnSe quantum dots for dual-modal fluorescence and photoacoustic imaging. Nanotechnology 2021, 32 (8) , 085101. https://doi.org/10.1088/1361-6528/abc9e8
    75. Oluwatobi Samuel Oluwafemi, El Hadji Mamour Sakho, Sundararajan Parani, Thabang Calvin Lebepe. Synthesis of ternary I–III–VI quantum dots. 2021, 47-76. https://doi.org/10.1016/B978-0-12-818303-8.00009-5
    76. Ikhtisham Mehmood, Jincheng Huang, Sayed Ali Khan, Abdul Hakim Shah, Quadrat Ullah Khan, Maryam Kiani, Dingjian Zhou, Guijun Li. Investigation of silver doped CdS co-sensitized TiO2/CISe/Ag–CdS heterostructure for improved optoelectronic properties. Optical Materials 2021, 111 , 110645. https://doi.org/10.1016/j.optmat.2020.110645
    77. Erika Dutková, Zdenka Lukáčová Bujňáková, Oleh Sphotyuk, Jana Jakubíková, Danka Cholujová, Viera Šišková, Nina Daneu, Matej Baláž, Jaroslav Kováč, Jaroslav Kováč, Jaroslav Briančin, Pavlo Demchenko. SDS-Stabilized CuInSe2/ZnS Multinanocomposites Prepared by Mechanochemical Synthesis for Advanced Biomedical Application. Nanomaterials 2021, 11 (1) , 69. https://doi.org/10.3390/nano11010069
    78. Muziwenkosi Memela, Usisipho Feleni, Siyabonga Mdluli, Morongwa E. Ramoroka, Precious Ekwere, Samantha Douman, Emmanuel Iwuoha. Electro‐photovoltaics of Polymer‐stabilized Copper–Indium Selenide Quantum Dot. Electroanalysis 2020, 32 (12) , 3086-3097. https://doi.org/10.1002/elan.202060392
    79. M. Ghali, A. Rezk, A.M. Eissa, B. Yousif, A. Elkun, Gh.F. Ali, M.K. Elnimr, M.M. Mosaad. Hot-injection synthesis of ultrasmall CuIn3Se5 quantum dots and production of ink-coated films. Journal of Physics and Chemistry of Solids 2020, 146 , 109610. https://doi.org/10.1016/j.jpcs.2020.109610
    80. Olanrewaju A. Aladesuyi, Oluwatobi S. Oluwafemi. Synthesis strategies and application of ternary quantum dots — in cancer therapy. Nano-Structures & Nano-Objects 2020, 24 , 100568. https://doi.org/10.1016/j.nanoso.2020.100568
    81. Benxuan Li, Mingxia Lu, Jiangtao Feng, Jingchao Zhang, Peter M. Smowton, Jung Inn Sohn, Il-Kyu Park, Haizheng Zhong, Bo Hou. Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting. Journal of Materials Chemistry C 2020, 8 (31) , 10676-10695. https://doi.org/10.1039/D0TC01349H
    82. Soubantika Palchoudhury, Karthik Ramasamy, Arunava Gupta. Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications. Nanoscale Advances 2020, 2 (8) , 3069-3082. https://doi.org/10.1039/D0NA00399A
    83. Yuliang Ye, Zunxian Yang, Zhiwei Zhao, Kang Zheng, Baoyong Yang, Jiahui Liu, Bingqing Ye, Zhipeng Gong, Yinglin Qiu, Tailiang Guo, Sheng Xu. Efficient multi-shell CuInS2/ZnS/ZnS quantum-dots based light-emitting diodes: Time-controlled synthesis of quantum-dots and carrier balance effects of PEI. Optical Materials 2020, 106 , 109926. https://doi.org/10.1016/j.optmat.2020.109926
    84. Dongxiang Luo, Lin Wang, Ying Qiu, Runda Huang, Baiquan Liu. Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. Nanomaterials 2020, 10 (6) , 1226. https://doi.org/10.3390/nano10061226
    85. Jinhang Hu, Jiangluqi Song, Zhishu Tang, Huan Li, Lin Chen, Rui Zhou. Phospholipid-stabilized Cu x Ag 1−x InSe 2 nanocrystals as luminophores: fabrication, optical properties, and biological application. Journal of Materials Chemistry C 2020, 8 (17) , 5821-5831. https://doi.org/10.1039/D0TC00014K
    86. Shikshita Jain, Shivani Bharti, Gurvir Kaur Bhullar, S.K. Tripathi. I-III-VI core/shell QDs: Synthesis, characterizations and applications. Journal of Luminescence 2020, 219 , 116912. https://doi.org/10.1016/j.jlumin.2019.116912
    87. M Y Lin, W X Lin, S R Chung. Optical Properties of Cd-Free Quantum Dots-Based Fluorescent Film. IOP Conference Series: Materials Science and Engineering 2020, 739 (1) , 012025. https://doi.org/10.1088/1757-899X/739/1/012025
    88. Kevin J. McHugh, Lihong Jing, Sean Y. Severt, Mache Cruz, Morteza Sarmadi, Hapuarachchige Surangi N. Jayawardena, Collin F. Perkinson, Fridrik Larusson, Sviatlana Rose, Stephanie Tomasic, Tyler Graf, Stephany Y. Tzeng, James L. Sugarman, Daniel Vlasic, Matthew Peters, Nels Peterson, Lowell Wood, Wen Tang, Jihyeon Yeom, Joe Collins, Philip A. Welkhoff, Ari Karchin, Megan Tse, Mingyuan Gao, Moungi G. Bawendi, Robert Langer, Ana Jaklenec. Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Science Translational Medicine 2019, 11 (523) https://doi.org/10.1126/scitranslmed.aay7162
    89. Davina Moodelly, Patrycja Kowalik, Piotr Bujak, Adam Pron, Peter Reiss. Synthesis, photophysical properties and surface chemistry of chalcopyrite-type semiconductor nanocrystals. Journal of Materials Chemistry C 2019, 7 (38) , 11665-11709. https://doi.org/10.1039/C9TC03875B
    90. Juan Yang, Jingling Li, Yanqing Zhu, Xueqing Xu, Xiudi Xiao, Bing Deng, Kaili Qin, Zhuoneng Bi, Shuaijun Chen, Gang Xu. Low-Temperature Synthesis of Highly Efficient, Deep-Red Zn-Cu-In-Se/ZnSe Fluorescence Quantum Dots. Nano 2019, 14 (06) , 1950070. https://doi.org/10.1142/S179329201950070X
    91. Yimin You, Xin Tong, Wenhao Wang, Jiachen Sun, Peng Yu, Haining Ji, Xiaobin Niu, Zhiming M. Wang. Eco‐Friendly Colloidal Quantum Dot‐Based Luminescent Solar Concentrators. Advanced Science 2019, 6 (9) https://doi.org/10.1002/advs.201801967
    92. Jennifer M. Lee, Rebecca C. Miller, Lily J. Moloney, Amy L. Prieto. The development of strategies for nanoparticle synthesis: Considerations for deepening understanding of inherently complex systems. Journal of Solid State Chemistry 2019, 273 , 243-286. https://doi.org/10.1016/j.jssc.2018.12.053
    93. Zhiwen Yang, Mengyu Gao, Weijie Wu, Xuyong Yang, Xiao Wei Sun, Jianhua Zhang, Hung-Chia Wang, Ru-Shi Liu, Chang-Yeol Han, Heesun Yang, Wanwan Li. Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Materials Today 2019, 24 , 69-93. https://doi.org/10.1016/j.mattod.2018.09.002
    94. Kelai Wang, Zheng Liang, Jingling Li, Xueqing Xu, Xiaoling Cheng, Hu Jin, Dehua Xu, Gang Xu. Formation and photoluminescence properties of colloidal ZnCuIn(SexS1 − x)2/ZnS nanocrystals with gradient composition. Journal of Materials Science 2019, 54 (3) , 2037-2048. https://doi.org/10.1007/s10853-018-2948-2
    95. Bin Zeng, Fei Chen, Zhenyang Liu, Zhongyuan Guan, Xu Li, Feng Teng, Aiwei Tang. Seeded-mediated growth of ternary Ag–In–S and quaternary Ag–In–Zn–S nanocrystals from binary Ag 2 S seeds and the composition-tunable optical properties. Journal of Materials Chemistry C 2019, 7 (5) , 1307-1315. https://doi.org/10.1039/C8TC05755A
    96. João L.M. Santos, José X. Soares, S. Sofia M. Rodrigues, David S.M. Ribeiro. Semiconductor Quantum Dots in Chemical Analysis. 2019, 309-343. https://doi.org/10.1002/9781119422587.ch10
    97. Xue Bai, Finn Purcell-Milton, Yuri Gun’ko. Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures. Nanomaterials 2019, 9 (1) , 85. https://doi.org/10.3390/nano9010085
    98. Yawei Miao, Chuantao Gu, Yaowei Zhu, Bing Yu, Youqing Shen, Hailin Cong. Recent Progress in Fluorescence Imaging of the Near‐Infrared II Window. ChemBioChem 2018, 19 (24) , 2522-2541. https://doi.org/10.1002/cbic.201800466
    99. Manpreet Kaur, Ashma Sharma, Murat Olutas, Onur Erdem, Akshay Kumar, Manoj Sharma, Hilmi Volkan Demir. Cd-free Cu-doped ZnInS/ZnS Core/Shell Nanocrystals: Controlled Synthesis And Photophysical Properties. Nanoscale Research Letters 2018, 13 (1) https://doi.org/10.1186/s11671-018-2599-x
    100. Sanjaysinh M. Chauhan, Sunil H. Chaki, Jiten P. Tailor, M. P. Deshpande. Thermal study of wet chemical synthesized CuInSe2 nanoparticles. The European Physical Journal Plus 2018, 133 (10) https://doi.org/10.1140/epjp/i2018-12247-y
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect