Orbital and Intracranial Effects of Microgravity: Findings at 3-T MR Imaging

Published Online:https://doi.org/10.1148/radiol.12111986

Retrospective MR analysis of 27 astronauts exposed to microgravity revealed various combinations of optic nerve sheath distention, posterior globe flattening, optic disc protrusion, increased optic nerve diameter, and moderate concavity of the pituitary gland with posterior stalk displacement, which are hypothesized to be related to intracranial hypertension and represent a potential limitation to long-duration space travel.

Purpose

To identify intraorbital and intracranial abnormalities in astronauts previously exposed to microgravity by using quantitative and qualitative magnetic resonance (MR) techniques.

Materials and Methods

The institutional review board approved this HIPAA-compliant, retrospective review and waived the requirement for informed consent. Twenty-seven astronauts (mean age ± standard deviation, 48 years ± 4.5) underwent 3-T MR imaging with use of thin-section, three-dimensional, axial T2-weighted orbital and conventional brain sequences. Eight astronauts underwent repeat imaging after an additional mission in space. Optic nerve sheath diameter (ONSD) and optic nerve diameter (OND) were quantified in the retrolaminar optic nerve. OND and central optic nerve T2 hyperintensity were quantified at mid orbit. Qualitative analysis of the optic nerve sheath, optic disc, posterior globe, and pituitary gland morphology was performed and correlated for association with intracranial evidence of hydrocephalus, vasogenic edema, central venous thrombosis, and/or mass lesion. Statistical analyses included the paired t test, Mann-Whitney nonparametric test for group comparisons, Cronbach α coefficient for reproducibility, and Pearson correlation coefficient.

Results

All astronauts had previous exposure to microgravity and, thus, control data were not available for comparison. The ONSD and OND ranged from 4.7 to 10.8 mm (mean, 6.2 mm ± 1.1) and from 2.4 to 4.5 mm (mean, 3.0 mm ± 0.5), respectively. Posterior globe flattening was seen in seven of the 27 astronauts (26%), optic nerve protrusion in four (15%), and moderate concavity of the pituitary dome with posterior stalk deviation in three (11%) without additional intracranial abnormalities. Retrolaminar OND increased linearly relative to ONSD (r = 0.797, Pearson correlation). A central area of T2 hyperintensity was identifiable in 26 of the 27 astronauts (96%) and increased in diameter in association with kinking of the optic nerve sheath.

Conclusion

Exposure to microgravity can result in a spectrum of intraorbital and intracranial findings similar to those in idiopathic intracranial hypertension.

©RSNA, 2012

References

  • 1 Schneider V, Oganov V, LeBlanc A, et al.. Bone and body mass changes during space flight. Acta Astronaut 1995;36(8-12):463–466. Crossref, MedlineGoogle Scholar
  • 2 Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology. CMAJ 2009;180(13):1317–1323. Crossref, MedlineGoogle Scholar
  • 3 Mader TH, Gibson CR, Pass AF, et al.. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 2011;118(10):2058–2069. Crossref, MedlineGoogle Scholar
  • 4 Glantz SA. Primer of biostatistics. 6th ed. New York, NY: McGraw-Hill Medical, 2005. Google Scholar
  • 5 Heer M, Paloski WH. Space motion sickness: incidence, etiology, and countermeasures. Auton Neurosci 2006;129(1-2):77–79. Crossref, MedlineGoogle Scholar
  • 6 Leach CS, Inners LD, Charles JB. Changes in total body water during spaceflight. J Clin Pharmacol 1991;31(10):1001–1006. Crossref, MedlineGoogle Scholar
  • 7 Lakin WD, Stevens SA, Penar PL. Modeling intracranial pressures in microgravity: the influence of the blood-brain barrier. Aviat Space Environ Med 2007;78(10):932–936. Crossref, MedlineGoogle Scholar
  • 8 Jennings T. Space adaptation syndrome is caused by elevated intracranial pressure. Med Hypotheses 1990;32(4):289–291. Crossref, MedlineGoogle Scholar
  • 9 Tatebayashi K, Asai Y, Maeda T, Shiraishi Y, Miyoshi M, Kawai Y. Effects of head-down tilt on the intracranial pressure in conscious rabbits. Brain Res 2003;977(1):55–61. Crossref, MedlineGoogle Scholar
  • 10 Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol 1993;116(5):548–556. Crossref, MedlineGoogle Scholar
  • 11 Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg 1997;87(1):34–40. Crossref, MedlineGoogle Scholar
  • 12 Hansen HC, Helmke K. The subarachnoid space surrounding the optic nerves: an ultrasound study of the optic nerve sheath. Surg Radiol Anat 1996;18(4):323–328. Crossref, MedlineGoogle Scholar
  • 13 Geeraerts T, Newcombe VFJ, Coles JP, et al.. Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care 2008;12(5):R114. Crossref, MedlineGoogle Scholar
  • 14 Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care 2008;12(3):R67. Crossref, MedlineGoogle Scholar
  • 15 Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med 2008;15(2):201–204. Crossref, MedlineGoogle Scholar
  • 16 Watanabe A, Kinouchi H, Horikoshi T, Uchida M, Ishigame K. Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg 2008;109(2):255–258. Crossref, MedlineGoogle Scholar
  • 17 Norman RE, Flanagan JG, Rausch SM, et al.. Dimensions of the human sclera: thickness measurement and regional changes with axial length. Exp Eye Res 2010;90(2):277–284. Crossref, MedlineGoogle Scholar
  • 18 Friberg TR, Grove AS. Choroidal folds and refractive errors associated with orbital tumors: an analysis. Arch Ophthalmol 1983;101(4):598–603. Crossref, MedlineGoogle Scholar
  • 19 Jacobson DM. Intracranial hypertension and the syndrome of acquired hyperopia with choroidal folds. J Neuroophthalmol 1995;15(3):178–185. Crossref, MedlineGoogle Scholar
  • 20 Westfall AC, Ng JD, Samples JR, Weissman JL. Hypotonus maculopathy: magnetic resonance appearance. Am J Ophthalmol 2004;137(3):563–566. Crossref, MedlineGoogle Scholar
  • 21 Draeger J, Schwartz R, Groenhoff S, Stern C. Self-tonometry under microgravity conditions. Aviat Space Environ Med 1995;66(6):568–570. MedlineGoogle Scholar
  • 22 Schwartz R, Draeger J, Groenhoff S, Flade KD. Results of self-tonometry during the 1st German-Russian MIR mission 1992 [in German]. Ophthalmologe 1993;90(6):640–642. MedlineGoogle Scholar
  • 23 Wu J, Lai TF, Leibovitch I, Selva D. Persistent posterior globe flattening after orbital cavernous haemangioma excision. Clin Experiment Ophthalmol 2005;33(4):424–425. Crossref, MedlineGoogle Scholar
  • 24 Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR, Mironov A. Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve: is it always bidirectional? Brain 2007;130(Pt 2):514–520. Crossref, MedlineGoogle Scholar
  • 25 Krstić RV. Human microscopic anatomy: an atlas for students of medicine and biology. Berlin, Germany: Springer-Verlag, 1991; 534, 536. CrossrefGoogle Scholar
  • 26 Weiss L. Histology, cell and tissue biology. 5th ed. New York, NY: Elsevier Biomedical, 1983; 1173. CrossrefGoogle Scholar
  • 27 Sternberg SS. Histology for pathologists. New York, NY: Raven, 1992; 329. Google Scholar
  • 28 Lam BL, Glasier CM, Feuer WJ. Subarachnoid fluid of the optic nerve in normal adults. Ophthalmology 1997;104(10):1629–1633. Crossref, MedlineGoogle Scholar
  • 29 Karim S, Clark RA, Poukens V, Demer JL. Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Invest Ophthalmol Vis Sci 2004;45(4):1047–1051. Crossref, MedlineGoogle Scholar
  • 30 Tso MO, Hayreh SS. Optic disc edema in raised intracranial pressure. III. A pathologic study of experimental papilledema. Arch Ophthalmol 1977;95(8):1448–1457. Crossref, MedlineGoogle Scholar
  • 31 Gass A, Moseley IF, Barker GJ, et al.. Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI. Neuroradiology 1996;38(4):317–321. Crossref, MedlineGoogle Scholar
  • 32 Tokumaru AM, Sakata I, Terada H, Kosuda S, Nawashiro H, Yoshii M. Optic nerve hyperintensity on T2-weighted images among patients with pituitary macroadenoma: correlation with visual impairment. AJNR Am J Neuroradiol 2006;27(2):250–254. MedlineGoogle Scholar
  • 33 Hayreh SS. The central artery of the retina: its role in the blood supply of the optic nerve. Br J Ophthalmol 1963;47:651–663. Crossref, MedlineGoogle Scholar
  • 34 Cohen AI. Ultrastructural aspects of the human optic nerve. Invest Ophthalmol 1967;6(3):294–308. MedlineGoogle Scholar
  • 35 Barkovich AJ. Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol 2000;21(6):1099–1109. MedlineGoogle Scholar
  • 36 Killer HE, Laeng HR, Flammer J, Groscurth P. Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol 2003;87(6):777–781. Crossref, MedlineGoogle Scholar
  • 37 Behrman S. Pathology of papilloedema. Brain 1966;89(1):1–14. Crossref, MedlineGoogle Scholar
  • 38 Maira G, Anile C, Mangiola A. Primary empty sella syndrome in a series of 142 patients. J Neurosurg 2005;103(5):831–836. Crossref, MedlineGoogle Scholar
  • 39 Yuh WT, Zhu M, Taoka T, et al.. MR imaging of pituitary morphology in idiopathic intracranial hypertension. J Magn Reson Imaging 2000;12(6):808–813. Crossref, MedlineGoogle Scholar
  • 40 Jinkins JR, Athale S, Xiong L, Yuh WT, Rothman MI, Nguyen PT. MR of optic papilla protrusion in patients with high intracranial pressure. AJNR Am J Neuroradiol 1996;17(4):665–668. MedlineGoogle Scholar
  • 41 Seitz J, Held P, Strotzer M, et al.. Magnetic resonance imaging in patients diagnosed with papilledema: a comparison of 6 different high-resolution T1- and T2(*)-weighted 3-dimensional and 2-dimensional sequences. J Neuroimaging 2002;12(2):164–171. Crossref, MedlineGoogle Scholar
  • 42 Dhungana S, Sharrack B, Woodroofe N. Idiopathic intracranial hypertension. Acta Neurol Scand 2010;121(2):71–82. Crossref, MedlineGoogle Scholar
  • 43 Hayreh SS. Optic disc edema in raised intracranial pressure. V. Pathogenesis. Arch Ophthalmol 1977;95(9):1553–1565. Crossref, MedlineGoogle Scholar
  • 44 Tso MO, Hayreh SS. Optic disc edema in raised intracranial pressure. IV. Axoplasmic transport in experimental papilledema. Arch Ophthalmol 1977;95(8):1458–1462. Crossref, MedlineGoogle Scholar
  • 45 Suzuki H, Takanashi J, Kobayashi K, Nagasawa K, Tashima K, Kohno Y. MR imaging of idiopathic intracranial hypertension. AJNR Am J Neuroradiol 2001;22(1):196–199. MedlineGoogle Scholar
  • 46 Lim MJ, Pushparajah K, Jan W, Calver D, Lin JP. Magnetic resonance imaging changes in idiopathic intracranial hypertension in children. J Child Neurol 2010;25(3):294–299. Crossref, MedlineGoogle Scholar
  • 47 Friedman DI, Jacobson DM. Diagnostic criteria for idiopathic intracranial hypertension. Neurology 002;59(10):1492–1495. Google Scholar
  • 48 Abbrescia KL, Brabson TA, Dalsey WC, et al.. The effect of lower-extremity position on cerebrospinal fluid pressures. Acad Emerg Med 2001;8(1):8–12. Crossref, MedlineGoogle Scholar
  • 49 Agid R, Farb RI, Willinsky RA, Mikulis DJ, Tomlinson G. Idiopathic intracranial hypertension: the validity of cross-sectional neuroimaging signs. Neuroradiology 2006;48(8):521–527. Crossref, MedlineGoogle Scholar
  • 50 Radhakrishnan K, Ahlskog JE, Garrity JA, Kurland LT. Idiopathic intracranial hypertension. Mayo Clin Proc 1994;69(2):169–180. Crossref, MedlineGoogle Scholar
  • 51 Bastin ME, Sinha S, Farrall AJ, Wardlaw JM, Whittle IR. Diffuse brain oedema in idiopathic intracranial hypertension: a quantitative magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 2003;74(12):1693–1696. Crossref, MedlineGoogle Scholar
  • 52 Farb RI, Vanek I, Scott JN, et al.. Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis. Neurology 2003;60(9):1418–1424. Crossref, MedlineGoogle Scholar
  • 53 Li Z, Luo Y. Finite element study of correlation between intracranial pressure and dynamic responses of human head. Adv Theor Appl Mech 2010;3(3):139–149. Google Scholar
  • 54 Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T. MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 2000;217(3):877–885. LinkGoogle Scholar
  • 55 Fraser C, Plant GT. The syndrome of pseudotumour cerebri and idiopathic intracranial hypertension. Curr Opin Neurol 2011;24(1):12–17. Crossref, MedlineGoogle Scholar

Article History

Received September 23, 2011; revision requested November 9; revision received January 9, 2012; accepted January 13; final version accepted February 1.
Published online: June 2012
Published in print: June 2012