Skip to main content
Log in

Ophthalmic changes associated with long-term exposure to microgravity

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review discusses recent foreign publications on the problem of ophthalmic changes associated with long-term effects of microgravity during space flights. The states including hyperopic shift of refraction, a change in intraocular pressure, increased intracranial pressure, alterations in the choroid and retinal tissues, and optic disk swelling have been described. These effects are caused by redistribution of blood and fluid to the upper part of the body, increased intracranial pressure, and congestion of venous blood and lymph in the upper part of the body and head. Other factors that may trigger microgravity-induced vision impairment have also been considered. Photographic illustrations of changes have been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mader, T.H., Gibson, C.R., Pass, A.F., et al., Optic disc edema in an astronaut after repeat long-duration space flight, J. Neuro-Ophthalmol., 2013, vol. 33, no. 9, p. 249.

    Article  Google Scholar 

  2. Alexander, D.J., Gibson, C.R., Hamilton, D.R., et al., Risk of spaceflight-induced intracranial hypertension and vision alterations, in NASA, 2012, p. 148.

  3. Nelson, E.S., Mulugeta, L., and Myers, J.S., Microgravity-induced fluid shift and ophthalmic changes, Life, 2014, vol. 4, no. 4, p. 621.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wotring, V.E., Space Pharmacology, New York: Springer, 2012.

    Book  Google Scholar 

  5. Myasnikov, V.I., Stepanova S I. Risk factors for the development of neuro-psychic asthenia with an astronaut during a lengthy space flight, Vestn. Tomsk. Gos. Pedagog. Univ., 2002, vol. 31, no. 3, p. 9.

    Google Scholar 

  6. Jennings, R.T., Stepanek, J.P., Scott, L.R., and Voronkov, Y.I., Frequent premature ventricular contractions in an orbital spaceflight participant, Aviat., Space Environ. Med., 2010, vol. 81, no. 6, p. 597.

    Article  Google Scholar 

  7. Johnston, S.L., Arenare, B.A., and Smart, K.T., Telemedicine, in Principles of Clinical Medicine for Space Flight, Barratt, M.R. and Pool, S.L., Eds., New York: Springer, 2008, p. 163.

    Google Scholar 

  8. Simmons, S.C., Hamilton, D.R., and McDonald, P.V., Medical imaging, in Principles of Clinical Medicine for Space Flight, Barratt, M.R. and Pool, S.L., Eds., New York: Springer, 2008, p. 181.

    Google Scholar 

  9. Bogomolov, V.V., Kuzmin, M.P., and Danilichev, S.N., On the intracranial hypertension in astronauts during long-term microgravity, Aviakosm. Ekol. Med., 2015, vol. 49, no. 4, p. 54.

    CAS  Google Scholar 

  10. Zhang, L.F. and Hargens, A.R., Intraocular/Intracranial pressure mismatch hypothesis for visual impairment syndrome in space, Aviat., Space Environ. Med., 2014, vol. 85, no. 1, p. 597.

    Article  Google Scholar 

  11. Smith, S.M., Rice, B.L., Dlouhy, Y., and Zwart, S.R., Assessment of nutritional intake during space flight and space flight analogs, Procedia Food Sci., 2013, vol. 2, p. 27.

    Article  CAS  Google Scholar 

  12. Marshall-Bowman, K., Barratt, M.R., and Gibson, C.M., Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight: an emerging understanding, Acta Astronaut., 2013, vol. 87, no. 4, p. 77.

    Article  CAS  Google Scholar 

  13. Berdahl, J.P., Fleischman, D., Allingham, R.R., and Fautsch, M., Disc swelling and space flight, Ophthalmology, 2012, vol. 119, no. 12, p. 1290.

    Article  PubMed  Google Scholar 

  14. Kramer, L.A., Sargsyan, A.E., Hasan, K.M., et al., Orbital and intracranial effects of microgravity: findings at 3-T MRimaging, Radiology, 2012, vol. 263, p. 1.

    Article  Google Scholar 

  15. Wiener, T.C., Space obstructive syndrome: intracranial hypertension, intraocular pressure, and papilledema in space, Aviat., Space Environ. Med., 2012, vol. 83, no. 1, p. 64.

    Article  Google Scholar 

  16. Clark, J.B. and Allen, C.S., Ophthalmologic concerns, in Principles of Clinical Medicine for Space Flight, Barratt, M.R. and Pool, S.L., Eds., New York: Springer, 2008, p. 535.

    Google Scholar 

  17. Partington, T. and Farmery, A., Intracranial pressure and cerebral blood flow, Anaesthes. Intensive Care Med., 2014, vol. 15, no. 4, p. 189.

    Article  Google Scholar 

  18. Hamilton, D.R., Neurologic concerns, in Principles of Clinical Medicine for Space Flight, Barratt, M.R. and Pool, S.L., Eds., New York: Springer, 2008, p. 361.

    Google Scholar 

  19. Acheson, J.F., Idiopathic intracranial hypertension and visual function, Br. Med. Bull., 2006, vol. 85–86, no. 1, p. 233.

    Article  Google Scholar 

  20. Berdahl, J.P., Yu, D.Y., and Morgan, W.M., The translaminar pressure gradient in sustained zero gravity, idiopathic intracranial hypertension, and glaucoma, Med. Hypotheses, 2012, vol. 79, no. 5, p. 719.

    PubMed  Google Scholar 

  21. Marek, B., Harris, A., Kanakamedala, P., et al., Cerebrospinal fluid pressure and glaucoma: regulation of trans-lamina cribrosa pressure, Br. J. Ophthalmol., 2014, vol. 98, no. 6, p. 721.

    Article  PubMed  Google Scholar 

  22. Gilles, C., Fundamentals of Space Medicine, Amsterdam: Springer, 2006.

    Google Scholar 

  23. White, R.J. and Blomqvist, C.G., Central venous pressure and cardiac function during spaceflight, J. Appl. Physiol., 1998, vol. 85, no. 2, p. 738.

    CAS  PubMed  Google Scholar 

  24. Sams, C.F. and Pierson, D.L., Cardiovascular disorders, in Principles of Clinical Medicine for Space Flight, Barratt, M.R. and Pool, S.L., Eds., New York: Springer, 2008, p. 317.

    Google Scholar 

  25. Hargens, A.R. and Richardson, S., Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight, Respir. Physiol. Neurobiol., 2009, vol. 169, no. 10, p. 30.

    Article  Google Scholar 

  26. Verbanck, S., Larsson, H., Linnarsson, D., et al., Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity, J. Appl. Physiol., 1997, vol. 83, no. 3, p. 810.

    CAS  PubMed  Google Scholar 

  27. Grigoriev, A.I., Kotovskaya, A.R., and Fomina, G.A., The human cardiovascular system during space flight, Acta Astronaut., 2011, vol. 68, no. 3, p. 1495.

    Article  Google Scholar 

  28. Ruwanpathirana, T., Owen, A., and Reid, C.M., Review on cardiovascular risk prediction, Cardiovasc. Ther., 2015, vol. 33, no. 2, p. 62.

    Article  PubMed  Google Scholar 

  29. Kim, D.H. and Parsa, C.F., Space flight and disc edema, Ophthalmology, 2012, vol. 119, no. 11, p. 2420.

    Article  PubMed  Google Scholar 

  30. Barratt, M.R. and Pool, S.L., Human response to space flight, in Principles of Clinical Medicine for Space Flight, Barratt, M.R. and Pool, S.L., Eds., New York: Springer, 2008, p. 27.

    Chapter  Google Scholar 

  31. Blaber, A.P., Zuj, K.A., and Goswami, N., Cerebrovascular autoregulation: lessons learned from spaceflight research, Eur. J. Appl. Physiol., 2013, vol. 113, no. 8, p. 1909.

    Article  PubMed  Google Scholar 

  32. Draeger, J., Schwartz, R., Groenhoff, S., and Stern, C., Self-tonometry under microgravity conditions, Clin. Invest., 1993, vol. 71, no. 9, p. 700.

    Article  CAS  Google Scholar 

  33. Keith, F.M. and Mader, Th.H., Ophthalmic concerns, in Principles of Clinical Medicine for Space Flight, Barratt, M.L. and Pool, S.M, Eds., New York: Springer, 2008, p. 534.

    Google Scholar 

  34. Westfall, A.C., Ng, J.D., Samples, J.R., and Weissman, J.L., Flattening of the posterior sclera: hypotony or elevated intracranial pressure?, Am. J. Ophthalmol., 2004, vol. 138, no. 3, p. 511.

    Article  Google Scholar 

  35. Costa, V.P. and Arcieri, E.S., Hypotony maculopathy, Acta Ophthalmol. Scand., 2007, vol. 85, no. 6, p. 586.

    Article  PubMed  Google Scholar 

  36. Keyes, L.E., Paterson, R., Boatright, D., et al., Optic nerve sheath diameter and acute mountain sickness, Wilderness Environ. Med., 2013, vol. 24, no. 2, p. 105.

    Article  PubMed  Google Scholar 

  37. Carod-Artal, F.J., High-altitude headache and acute mountain sickness, Neurologia, 2014, vol. 29, no. 9, p. 533.

    Article  CAS  PubMed  Google Scholar 

  38. Kostoglou, K., Debert, C.T., Poulin, M.J., and Mitsis, G.D., Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia, Med. Eng. Phys., 2014, vol. 36, no. 5, p. 592.

    Article  PubMed  Google Scholar 

  39. James, J.T., Hypoxia, hypercarbia, and atmospheric control, in Principles of Clinical Medicine for Space Flight, Barratt, M.R. and Pool, S.L., Eds., New York: Springer, 2008, p. 445.

    Google Scholar 

  40. Blaha, M., Aaslid, R., Douville, C.M., et al., Cerebral blood flow and dynamic cerebral autoregulation during ethanol intoxication and hypercapnia, J. Clin. Neurosci., 2003, vol. 10, no. 2, p. 195.

    Article  CAS  PubMed  Google Scholar 

  41. Carrera, E., Lee, L.K., Giannopoulos, S., and Marshall, R.S., Cerebrovascular reactivity and cerebral autoregulation in normal subjects, J. Neurol. Sci., 2009, vol. 285, nos. 1–2, pp. 191.

    Article  PubMed  Google Scholar 

  42. Wang, D., Yee, B.J., Wong, K.K., Kim, J.W., and Dijk, D.J., Comparing the effect of hypercapnia and hypoxia on the electroencephalogram during wakefulness, Clin. Neurophysiol., 2015, vol. 126, no. 1, pp. 103–109.

    Article  PubMed  Google Scholar 

  43. Jones, J.A., Pietrzyk, R.A., and Whitson, P.A., Musculoskeletal response to space flight, in Principles of Clinical Medicine for Space Flight, Barratt, M.R. and Pool, S.L., Eds., New York: Springer, 2008, p. 293.

    Google Scholar 

  44. Deng, C., Wang, P., Zhang, X., and Wang, Y., Shortterm,daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment, Life Sci. Space Res., 2015, vol. 5, p. 1.

    Article  CAS  Google Scholar 

  45. Kozlovskaya, I.B., Pestov, I.D., and Egorov, A.D., The system of preventive measures in long space flights, Hum. Physiol., 2010, vol. 36, no. 7, p. 773.

    Article  Google Scholar 

  46. Cavanagh, P.R., Genc, K.O., Gopalakrishnan, R., et al., Foot forces during typical days on the International Space Station, J. Biomech., 2010, vol. 43, no. 8, p. 2182.

    Article  CAS  PubMed  Google Scholar 

  47. Genc, K.O., Gopalakrishnan, R., Kuklis, M.M., et al., Foot forces during exercise on the International Space Station, J. Biomech., 2010, vol. 43, no. 11, p. 3020.

    Article  CAS  PubMed  Google Scholar 

  48. Loehr, J.A., Lee, S.M., English, K.L., et al., Musculoskeletal adaptations to training with the advanced resistive exercise device, Med. Sci. Sports Exercise, 2011, vol. 43, no. 1, p. 146.

    Article  Google Scholar 

  49. Lin, Y.L., Po, H.L., Hsu, H.Y., et al., Transcranial Doppler studies on cerebral autoregulation suggest prolonged cerebral vasoconstriction in a subgroup of patients with orthostatic intolerance, Ultrasound Med. Biol., 2011, vol. 37, no. 10, p. 1554.

    Article  PubMed  Google Scholar 

  50. Talman, W.T., Dragon, D.N., and Lin, L.H., Baroreflex influences on cerebrovascular autoregulation, Auton. Neurosci., 2015, vol. 192, no. 11, p. 28.

    Article  Google Scholar 

  51. Powers, W.J. and Zazulia, A.R., Cerebral metabolism and blood flow, in Encyclopedia of the Neurological Sciences, Elsevier, 2014, p. 683.

    Chapter  Google Scholar 

  52. Mousavi, S.R., Fehlner, A., and Streitberger, K.-J., Measurement of in vivo cerebral volumetric stain induced by the Valsalva maneuver, J. Biomech., 2014, vol. 47, no. 7, p. 1652.

    Article  PubMed  Google Scholar 

  53. Rafuse, P.E., Mills, D.W., Hooper, P.L., Chang, T.S., and Wolf, R., Effects of Valsalva’s manoeuvre on intraocular pressure, Can. J. Ophthalmol., 1994, vol. 29, no. 2, p. 73.

    CAS  PubMed  Google Scholar 

  54. Vieira, G.M., Oliveira, H.B., de Andrade, D.T., et al., Intraocular pressure variation during weight lifting, Arch. Opthalmol., 2006, vol. 124, no. 9, p. 1251.

    Article  Google Scholar 

  55. Gurwood, A.S., Effects of weight lifting on intraocular pressure, Optometry, 2007, vol. 78, no. 2, p. 51.

    Article  Google Scholar 

  56. Peters, N., Holtmannspötter, M., and Büttner, U., Valsalva- maneuver induced recurrent transient bilateral visual loss, Clin. Neurol. Neurosurg., 2011, vol. 113, no 2, p. 150.

    Article  PubMed  Google Scholar 

  57. Falcão, M., Vieira, M., Brito, P., et al., Spectraldomain optical coherence tomography of the choroid during Valsalva maneuver, Am. J. Ophthalmol., 2012, vol. 154, no. 4, p. 687.

    Article  PubMed  Google Scholar 

  58. Stamler, J., The INTERSALT Study: background, methods,findings,and implications, Am. J. Clin. Nutr., 1997, vol. 65, p. 626S.

    Google Scholar 

  59. Graudal, N., Population data on blood pressure and dietary sodium and potassium do not support public health strategy to reduce salt intake in Canadians, Can. J. Cardiol., 2016, vol. 32, no. 3, p. 283.

    Article  PubMed  Google Scholar 

  60. Hodapp, M.H., Spaceflight metabolism and nutritional support, in Principles of Clinical Medicine for Space Flight, Barratt, M.R. and Pool, S.L., Eds., New York: Springer, 2008, p. 559.

    Google Scholar 

  61. Siamwala, J.H., Rajendran, S., and Chatterjee, S., Chapter Eight–Strategies of manipulating BMP signaling in microgravity to prevent bone loss, Vitam. Horm., 2015, vol. 99, p. 249.

    Article  CAS  PubMed  Google Scholar 

  62. Stolarz-Skrzypek, K. and Staessen, J.S., Reducing salt intake for prevention of cardiovascular disease-times are changing, Adv. Chronic Kidney Dis., 2015, vol. 22, no. 2, p. 108.

    Article  PubMed  Google Scholar 

  63. Delahaye, F., Should we eat less salt? Review article, Arch. Cardiovasc. Dis., 2013, vol. 106, no. 5, p. 324.

    Article  PubMed  Google Scholar 

  64. Zwart, S.R., Gibson, C.R., Mader, T.H., et al., Vision changes after space flight are related to alterations in folate-and vitamin B-12-dependent one-carbon metabolism, J. Nutr., 2012, vol. 142, no. 3, p. 427.

    Article  CAS  PubMed  Google Scholar 

  65. Ajith, T.A., Homocysteine in ocular diseases, Clin. Chim. Acta, 2015, vol. 450, p. 316.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Makarov.

Additional information

Original Russian Text © I.A. Makarov, Y.I. Voronkov, M.G. Aslanjan, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 1, pp. 111–120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, I.A., Voronkov, Y.I. & Aslanjan, M.G. Ophthalmic changes associated with long-term exposure to microgravity. Hum Physiol 43, 105–113 (2017). https://doi.org/10.1134/S0362119717010078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717010078

Keywords

Navigation