Skip to main content
Log in

Species distribution modeling as an approach to studying the processes of landscape domestication in central southern Mexico

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Landscape domestication (LD) has been an important mechanism for subsistence in traditional rural societies. In the last decade, important theoretical advances have been accomplished with valuable archaeological, historical, and ecological approaches for understanding LD processes, while integrated spatial approximations are still scanty.

Objectives

To assess the usefulness of species distribution modeling for addressing LD processes associated with human influence on plant community distribution, using as case study the palm-stands of Brahea dulcis in central-southern Mexico.

Methods

We used MaxEnt for building distribution models, including social factors as triggers of palm-stand distribution, and environmental variables as covariates. Model performance, predicted surface and variable importance were statistically evaluated. The best distribution model was chosen, and it was further assed by visual inspection and ground-truth validation to contrasts predicted versus observed palm-stand distribution.

Results

Social factors contributed the most to the model fit, proving to be strongly associated with palm-stand presence. Visual inspection of the predicted spatial distribution resulted coherent with observed palm-stand distribution. Ground-truth proved to reach a certainty of circa 80% between predicted and observed areas with palm-stands.

Conclusions

Ethnic identity, distance to roads, and land tenure were the strongest explanatory variables to accurately predict the observed palm-stand spatial distribution. This revealed the high importance of social factors for palm-stand presence and support the assertion that palm-stand are the result of long-standing human actions, rather than purely ecological and physical attributes. The identification of driving social factors allowed to inquire into the underlying LD processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acuña R (2017a) Relaciones Geográficas del Siglo XVI: Tlaxcala. Tomo Segundo, 4a edn. Instituto de Investigaciones Antropológicas

  • Acuña R (ed) (2017b) Relaciones Geográficas del Siglo XVI: Antequera. Tomo Segundo. Universidad Nacional Autónoma de México

  • Aguilar JG (1996) Manejo de recursos naturales de la selva baja caducifolia, en particular Brahea dulcis, en la región de Chilapa, Guerrero. Research report. Grupo de Estudios Ambientales A. C., p 175

  • Aponte S, Sarria M (2010) Estudio técnico de la palma dentro de la Reserva de la Biosfera de Tehuacán. Diagnostico rápido del estado de Brahea dulcis en localidades de artesanías de palma. Technical report. Colectivo El Torito A. C., p 55

  • Arroyo-Kalin M (2019) Landscaping, landscape legacies, and landesque capital in Pre-Columbian Amazonia. In: Isendahl C, Stump D (eds) The Oxford handbook of historical ecology and applied archaeology, 1st edn. Oxford University Press, Oxford. https://doi.org/10.1093/oxfordhb/9780199672691.013.16

    Chapter  Google Scholar 

  • Balée W (1988) Indigenous adaptation to Amazonian palm forest. Principes 32(2):47–54

    Google Scholar 

  • Berkes F, Folke C (1994) Linking social and ecological systems for resilience and sustainability. Beijer Discussion Papers, 23

  • Blancas J, Casas A, Rangel-Landa S, Moreno-Calles A, Torres I, Pérez-Negrón E, Solís L, Delgado-Lemus A, Parra F, Arellanes Y, Caballero J, Cortés L, Lira R, Dávila P (2010) Plant management in the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot 64(4):287–302

    Google Scholar 

  • Bradie J, Leung B (2017) A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J Biogeogr 44(6):1344–1361

    Google Scholar 

  • Byers D (1967) The region and its people. In: The prehistory of the Tehuacan-Valley, 1st edn, vol 1. University of Texas Press, Austin, p 356

  • Caballero J (1994) La dimension culturelle de la diversité végétale au Mexique. J D’agric Tradit Bot Appl 36(2):145–158

    Google Scholar 

  • Caballero J, Casa A, Cortés L, Mapes C (1998) Patrones en el conocimiento, uso y manejo de plantas en pueblos indígenas de México. Estudios Atacameños, pp 181–195

  • Casas A, Viveros J, Caballero J (1994) Etnobotánica mixteca: Sociedad, cultura y recursos naturales en la Montaña de Guerrero. Instituto Nacional Indigenista

  • Casas A, Camou A, Otero-Arnaiz A, Rangel-Landa S, Cruse-Sanders J, Solís L, Torres I, Delgado A, Moreno-Calles AI, Vallejo M, Guillén S, Blancas J, Parra F, Farfán-Heredia B, Aguirre-Dugua I, Arellanes Y, Pérez-Negrón E (2014) Manejo tradicional de biodiversidad y ecosistemas en Mesoamérica: El Valle de Tehuacán. Investigación Ambiental, pp 23–44

  • Cavanaugh J (1997) Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat Probab Lett 33(2):201–208

    Google Scholar 

  • Chadwick R, MacNeish R (1967) Codex Borgia and the Venta Salada Phase. In: Byers D (ed) The prehistory of the Tehuacan Valley, vol 1. University of Texas Press, Austin, pp 114–131

    Google Scholar 

  • Choi J, Wright DK, Lima HP (2020) A new local scale prediction model of Amazonian landscape domestication sites. J Archaeol Sci 123:105240

    Google Scholar 

  • Civantos M (2011) Montainous landscape domestication. Management of non-cultivated productive areas in Sierra Nevada (Granada-Almeria, Spain). Eur J Post-Class Achaeol 4:99–130

    Google Scholar 

  • Clement CR, Cassino MF (2018) Landscape domestication and archaeology. In: Encyclopedia of global archaeology. Springer, Cham, pp 1–8. https://doi.org/10.1007/978-3-319-51726-1_817-2

  • Clement CR, Denevan WM, Heckenberger MJ, Junqueira AB, Neves EG, Teixeira WG, Woods WI (2015) The domestication of Amazonia before European conquest. Proc R Soc B 282(1812):282

    Google Scholar 

  • Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E (2014) An update of high-resolution monthly climate surfaces for Mexico. Int J Climatol 34(7):2427–2437

    Google Scholar 

  • Dalhgren B (1979) La mixteca. Su cultura e historia prehispánicas, 1a edn. Universidad Nacional Autónoma de México

  • Dávila P, Arizmendi MDC, Villaseñor JL, Casas A, Lira R (2002) Biological diversity in the Tehuacán-Cuicatlán Valley, Mexico. Biodivers Conserv 11:421–442

    Google Scholar 

  • Deur DE (2000) A Domesticated Landscape: Native American Plant Cultivation on the Northwest Coast of North America. LSU Historical Dissertations and Theses. 7259. https://digitalcommons.lsu.edu/gradschool_disstheses/7259

  • Echeverria Y (2003) Aspectos etnobotánicos y ecológicos de los recursos vegetales en las comunidades mixtecas de San Pedro Nodón y San Pedro Jocotipac, Oaxaca, México. Bachelor Thesis, Universidad Nacional Autónoma de Mexico

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40(1):677–697

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Townsend Peterson A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151

    Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57

    Google Scholar 

  • Erickson C (2006) The domesticated landscapes of the Bolivian Amazon. In: Time and complexity in historical ecology: studies in the Neotropical lowlands. Columbia University Press, pp 235–278

  • Eriksson O, Arnell M (2016) Niche construction, entanglement and landscape domestication in Scandinavian infield systems. Landsc Res 42:1–11

    Google Scholar 

  • Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Rangel P, González-López R (2013) Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. TIP 16(1):5–17

    Google Scholar 

  • Ferreira MJ, Levis C, Iriarte J, Clement CR, Ferreira MJ, Levis C, Iriarte J, Clement CR (2019) Legacies of intensive management in forests around pre-Columbian and modern settlements in the Madeira-Tapajós interfluve, Amazonia. Acta Bot Bras 33(2):212–220

    Google Scholar 

  • Franco-Moraes J, Baniwa AFMB, Costa FRC, Lima HP, Clement CR, Shepard GH (2019) Historical landscape domestication in ancestral forests with nutrient-poor soils in northwestern Amazonia. For Ecol Manag 446:317–330

    Google Scholar 

  • Freeman EA, Moisen GG (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol Model 217(1):48–58

    Google Scholar 

  • García M (1940) Economía de la región indígena Mixteca. El trimestre económico, pp 231–270

  • Goés E (2013) Was agriculture a key productive activity in pre-colonial Amazonia? The stable productive basis for social equality in the central amazon. In: Brondízio E, Moran E (eds) Human–environment interactions: current and future directions. Springer, Berlin

    Google Scholar 

  • Hironymous M (2007) Santa María Ixcatlan, Oaxaca: from colonial cacicazgo to modern municipal. Doctoral Dissertation, University of Austin Texas

  • INEGI (2001) Continuo Nacional Serie I. Subprovincias fisiográficas. Conjunto de datos vectoriales fisiográficos

  • INEGI (2014) Continuo Nacional Serie II. Datos edafológicos. Datos vectoriales

  • Junqueira AB, Shepard GH, Clement CR (2011) Secondary forests on Anthropogenic soils of the Middle Madeira River: valuation, local knowledge, and landscape domestication in Brazilian Amazonia. Econ Bot 65(1):85–99

    CAS  Google Scholar 

  • Kalinski C (2019) Building better species distribution models with machine learning: assessing the role of covariate scale and tuning in MaxEnt models. Master Degree, University of Southern California

  • Laland KN, Odling-Smee J, Feldman MW (2000) Niche construction, biological evolution, and cultural change. Behav Brain Sci 23(1):131–146

    CAS  PubMed  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11(4):261–269

    Google Scholar 

  • Lane PJ (2017) People, Pots, Words and Genes: multiple sources and recon-structions of the transition to food production in eastern Africa. In: Micheli I (ed) Cultural and linguistic transition explored. Proceedings of the ATra closing workshop, Trieste, 25–26 May 2016. EUT Edizioni Università di Trieste. https://www.openstarts.units.it/handle/10077/14292

  • Leal A, Gassón R, Behling H, Sánchez F (2019) Human-made fires and forest clearance as evidence for late Holocene landscape domestication in the Orinoco Llanos (Venezuela). Veg Hist Archaeobot 28(5):545–557

    Google Scholar 

  • Lepofsky D (2009) The past, present, and future of traditional resource and environmental management. J Ethnobiol 29(2):161–166

    Google Scholar 

  • Levis C, de Souza PF, Schietti J, Emilio T, da Pinto JLPV, Clement CR, Costa FRC (2012) Historical human footprint on modern tree species composition in the Purus-Madeira interfluve, Central Amazonia. PLoS ONE 7(11):e48559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levis C, Flores BM, Moreira PA, Luize BG, Alves RP, Franco-Moraes J, Lins J, Konings E, Peña-Claros M, Bongers F, Costa FRC, Clement CR (2018) How people domesticated Amazonian forests. Front Ecol Evol. https://doi.org/10.3389/fevo.2017.00171

    Article  Google Scholar 

  • Levis C, Peña-Claros M, Clement CR, Costa FRC, Alves RP, Ferreira MJ, Figueiredo CG, Bongers F (2020) Pre-Columbian soil fertilization and current management maintain food resource availability in old-growth Amazonian forests. Plant Soil 450(1–2):29–48

    CAS  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28(3):385–393

    Google Scholar 

  • MacNeish R (1964) El origen de la civilización mesoamericana visto desde Tehuacán. Instituto Nacional de Antropología

  • MacNeish R (1992) The beginning of the agriculture in the new world. Rev Arqueol Am 7–34

  • Maezumi SY, Alves D, Robinson M, de Souza JG, Levis C, Barnett RL, Almeida de Oliveira E, Urrego D, Schaan D, Iriarte J (2018) The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat Plants 4(8):540–547

    PubMed  PubMed Central  Google Scholar 

  • McPherson K, Williams K (1998) Fire resistance of cabbage palms (Sabal palmetto) in the southeastern USA. For Ecol Manag 109(1):197–207

    Google Scholar 

  • Méndez-Larios I, Villaseñor JL, Lira R, Morrone JJ, Dávila P, Ortiz E (2005) Toward the identification of a core zone in the Tehuacán-Cuicatlán Biosphere Reserve, Mexico, based on parsimony analysis of endemicity of flowering plant species. Interciencia 30(5):267–274

    Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36(10):1058–1069

    Google Scholar 

  • Morán-Ordóñez A, Suárez-Seoane S, Elith J, Calvo L, de Luis E (2012) Satellite surface reflectance improves habitat distribution mapping: a case study on heath and shrub formations in the Cantabrian Mountains (NW Spain). Divers Distrib 18(6):588–602

    Google Scholar 

  • Morcote-Ríos G, Cabrera-Becerra G, Mahecha-Rubio D, Franky-Calvo C, Cavelier-FI (2011) Management of palms by groups of hunter-gatherers from the Columbian Amazon region. Caldasia 57–74

  • Moreno-Calles AI, Casas A, García-Frapolli E, Torres-García I (2012) Traditional agroforestry systems of multi-crop “milpa” and “chichipera” cactus forest in the arid Tehuacán Valley, Mexico: their management and role in people’s subsistence. Agrofor Syst 84(2):207–226

    Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods Ecol Evol 5(11):1198–1205

    Google Scholar 

  • Muscarella R, Galante P, Soley-Guardi M, Boria R, Kass J, Uriarte M, Anderson R (2018) ENMeval (3.0) (R; R software)

  • Odling-Smee J, Laland KN (2011) Ecological inheritance and cultural inheritance: what are they and how do they differ? Biol Theory 6(3):220–230

    Google Scholar 

  • Odling-Smee F, Laland K, Feldman M (1996) Niche construction. Am Nat 147(4):641–648

    Google Scholar 

  • Parra F, Blancas JJ, Casas A (2012) Landscape management and domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley: human guided selection and gene flow. J Ethnobiol Ethnomed 8(1):32

    PubMed  PubMed Central  Google Scholar 

  • Piperno D (2011) The Origins of Plant Cultivation and Domestication in the New World Tropics: Patterns, Process, and New Developments. Curr Anthropol 52(4):453–470

  • Pérez-Negrón E, Casas A (2007) Use, extraction rates and spatial availability of plant resources in the Tehuacán-Cuicatlán Valley, Mexico: the case of Santiago Quiotepec, Oaxaca. J Arid Environ 70(2):356–379

    Google Scholar 

  • Pérez-Valladares CX, Velázquez A, Moreno-Calles AI, Mas J-F, Torres-García I, Casas A, Rangel-Landa S, Blancas J, Vallejo M, Téllez-Valdés O (2019) An expert knowledge approach for mapping vegetation cover based upon free access cartographic data: the Tehuacan-Cuicatlan Valley, Central Mexico. Biodivers Conserv 28(6):1361–1388

    Google Scholar 

  • Pérez-Valladares CX, Moreno-Calles AI, Casas A, Rangel-Landa S, Blancas J, Caballero J, Velazquez A (2020) Ecological, cultural, and geographical implications of Brahea dulcis (Kunth) Mart. insights for sustainable management in Mexico. Sustainability 12(1):412

    Google Scholar 

  • Phillips S (2021) A brief tutorial on MaxEnt. American Museum of Natural History. https://biodiversityinformatics.amnh.org/open_source/maxent/Maxent_tutorial_2021.pdf

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of MaxEnt. Ecography 40(7):887–893

    Google Scholar 

  • Quero H (1994a) Arecaceae. Universidad Nacional Autónoma de México

  • Quero H (1994b) Palms of Mexico: present and future. Bot Sci 123–127

  • Quero H (2000) El complejo Brahea-Erythea (Palmae: Coryphoideae). Research report N.o L216. Universidad Nacional Autónoma de México, p 39

  • Quero H, López-Toledo L (2014) Brahea dulcis (IUCN Red List of Threatened Species). International Union for Conservation of Nature. https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T55948562A55948580.en

  • Radosavljevic A, Anderson RP (2014) Making better MaxEnt models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41(4):629–643

    Google Scholar 

  • Rangel-Landa S (2014) Uso y manejo de las palmas Brahea spp. (Arecaceae) por el pueblo ixcateco de Santa María Ixcatlán Oaxaca, México. Gaia Scientia, p 17

  • Rangel-Landa S, Casas A, Rivera-Lozoya E, Torres-García I, Vallejo-Ramos M (2016) Ixcatec ethnoecology: plant management and biocultural heritage in Oaxaca, Mexico. J Ethnobiol Ethnomed 12:1–83

    Google Scholar 

  • Reis MS, Montagna T, Mattos AG, Filippon S, Ladio AH, da Marques AC, Zechini AA, Peroni N, Mantovani A (2018) Domesticated landscapes in Araucaria forests, southern Brazil: a multispecies local conservation-by-use system. Front Ecol Evol. https://doi.org/10.3389/fevo.2018.00011

    Article  Google Scholar 

  • Rivas-Martínez S (2008) Worldwide Bioclimatic Classification System. Phytosociological Research Center, Spain. https://www.globalbioclimatics.org

  • Smith CE (1965) Plant fibers and civilization—cotton, a case in point. Econ Bot 19(1):71–82

    Google Scholar 

  • Smith E (1967) Plant remains. In: Byers D (ed) The prehistory of the Tehuacán Valley: environment and subsistence, vo1 1, 1st edn. University of Texas Press, Austin

  • Smith B (2011a) General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Philos Trans R Soc B 366(1566):836–848

    Google Scholar 

  • Smith BD (2011b) A cultural niche construction theory of initial domestication. Biol Theory 6(3):260–271

    Google Scholar 

  • Sosnowska J, Walanus A, Balslev H (2015) Asháninka palm management and domestication in the Peruvian Amazon. Hum Ecol 43(3):451–466

    Google Scholar 

  • Soberón J, Osorio-Olvera L, Peterson T (2017) Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Rev Mex de Biodivers 88(2):437–441. https://doi.org/10.1016/j.rmb.2017.03.011

  • Terrell JE, Hart JP, Barut S, Cellinese N, Curet A, Denham T, Kusimba CM, Latinis K, Oka R, Palka J, Pohl MED, Pope KO, Williams PR, Haines H, Staller JE (2003) Domesticated landscapes: the subsistence ecology of plant and animal domestication. J Archaeol Method Theory 10(4):323–368

    Google Scholar 

  • Thapa A, Wu R, Hu Y, Nie Y, Singh PB, Khatiwada JR, Yan L, Gu X, Wei F (2018) Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol Evol 8(21):10542–10554

    PubMed  PubMed Central  Google Scholar 

  • Toledo V (1990) La perspectiva etnoecológica. Cinco reflexiones acerca de las «ciencias campesinas» sobre la naturaleza con especial referencia a México. Ciencias 4:22–29

    Google Scholar 

  • Torres-García I (2003) Aspectos etnobotánicos y ecológicos de los recursos vegetales en la comunidad de San Luis Atolotitlán, municipio de Caltepec, Puebla, Mexico. Bachelor Thesis, Universidad Michoacana de San Nicolas de Hidalgo

  • Vale CG, Tarroso P, Brito JC (2014) Predicting species distribution at range margins: testing the effects of study area extent, resolution and threshold selection in the Sahara-Sahel transition zone. Divers Distrib 20(1):20–33

    Google Scholar 

  • Valiente-Banuet A, Casas A, Alcántara A, Dávila P, Flores-Hernández N, del Arizmendi MC, Villaseñor JL, Ramírez JO (2000) La vegetación del Valle de Tehuacán-Cuicatlán. Bot Sci 67:25–74

    Google Scholar 

  • Valiente-Banuet A, Solís L, Dávila P, del Coro M, Silva C (2009) Guía de la vegetación del Valle de Tehuacán–Cuicatlán. Universidad Nacional Autónoma de México

  • Vallejo M, Casas A, Blancas J, Moreno-Calles AI, Solís L, Rangel-Landa S, Dávila P, Téllez-Valdés O (2014) Agroforestry systems in the highlands of the Tehuacan Valley, Mexico: Indigenous cultures and biodiversity conservation. Agrofor Syst 88:125–140

    Google Scholar 

  • Vallejo M, Casas A, Pérez-Negrón E, Moreno-Calles AI, Hernández-Ordoñez O, Tellez O, Dávila P (2015) Agroforestry systems of the lowland alluvial valleys of the Tehuacán-Cuicatlán Biosphere Reserve: an evaluation of their biocultural capacity. J Ethnobiol Ethnomed 11(1):8–25

    PubMed  PubMed Central  Google Scholar 

  • van den Biggelaar DFAM, Kluiving SJ (2015) A niche construction approach on the central Netherlands covering the last 220,000 years. Water Hist 7(4):533–555

    PubMed  PubMed Central  Google Scholar 

  • van der Hammen MC (1992) EL manejo del mundo: Naturaleza y sociedad entre los Yukuna de la Amazonia colombiana. Tropenbos

  • Velázquez de Lara G (1984) Relación de Ixcatlan, Quiotepec y Tecomahuaca. In: Relaciones Geográficas del siglo XVI: Antequera, vol 1. Instituto de Investigaciones Antropológicas, pp 223–241

  • Warren DL, Seifert SN (2011) Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21(2):335–342

    PubMed  Google Scholar 

  • Watling J, Mayle F, Schaan D (2008) Historical ecology, human niche construction and landscape in pre-Columbian Amazonia: a case study of the geoglyph builders of Acre, Brazil. J Anthropol Archaeol 50:128–139

    Google Scholar 

Download references

Acknowledgements

The authors thanks Biol. Fernando Reyes Flores, Director of the Tehuacan–Cuicatlan Biosphere Reserve, for all the support granted for ongoing research in the reserve relating B. dulcis palm stands and several other resources and socio-ecological systems. Thanks to Dr. Oswaldo Téllez-Valdés, from UBIPRO FES-Iztacala, UNAM, for providing high-resolution climatic layers for feeding the model, to Luis Valderrama for providing information regarding palm-stand sites, and to Horacio Torres de Ita, from El Torito A.C. for sharing relevant information of ground-truth areas. The first author thanks the CONACyT for the scholarship granted for her Ph.D. studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cloe X. Pérez-Valladares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Species distribution modeling to approach processes of landscape domestication in central-southern Mexico

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Valladares, C.X., Moreno-Calles, A.I., Mas, J.F. et al. Species distribution modeling as an approach to studying the processes of landscape domestication in central southern Mexico. Landsc Ecol 37, 461–476 (2022). https://doi.org/10.1007/s10980-021-01365-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01365-w

Keywords

Navigation