Advertisement
No access
Review

Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity

Science
12 Nov 2010
Vol 330, Issue 6006
pp. 927-931

The Making of Amazonian Diversity

The biodiversity of the Amazon Basin is legendary, but the processes by which it has been generated have been debated. In the late 20th century the prevalent view was that the engine of diversity was repeated contraction and expansion of forest refugia during the past 3 million years or so. Hoorn et al. (p. 927) analyze findings from a diverse range of disciplines, including molecular phylogeny, ecology, sedimentology, structural geology, and palaeontology, to offer an overview of the entire history of this region during the Cenozoic era (66 million years ago). The uplift of the Andes was a pivotal event in the evolution of Amazonian landscapes because it continually altered river drainage patterns, which in turn put a variety of pressures on organisms to adapt to changing conditions in a multiplicity of ways. Hence, the diversity of the modern biota of the Amazon has more ancient origins than previously thought.

Abstract

The Amazonian rainforest is arguably the most species-rich terrestrial ecosystem in the world, yet the timing of the origin and evolutionary causes of this diversity are a matter of debate. We review the geologic and phylogenetic evidence from Amazonia and compare it with uplift records from the Andes. This uplift and its effect on regional climate fundamentally changed the Amazonian landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. On this “Andean” substrate, a region-wide edaphic mosaic developed that became extremely rich in species, particularly in Western Amazonia. We show that Andean uplift was crucial for the evolution of Amazonian landscapes and ecosystems, and that current biodiversity patterns are rooted deep in the pre-Quaternary.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (hoorn.som.pdf)

References and Notes

1
Haffer J., Speciation in Amazonian forest birds. Science 165, 131 (1969).
2
Nelson B. W., Ferreira C. A. C., da Silva M. F., Kawasaki M. L., Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature 345, 714 (1990).
3
Bush M. B., Amazonian speciation: A necessarily complex model. J. Biogeogr. 21, 5 (1994).
4
Jaramillo C., Rueda M. J., Mora G., Cenozoic plant diversity in the neotropics. Science 311, 1893 (2006).
5
Rull V., Speciation timing and neotropical biodiversity: The Tertiary-Quaternary debate in the light of molecular phylogenetic evidence. Mol. Ecol. 17, 2722 (2008).
6
Hayes F. E., Sewlal J. A. N., The Amazon River as a dispersal barrier to passerine birds: Effects of river width, habitat and taxonomy. J. Biogeogr. 31, 1809 (2004).
7
de Aguiar M. A. M., Baranger M., Baptestini E. M., Kaufman L., Bar-Yam Y., Global patterns of speciation and diversity. Nature 460, 384 (2009).
8
Santos J. C., et al., PLoS Biol. 460, e1000056 (2009).
9
Potter P. E., Szatmari P., Global Miocene tectonics and the modern world. Earth Sci. Rev. 96, 279 (2009).
10
Kohn M. J., Fremd T. J., Miocene tectonics and climate forcing of biodiversity, western United States. Geology 36, 783 (2008).
11
Finarelli J. A., Badgley C., Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proc. Biol. Sci. 277, 2721 (2010).
12
Renema W., et al., Hopping hotspots: Global shifts in marine biodiversity. Science 321, 654 (2008).
13
Insel N., Poulsen C. J., Ehlers T. A., Clim. Dyn. (2009).
14
Poulsen C. J., Ehlers T. A., Insel N., Onset of convective rainfall during gradual late Miocene rise of the central Andes. Science 328, 490 (2010); 10.1126/science.1185078.
15
Hoorn C., Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 267 (1993).
16
A. Mora et al., in Amazonia, Landscape and Species Evolution, C. Hoorn, F. P. Wesselingh, Eds. (Wiley, Oxford, 2010), pp. 38–60.
17
Gentry A. H., Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann. Mo. Bot. Gard. 69, 557 (1982).
18
Albert J. S., Lovejoy N. R., Crampton W. G. R., Miocene tectonism and the separation of cis- and trans-Andean river basins: Evidence from Neotropical fishes. J. S. Am. Earth Sci. 21, 14 (2006).
19
Brumfield R. T., Edwards S. V., Evolution into and out of the Andes: A Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61, 346 (2007).
20
Antonelli A., Nylander J. A. A., Persson C., Sanmartín I., Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc. Natl. Acad. Sci. U.S.A. 106, 9749 (2009).
21
J. G. Lundberg et al., in Phylogeny and Classification of Neotropical Fishes, M. Malabarba, R. E. Reis, R. P. Vari, Z. M. Lucena, C. A. S. Lucena, Eds. (Edipucrs, Porto Alegre, Brazil, 1998), pp. 13–48.
22
Isacks B. L., Uplift of the Central Andean Plateau and bending of the Bolivian orocline. J. Geophys. Res. 93, 3211 (1988).
23
See supporting material on Science Online.
24
Figueiredo J., Hoorn C., van der Ven P., Soares E., Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology 37, 619 (2009).
25
J. R. Wanderley-Filho, J. F. Eiras, P. R. da Cruz-Cunha, P. H. van der Ven, in Amazonia, Landscape and Species Evolution, C. Hoorn, F. P. Wesselingh, Eds. (Wiley, Oxford, 2010), pp. 29–37.
26
M. Roddaz et al., in Amazonia, Landscape and Species Evolution, C. Hoorn, F. P. Wesselingh, Eds. (Wiley, Oxford, 2010), pp. 61–88.
27
R. W. Mapes, thesis, University of North Carolina at Chapel Hill (2009).
28
Sena Costa J. B., Léa Bemerguy R., Hasui Y., da Silva Borges M., Tectonics and paleogeography along the Amazon river. J. S. Am. Earth Sci. 14, 335 (2001).
29
K. E. Campbell Jr., Ed., The Paleogene Mammalian Fauna of Santa Rosa, Amazonian Peru (Natural History Museum of Los Angeles County, Los Angeles, 2004).
30
Malabarba M. C., Malabarba L. R., Del Papa C., Gymnogeophagus eocenicus, n. sp. (Perciformes: Cichlidae), an Eocene cichlid from the Lumbrera Formation in Argentina. J. Vertebr. Paleontol. 30, 341 (2010).
31
Vizcaíno S. F., Scillato-Yané G. J., An Eocene tardigrade (Mammalia, Xenarthra) from Seymour Island, West Antarctica. Antarct. Sci. 7, 407 (1995).
32
Sanmartín I., Ronquist F., Southern hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Syst. Biol. 53, 216 (2004).
33
Noonan B. P., Chippindale P. T., Vicariant origin of Malagasy reptiles supports late cretaceous Antarctic land bridge. Am. Nat. 168, 730 (2006).
34
Coates A. G., et al., Closure of the Isthmus of Panama: The near-shore marine record of Costa Rica and western Panama. Geol. Soc. Am. Bull. 104, 814 (1992).
35
Strecker M. R., et al., Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes? Geology 37, 643 (2009).
36
Aalto R., Dunne T., Guyot J.-L., Geomorphic controls on Andean denudation rates. J. Geol. 114, 85 (2006).
37
C. Hoorn, F. P. Wesselingh, J. Hovikoski, J. Guerrero, in Amazonia, Landscape and Species Evolution, C. Hoorn, F. P. Wesselingh, Eds. (Wiley, Oxford, 2010), pp. 123–142.
38
Wesselingh F. P., Salo J., Scr. Geol. 133, 439 (2006).
39
D. Riff, P. S. R. Romano, G. R. Oliveira, O. A. Aguilera, in Amazonia, Landscape and Species Evolution, C. Hoorn, F. P. Wesselingh, Eds. (Wiley, Oxford, 2010), pp. 259–280.
40
Pons D., De Franceschi D., Neogene woods from western Peruvian Amazon and palaeoenvironmental interpretation. Bull. Geosci. 82, 343 (2007).
41
Kaandorp R. J. G., et al., Seasonal Amazonian rainfall variation in the Miocene Climate Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 221, 1 (2005).
42
Lovejoy N. R., Albert J. S., Crampton W. G. R., Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. J. S. Am. Earth Sci. 21, 5 (2006).
43
De Carvalho M. R., Maisey J. G., Grande L., Freshwater stingrays of the Green River Formation of Wyoming (early Eocene), with the description of a new genus and species and an analysis of its phylogenetic relationships (Chondrichthyes: Myliobatiformes). Bull. Am. Mus. Nat. Hist. 284, 1 (2004).
44
Vonhof H. B., et al., Paleogeography of Miocene Western Amazonia: Isotopic composition of molluscan shells constrains the influence of marine incursions. Geol. Soc. Am. Bull. 115, 983 (2003).
45
Latrubesse E. M., et al., The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth Sci. Rev. 99, 99 (2010).
46
Bermúdez M., et al., Spatial and temporal patterns of exhumation across the Venezuelan Andes: Implications for Cenozoic Caribbean geodynamics. Tectonics 29, TC5009 (2010).
47
Horton B. K., DeCelles P. G., Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: Implications for drainage network evolution in fold-thrust belts. Basin Res. 13, 43 (2001).
48
Uba C. E., Strecker M. R., Schmitt A. K., Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology 35, 979 (2007).
49
Figueiredo J., Hoorn C., van der Ven P., Soares E., Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin: Reply. Geology 38, e213 (2010).
50
Hovikoski J., et al., Geol. Soc. Am. Bull. 119, 1506 (2007).
51
da Silva-Caminha S. A. F., Jaramillo C. A., Absy M. L., Palaeontogr. Abt. B 283, 1 (2010).
52
F. R. Negri, thesis, Pontifícia Universidade Católica do Rio Grande do Sul (2004).
53
Erkens R. H. J., Chatrou L. W., Maas J. W., van der Niet T., Savolainen V., A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America. Mol. Phylogenet. Evol. 44, 399 (2007).
54
Richardson J. E., Pennington R. T., Pennington T. D., Hollingsworth P. M., Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 293, 2242 (2001).
55
Fine P. V. A., Daly D. C., Villa Muñoz G., Mesones I., Cameron K. M., The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon. Evolution 59, 1464 (2005).
56
Marshall L. G., Cifelli R. L., Analysis of changing diversity patterns in Cenozoic land mammal age faunas, South America. Palaeovertebrata 19, 169 (1990).
57
MacFadden B. J., Extinct mammalian biodiversity of the ancient New World tropics. Trends Ecol. Evol. 21, 157 (2006).
58
Toivonen T., Mäki S., Kalliola R., The riverscape of Western Amazonia—a quantitative approach to the fluvial biogeography of the region. J. Biogeogr. 34, 1374 (2007).
59
Hughes C., Eastwood R., Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. U.S.A. 103, 10334 (2006).
60
Smith B. T., Klicka J., The profound influence of the Late Pliocene Panamanian uplift on the exchange, diversification, and distribution of New World birds. Ecography 33, 333 (2010).
61
Weir J. T., Bermingham E., Schluter D., The Great American Biotic Interchange in birds. Proc. Natl. Acad. Sci. U.S.A. 106, 21737 (2009).
62
Cody S., Richardson J. E., Rull V., Ellis C., Pennington R. T., Ecography 33, 326 (2010).
63
Renner S., Plant dispersal across the tropical Atlantic by wind and sea currents. Int. J. Plant Sci. 165 (suppl. 4), S23 (2004).
64
Pennington R. T., Dick C. W., The role of immigrants in the assembly of the South American rainforest tree flora. Philos. Trans. R. Soc. Ser. B 359, 1611 (2004).
65
Quesada C. A., et al., Chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosci. Discuss. 6, 3923 (2009).
66
H. ter Steege, Amazon Tree Diversity Network, RAINFOR (Amazon Forest Inventory Network), in Amazonia: Landscape and Species Evolution, C. Hoorn, F. Wesselingh, Eds. (Wiley, Oxford, 2010), pp. 349–359.
67
McClain M. E., Naiman R. J., Andean influences on the biogeochemistry and Ecology of the Amazon River. Bioscience 58, 325 (2008).
68
Zachos J. C., Dickens G. R., Zeebe R. E., An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279 (2008).
69
Tognelli M. F., Kelt D. A., Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography 27, 427 (2004).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 330 | Issue 6006
12 November 2010

Submission history

Published in print: 12 November 2010

Permissions

Request permissions for this article.

Acknowledgments

We thank all colleagues who shared their data; M. F. Tognelli for mammal richness data; and B. P. Kohn, M. Bernet, P. van der Beek, R. T. Pennington, S. B. Kroonenberg, B. Bookhagen, C. Uba, and three anonymous reviewers for constructive comments on the manuscript. Supported by the Osk. Huttunen Foundation, the Ella and Georg Ehrnrooth Fund, and the Helsingin Sanomain Saatio (T.S.) and by the Academy of Sciences of Finland (F.P.W.).

Authors

Affiliations

Paleoecology and Landscape Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands.
F. P. Wesselingh
Nederlands Centrum voor Biodiversiteit Naturalis, P.O. Box 9517, 2300 RA Leiden, Netherlands.
H. ter Steege
Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.
M. A. Bermudez
Laboratorios de Termocronología y Geomatemáticas, Escuela de Geología, Minas y Geofísica. Facultad de Ingeniería, Universidad Central de Venezuela, Postal Code 1053, Caracas, Venezuela.
A. Mora
ECOPETROL, Instituto Colombiano del Petroleo, Piedecuesta, Santander, Colombia.
J. Sevink
Paleoecology and Landscape Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands.
I. Sanmartín
Real Jardin Botanico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain.
A. Sanchez-Meseguer
Real Jardin Botanico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain.
C. L. Anderson
Real Jardin Botanico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain.
J. P. Figueiredo
Petroleo Brasileiro SA (Petrobras), Av. Republica do Chile, 330, 14o Andar, CEP 20.031-170, Rio de Janeiro, Brazil.
C. Jaramillo
Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama.
D. Riff
Instituto de Biologia, Universidade Federal de Uberlândia, Campus Umuarama, Bloco 2D-sala 28, Rua Ceará s/n, Bairro Umuarama, Uberlândia, CEP 38400-902, Minas Gerais, Brazil.
F. R. Negri
Laboratório de Paleontologia, Campus Floresta, Universidade Federal do Acre, Estrada do Canela Fina, Km 12, Cruzeiro do Sul, Acre, CEP 69980-000, AC, Brazil.
H. Hooghiemstra
Paleoecology and Landscape Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands.
J. Lundberg
Department of Ichthyology, Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA.
T. Stadler
Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland.
T. Särkinen
Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
A. Antonelli*, [email protected]
Institute of Systematic Botany, University of Zürich, Zollikerstrasse 107, CH 8008 Zürich, Switzerland.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected] (C.H.); [email protected] (A.A.)
Present address: Gothenburg Botanical Garden, Carl Skottsbergs Gata 22A, 413 19 Göteborg, Sweden, and Department of Plant and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22B, 413 19 Göteborg, Sweden.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. The largest freshwater odontocete: A South Asian river dolphin relative from the proto-Amazonia, Science Advances, 10, 12, (2024)./doi/10.1126/sciadv.adk6320
    Abstract
  2. Lithium isotopic constraints on the evolution of continental clay mineral factory and marine oxygenation in the earliest Paleozoic Era, Science Advances, 10, 13, (2024)./doi/10.1126/sciadv.adk2152
    Abstract
  3. Varying chiral ratio of pinic acid enantiomers above the Amazon rainforest, Atmospheric Chemistry and Physics, 23, 2, (809-820), (2023).https://doi.org/10.5194/acp-23-809-2023
    Crossref
  4. Revealing anole diversity in the highlands of the Northern Andes: New and resurrected species of the Anolis heterodermus species group, Vertebrate Zoology, 73, (161-188), (2023).https://doi.org/10.3897/vz.73.e94265
    Crossref
  5. Diversity and Endemism of Southern African Gekkonids Linked with the Escarpment Has Implications for Conservation Priorities, Diversity, 15, 2, (306), (2023).https://doi.org/10.3390/d15020306
    Crossref
  6. Climatic and Non-Climatic Drivers of Plant Diversity along an Altitudinal Gradient in the Taihang Mountains of Northern China, Diversity, 15, 1, (66), (2023).https://doi.org/10.3390/d15010066
    Crossref
  7. Why we should be looking for longitudinal patterns in biodiversity, Frontiers in Ecology and Evolution, 11, (2023).https://doi.org/10.3389/fevo.2023.1032827
    Crossref
  8. Current and paleoclimate models for an Atlantic Forest kissing bug indicate broader distribution outside biome delimitations, Frontiers in Ecology and Evolution, 10, (2023).https://doi.org/10.3389/fevo.2022.1051454
    Crossref
  9. Free and underfit-scavenger river dynamics dominate the large Amazonian Pacaya-Samiria wetland structure, Frontiers in Environmental Science, 11, (2023).https://doi.org/10.3389/fenvs.2023.1082619
    Crossref
  10. Karyotypic variation of two populations of the small freshwater stingray Potamotrygon wallacei Carvalho, Rosa & Araújo 2016: A classical and molecular approach, PLOS ONE, 18, 1, (e0278828), (2023).https://doi.org/10.1371/journal.pone.0278828
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media