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Researchers sometimes argue that statisticians have little to contribute when few realizations of the process being estimated are 
observed. We show that this argument is incorrect even in the extreme situation of estimating the probabilities of events so rare that 
they have never occurred. We show how statistical forecasting models allow us to use empirical data to improve inferences about 
the probabilities of these events. Our application is estimating the probability that your vote will be decisive in a U.S. presidential 
election, a problem that has been studied by political scientists for more than two decades. The exact value of this probability is 
of only minor interest, but the number has important implications for understanding the optimal allocation of campaign resources, 
whether states and voter groups receive their fair share of attention from prospective presidents, and how formal "rational choice" 
models of voter behavior might be able to explain why people vote at all. We show how the probability of a decisive vote can 
be estimated empirically from state-level forecasts of the presidential election and illustrate with the example of 1992. Based on 
generalizations of standard political science forecasting models, we estimate the (prospective) probability of a single vote being 
decisive as about 1 in 10 million for close national elections such as 1992, varying by about a factor of 10 among states. Our 
results support the argument that subjective probabilities of many types are best obtained through empirically based statistical 
prediction models rather than solely through mathematical reasoning. We discuss the implications of our findings for the types of 
decision analyses used in public choice studies. 
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1. INTRODUCTION 

When an event is so rare that it has never occurred, de- 
spite many trials, estimates of its probability would seem to 
be a theoretical matter about which statisticians have little 
to contribute. Through a political science election analy- 
sis example, we demonstrate that statistical models can be 
used to extract information from related data to yield bet- 
ter estimates of the probabilities of even extraordinarily rare 
events. 

Our application is a more extreme example of decision 
analyses that require the assessment of subjective probabil- 
ities. Our results are related to examples from space shut- 
tle safety (Martz and Zimmer 1992), record linkage (Be- 
lin and Rubin 1995), and DNA matching (Belin, Gjertson, 
and Hu 1995; Sudbury, Marinopoulos, and Gunn 1993), 
where scholars have also found that probabilities estimated 
using data-based statistical methods are much better cali- 
brated than probabilities assigned by theoretical mathemat- 
ical models. These fields are like election analysis in that 
data-free models, typically based on independence assump- 
tions, have led to mistaken conclusions. Our work is also 
related to analyses that seek to improve estimation by sup- 
plementing datasets that have a small (but nonzero) number 
of rare events with precursor data (Bier 1993) or additional 
carefully selected observations (Sanchez and Higle 1992). 

We estimate the probability that an individual's vote is 
decisive in U.S. presidential elections. Given the size of the 
electorate, an election where one vote is decisive (equivalent 
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to a tie in your state and in the electoral college) will almost 
certainly never occur. Nevertheless, political scientists have 
sought an estimate of this event through systematic theo- 
retical analyses for over two decades and through informed 
speculation for much longer (Beck 1975). Although the ex- 
act value of the probability of one vote being decisive is a 
minor issue in and of itself, it turns out to lie at the heart 
of several important lines of inquiry. 

For one, the perception of the probability that a single 
vote, or block of votes, will be decisive, governs the op- 
timal allocation of campaign resources. Understanding po- 
litical campaigns and the behavior of political candidates 
thus involves estimating the probability that a vote will be 
decisive in each state or region. Candidates for office are 
also obviously interested in these estimates to maximize 
their chances of winning. States and various voter groups 
trying to ensure that they get a fair share of attention from 
prospective office holders are also interested, because atten- 
tion during the campaign relates to how they will be treated 
by the occupant of the White House after the election. 

Normatively, many political scientists find electoral sys- 
tems undesirable if some voter groups are more likely than 
others to influence an election outcome. For example, the 
variation from state to state in the probability that your vote 
is decisive in a U.S. presidential election is often addressed 
in terms of whether the electoral college favors voters in 
large or small states (Banzhaf 1968; Brams and Davis 1974; 
Merrill 1978) or whether the electoral college as a whole 
treats the political parties equally (Abbott and Levine 199 1). 
(The winner of the presidential election is the candidate who 
receives a majority of votes from the 538 electoral college 
delegates. The plurality winner of each state chooses all 
the electoral college delegates assigned to that state. The 
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number of delegates is determined by the number of sena- 
tors plus the number of congressional representatives from 
each state. We ignore minor exceptions such as Maine's rule 
that allows their electoral college delegates to be split, del- 
egates deciding to vote for candidates other than for whom 
they were chosen, and complications caused by third-party 
candidates who get large fractions of the vote.) From the 
standpoint of normative philosophy, an election in a demo- 
cratic system should allow the possibility that a single vote 
can matter; some believe it is desirable to design electoral 
systems so that the probability of this outcome is relatively 
high. 

Finally, from a "rational choice" perspective, voting be- 
comes more desirable as the probability of it making a dif- 
ference increases. Different researchers give different num- 
bers for the probability that one vote is decisive, but all 
agree it is low enough so that considering only the immedi- 
ate personal costs of voting and direct personal gains from 
influencing the outcome, it is "irrational" for most Amer- 
icans to vote in the presidential election (Aldrich 1993; 
Barzel and Silberberg 1973; Ferejohn and Fiorina 1974; 
Green and Shapiro 1993; Jackman 1987; Riker and Or- 
deshook 1968). Scholars in this subfield have at times been 
consumed with trying to explain, through mathematical 
models of voter choice, why "so many" people bother to 
vote (given rational choice assumptions). Thus estimates of 
the probability of tied elections play a role in understanding 
or resolving this central puzzle. (Many reasons for voting 
other than direct personal gain from the election outcome 
can also be given, but scholars in this subfield have sought 
to build mathematical models that explain why people vote 
with only minimal modifications of their parsimonious be- 
havioral assumptions.) 

In this article we use a standard model for forecasting 
presidential elections to estimate the probability that a sin- 
gle vote will be decisive, for voters in each state in every 
postwar election. We also perform some more approximate 
calculations to estimate the average probability that one 
vote will be decisive in a U.S. congressional election and in 
elections in general. Sections 2 and 3 lay out the theoretical 
framework for estimating the probability of a decisive vote 
in the electoral college. Section 4 gives numerical details of 
our implementation with historical data. Section 5 discusses 
other elections, and Section 6 discusses the implications of 
our methods for studies of voting in particular and decision 
theory in general. 

2. THE FACTORS THAT DETERMINE THE 
PROBABILITY THAT YOUR VOTE IS DECISIVE 

2.1 Interpretation in Terms of Forecasts 

The question, "What is the probability that your vote will 
be decisive?'is inherently about uncertainty in the outcome 
of the election, given the information available to you be- 
fore the election. Thus, to answer this question in even an 
approximately calibrated way, one must model the uncer- 
tainty in the pre-election period. The uncertainty could be 
measured in many ways, depending on what information 
is available at the time of the forecast. For this article we 

use presidential election forecasting methods based on na- 
tional and state economic and political variables available 
a few months before the election, following Rosenstone 
(1984) and Campbell (1992). As discussed by Gelman and 
King (1993), these forecasts predict the election about as 
accurately as polls taken a few days before the election. In 
fact, no method-including the predictions of informed ob- 
servers, political insiders, media pundits, sample surveys, or 
other types of expert analysis or nonstatistical predictions- 
has been shown to outperform these forecasts. As such, 
although our model is conditional on the information pub- 
lically available prior to the general election campaign that 
we included in our model, this is nearly equivalent to con- 
ditioning on all the information available that an individual 
voter would have just prior to election day. (The puzzling 
implication, that the campaign has little net effect despite 
huge sums spent and wide fluctuations in voter preference 
polls over time, was studied by Gelman and King [1993].) 

In any case, the following factors will almost necessarily 
be involved in the probability that your vote will be decisive 
in a presidential election. First, the probability that your 
state election is tied depends on (a) the forecast vote share 
for the two candidates, (b) the uncertainty in that forecast 
(a Democratic vote share forecast at .51 ?E .02 is more likely 
to be a tie than one forecast at .51 f .lo), and (c) the number 
of voters in your state (to yield the probability of an exact 
tie). Next, the probability that your state, if tied, will be 
decisive in the national electoral vote total depends on (d) 
the number of electoral voters assigned to your state and 
(e) the approximate proximity of the state to the national 
median vote. 

2.2 Comparison to Theoretical Models of Voting 

Most of the literature to date on the effects of individual 
votes has focused on formal probabilistic models of voting, 
generally based on a model of binomial (Beck 1975; Margo- 
lis 1977) or at best compound binomial variation (Chamber- 
lain and Rothchild 1981) of the votes within each state. The 
probabilities produced by such models do not correspond, 
even approximately, to the state of uncertainty of partic- 
ipants in the political process before the election. In par- 
ticular, the formal mathematical models typically assume 
that the probability of a vote being decisive depends only 
on the electoral vote and turnout (or, worse, population) in 
each state-thus ignoring factors (a) and (e)-and further 
assume that the variability (b) is determined by binomial 
variation (an assumption not warranted by the data, as we 
discuss at the end of Section 4.1 and in Section 6.2). Merrill 
(1978) allowed the probabilities to vary by state, but did not 
allow the parameters for states to vary over time or with 
the closeness of the election. 

Other work in this field, based on game-theoretic ideas 
[such as that of Banzhaf (1968) and Brarns and Davis 
(1974)], avoids explicit probability models but can be seen 
implicitly to assume that votes are assigned at random. (For 
example, a voting power measure based on counting the 
number of winning coalitions for which your vote would 
be decisive is equivalent to determine the probability that 
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your vote will be decisive, under the assumption that all 
the other actors vote by flipping coins.) More recent game- 
theoretic analyses (such as that of Feddersen 1992), which 
allow votes to depend on additional information, also im- 
plicitly assume that the variability (b) approaches 0 if the 
number of voters is large. 

3. USING ELECTION FORECASTS TO COMPUTE 
THE PROBABILITY THAT A VOTE WILL BE DECISIVE 

3.1 Expression in Terms of Conditional and Marginal 
Probability 

Your presidential vote will be decisive if two conditions 
are satisfied. First, without your vote, your state's election 
outcome must be exactly tied or one vote away from a tie. 
(We consider the case of a person who will either vote for 
one candidate not vote. A voter who is considering switch- 
ing from the Democratic to Republican candidate will, of 
course, have a higher probability of being decisive.) Second, 
your state must be decisive in the national election; given 
that it is tied, neither party must have an electoral vote ma- 
jority. We introduce the following mathematical notation 
for the following known constants: 

ei = number of electoral votes assigned to state i 

and 

et,tal = ei = 538 = total number of electoral votes; 
i 

and the following election outcomes that need to be mod- 
eled: 

ni = number of voters in state i (excluding yourself), 
vi = Democratic share of the two-party vote in state i 

(excluding your vote), 
1 i f v i > . 5  v, = 0 otherwise, 

and 

EPi = Cjfi ejV, + 3 = Democratic electoral vote in the 
49 states excluding i, plus the District of Columbia. 

Because the District of Columbia is an unambiguous outlier, 
and easily predictable, we assume that its 3 electoral votes 
are certain to go to the Democrats. This is not a controver- 
sial coding decision (see, e.g., Rosenstone 1983). One can 
crudely account for minor parties by separately estimating 
which states will be won by minor parties and setting E to 
the total number of electoral votes in the states contested 
by the Democrats and the Republicans. 

Then, if you live in state i, 

Pr(your vote matters) 

= Pr(your vote is decisive in your state) 

x Pr(your state will be decisive 

lyour vote is decisive in your state). (1) 

The second factor on the right side of (1) is a conditional 
probability: the probability that state i will be decisive, 
given a popular vote tie in that state. 

We now describe how to evaluate (1) given any state-by- 
state forecast of the presidential election (i.e., the values ni 
and vi for all 50 states). In practice, ni can be fairly accu- 
rately and uncontroversially estimated from previous elec- 
tions, even ignoring the slightly higher turnout that many 
accompany closer contests. Because electoral votes also are 
known, we require a forecast of the vector of vote shares, 
(vl, . . . , u ~ ~ ) ,  representing some state of knowledge before 
the presidential election in question. Such a forecast is an 
input to our method and, like all statistical forecasts, must 
include uncertainty as well as a point estimate. In addition, 
separate forecasts for all the states are not enough; it must 
be a joint forecast so that the conditional probability in (1) 
can be determined (e.g., to find the probability that Utah-a 
strongly Republican state-will be decisive in the unlikely 
event that it is tied). We compute the two factors of (1) in 
turn. First, given the large number of voters in any state, 
one can with negligible error model the Democratic vote 
shares, vi, as continuous variables. If ni is even, then the 
first factor in (1) is 

Pr(your vote is decisive in your state) 

= Pr(nivi = .5ni) = Pr(vi = .5) KZ f,% (.5)/ni, (2) 

using the discrete approximation to the continuous distribu- 
tion and the notation fvt for the probability density func- 
tion for the continuous variable vi under the forecasting 
model. Similarly, if ni is odd, then the first factor in (1) is 
Pr(nivi = .5(ni - 1)) = Pr(vi = .5 - .5/ni) KZ fvt (.5)/ni 
also, assuming that ni is reasonably large. 

We can compute the second factor on the right side of (1) 
by using the forecasting model to determine the conditional 
forecast of the other 49 states, given the condition vi = .5 
(for all practical purposes, vi = .5 and vi = .5 - .5/ni are 
identical conditions): 

Pr(your state is decisive 

/your vote is decisive in your state) 

= Pr(EPi E (.5etOtal - ei, .5etotal)lvi = .5) 

(The factors of 1/2 arise because a vote that causes the 
national election to be tied is only half as decisive as a 
vote that changes the election outcome.) The conditional 
forecasts of the other 49 states must then be combined into 
a forecast of the national electoral vote. 

3.2 Computation 

The two factors on .the right side of (I), which are given 
by (2) and (3), can be computed using posterior simula- 
tions, using analytic expressions where necessary to avoid 
having to estimate very low probabilities directly by simu- 
lation. The first step is to estimate all the parameters in the 
model or, in a Bayesian context, obtain a large number of 
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simulations (e.g., 1,000) of the vector of model parameters. 
For each state i and each draw of the simulated parameter 
vector, one can then compute f,% (.5)/ni conditional on the 
model parameters. The probability (2) can then be estimated 
as the average of these 1,000 values. 

The next step, computing (3) for each state, is more com- 
plicated, because it is conditional on the event vi = .5. For 
each state i, one must re-estimate the model, conditional on 
vi = .5 (i.e., including the event vi = .5 as additional "data" 
when fitting the model), and obtain a new set of 1,000 sim- 
ulations of the model parameters. For each of these 1,000 
draws, one must then simulate a draw from the predictive 
distribution of the vector of outcomes vj in the other 49 
states, and from those compute the value of EPi. Expres- 
sion (3) can then be estimated for state i using the empirical 
probabilities from the 1,000 simulated values of EPi. 

When the probability (3) is very low, perhaps even less 
than 1/1,000 (for example, for a small state that is much 
more Republican than the national average), the estimate 
obtained above may be unacceptably variable. In this case, 
if one desires a less variable estimate without having to 
draw many more simulations, one can analytically approx- 
imate the distribution of E-i and use that to compute (3). 
We have found in our simulations that a beta distribution 
on (E-i - 3)/(etOtal - 3 - ei), fit to the first two moments 
of the drawn E-i values, works quite well, as we discuss at 
the end of Section 4.2. We chose this particular distribution 
because EPi is restricted to the range [3, etotal - ei]. 

4. RESULTS UNDER A PARTICULAR 
FORECASTING MODEL 

4.1 The Forecasting Model 

For this article we use a method of forecasting presi- 
dential elections based on a hierarchical linear regression 
model described by Boscardin and Gelman (1996), which 
adds a heteroscedastic specification to the model developed 
by Gelman and King (1993). These models are generaliza- 
tions of standard methods in political science for forecast- 
ing based on past election results, economic data, poll re- 
sults, and other political information. (See Campbell 1992 
and Gelman and King 1993, Sec. 1, for more references 
and discussion of the political context. Similar models have 
been effective for forecasting election results in other coun- 
tries as well; see, e g ,  Bernardo 1986 and Bernardo and 
Giron 1992.) We estimate probabilities for the 1992 elec- 
tion, based on a forecast using information available before 
November 1992. 

The model has the form 

where i indexes states, t indexes election years, St is a 
national error term, yTZt are independent regional errors 
(ri = 1,2,3, or 4, depending on whether state i is in the 
Northeast, Midwest, West, or South), and are indepen- 
dent state-level errors. 

The term X P  is a regression predictor, based on national, 
state, and regional variables all measured before the elec- 

tion. The national variables-which are constant in each 
election year-are the Democratic candidate's share of the 
trial heat polls 2 months before the election; incumbency (0, 
1, or -1, depending on the party); the President's approval 
rating, included as an interaction with the national presiden- 
tial incumbency variable; and the change in gross national 
product (GNP) in the preceding year (counted positively or 
negatively, depending on whether the Democrats or the Re- 
publicans are the incumbent party). The statewide variables 
are the state's vote in the last two presidential elections 
(relative to the nationwide vote in each case), a presidential 
and vice-presidential home-state advantage (0, 1, or -I), 
the change in the state's economic growth in the past year 
(counted positively or negatively depending on the incum- 
bent party), the partisanship of the state (measured by the 
proportion of Democrats in the state legislature), the state's 
ideology (as measured based on the political ideologies of 
its congressional representatives in 1988), the absolute dif- 
ference between state and candidate ideologies as used by 
Rosenstone (1984), and the percent of the state's popula- 
tion that was Catholic in the election (1960) in which one 
of the candidates was Catholic. We also included an indi- 
cator variable for the south in elections in which one of the 
candidates was a southerner. 

Gelman and King (1993) discussed the choice of these 
predictor variables, estimated the additional uncertainty due 
to the choice of specification, and provided evidence about 
the fit of the model. Boscardin and Gelman (1996) pro- 
vided further tests, including the regional random-effects 
terms and a heteroscedastic variance function. We omit the 
details of model choice and model fitting here, because the 
approach presented in this article is designed to apply to 
any probabilistic forecast. 

The regression coefficients and the variances of the error 
terms are estimated using data from the 1948 through 1988 
elections. All error terms are assumed normally distributed 
(an assumption not contradicted by our data-i.e., there was 
no noticeable skewness or outliers). The regional and na- 
tional error terms are vital for our purposes because they 
can affect the second factor in equation (1). Improvements 
in the forecast-for example, by modeling correlations be- 
tween states or across election years, or including infor- 
mation from other sources such as state opinion polls- 
could be incorporated by altering the covariance structure 
or adding more explanatory variables, without altering the 
essential form of the model. 

In addition, our forecasting model allows for unequal 
variances in the error terms E , ~ ,  a fairly minor point for 
forecasting but potentially crucial for estimating the state- 
to-state variation in the probability that your vote will be de- 
cisive. State-by-state presidential election forecasting meth- 
ods in the political science literature (e.g., Campbell 1992 
and Rosenstone 1984) generally assume equal variances. In 
contrast, the theoretical models of voting generally assume 
binomial variation; that is, var(ezt) proportional to nz l .  To 
include both possibilities in the same model, we fit a model 
in which var(eZt) = nzBa2,  where 0 is a parameter that 
varies between 0 (as in the forecasting models) and 1 (as 
in the theoretical models) and is estimated from the data. 
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For our regression model, we obtained a 95% interval for 
0 of [.09, .36], with estimated standard deviations of about 
2.5%, 2.5%, 5.0%, and 3.5%, for the national, regional (out- 
side the South), regional (the South), and state-level error 
terms. 

4.2 The Probability That Your Vote Will Be Decisive 

We estimate the parameters in our model using Bayesian 
simulation (Boscardin and Gelman 1996); our estimates 
yield a matrix of 1,250 simulations of the parameter vec- 
tor (p, a', O,yll . . . , yg, 6) from their posterior distribution. 
(We also obtain simulations of the parameters y and 6 for 
the election years 1948-1988 and their model variances, pa- 
rameters not required for computing the probability that a 
single vote is decisive in 1992.) For convenience, we sup- 
press the subscript t ,  as we are forecasting only one election 
at a time. For each simulated parameter vector, the proba- 
bility that state i is tied or one vote less than tied-that is, 
expression (2)-is 

if ni is even, Pr(niui = .5nilp, y,  6, 0, a2)  
if ni is odd, Pr(nivi = .5(ni - l ) lp ,  y,S, 8,  a2)  

where N(xIp, r 2 )  is the normal density function. Expres- 
sion (5) depends on n,, the voter turnout in state i, which 
is unknown before the election. To compute ( 3 ,  we use an 
estimate of n, obtained by scaling the turnout from the pre- 
vious presidential election by the increase in the voting age 
population in the state in the previous 4 years. This correc- 
tion is not precise, but errors in the turnout have simple and 
relatively minor effects on the estimated probabilities. For 
each state z, we then estimate (2) by averaging the probabil- 
ities (5) over the 1,250 simulations of the parameter vector; 
this is the correct estimated probability of a tie or near-tie 
given the Bayesian simulations. 

For each state i, we now compute the conditional prob- 
ability that the state is decisive, given that it is tied, in 
two steps. First, we assume the state is tied (v, = .5) and 
use this as additional information in estimating the model 
parameters-most importantly, y,% and 6. We condition on 
the information v, = .5 by simply adding another row to 
the data matrix in the regression (4), corresponding to the 
"observation" vZt = .5, then repeating the Bayesian compu- 
tations to produce 1,250 simulations of the vector of model 
parameters. For each of the simulations, we then simulate 
the outcomes v, for the remaining 49 states using the fore- 
cast model: each v, drawn from a normal distribution with 
mean (XP), + yr, + 6 and variance n,'a2. We then com- 
pute E-, for each simulation and use the results from the 
1,250 simulations to estimate the factor (3) for each state. 
Figure 1 plots the estimate of (3) based on the empirical 
frequencies versus the estimate based on fitting beta distri- 
butions, as described at the end of Section 3. The estimates 
are quite similar, and so we use the estimates based on the 
beta approximation so that the estimates of the low proba- 
bilities will be more stable using this moderate number of 
simulation draws. 

0.0 0.05 0.10 0.15 

Beta approximation 

Figure 1. Estimated Probability That a State is Decisive Given Tied, 
Computed Based on Frequency of Simulations Versus an Estimate From 
a Fitted Beta Distribution. . . ., equality of probabilities. 

4.3 Numerical Results 

We used these simulations to compute the probability that 
a single vote would decide the election in each state for 
each presidential election year from 1952 to 1992, exclud- 
ing 1968, when a third-party candidate won several states. 

Figure 2 displays for the 1992 election the probability 
that a single vote is decisive versus the number of electoral 
votes in each state. The probability is about 1 in 10 million 
for all states. Voters in some of the smaller politically mod- 
erate states have a greater chance (e.g., 1 in 3.5 million in 
Vermont), whereas those in more extreme states (e.g., Utah 
and Nebraska) have a lesser chance. If the vote in a polit- 
ically extreme state is tied, then the probability of a close 
election at the national level is very low. 

Figure 2b displays a summary of the results for the 1952- 
1988 elections. For six of the elections, the probability 
is fairly independent of state size (slightly higher for the 
smallest states) and is near 1 in 10 million. For the other 
three elections (1964, 1972, and 1984, corresponding to 
the landslide victories of Johnson, Nixon, and Reagan), the 
probability is much smaller, on the order of 1 in hundreds 
of millions for all of the states. This strong dependence of 
the estimated probability on the size of the victory mar- 
gin invalidates most of the existing theoretical models. Of 
course, the probabilities of decisive votes in the landslide 
elections are sensitive to the tail behavior of our forecasting 
model; we trust the qualitative findings, but would rely less 
strongly on the exact numerical results. 

For comparison, we estimate the chance that a single 
vote would be decisive if the popular vote decided the elec- 
tion. The posterior predictive distribution for popular vote 
in 1992 is easily estimated by the simulations; it is roughly 
normal with mean 51.5% and standard deviation 5.6%. With 
about 92 million people predicted to vote, the chance that it 
would have been an exact tie is approximately 1 in 13.3 mil- 
lion. The electoral college system places a slightly greater 
importance on the individual votes from all but eight of the 
states in 1992. 
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Electoral votes 
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Electoral votes 

Figure 2. Probability That One Vote Decides the Election, by State, 
Versus Electoral Votes in the State for (a) 1992 and (b) 1952-1988 
(Excluding 1968). In both figures the solid lines were obtained by binning 
according to electoral votes and then averaging. 

5. APPROXIMATE RESULTS FOR US. 
CONGRESSIONAL AND OTHER ELECTIONS 

As an external check on our model, we estimate the prob- 
ability that any generic election is tied using equation (2). 
Suppose that n people vote in the election, and that the fore- 
cast is a normal distribution with mean p and standard de- 
viation T ;  then the probability that a single vote will be de- 
cisive is approximately (&%-n)-' exp(- ( p  - . 5 ) ' / ( 2 ~ ' ) ) ,  
as discussed by Margolis (1977). One way to interpret this 
result is in terms of upper bounds. The probability of a tie is 
clearly maximized at p = .5. As for o, it is hard to imagine 
a real election that could be forecast to within a standard 
error of less than, say, 2% of the vote. This yields 2 0 / n  as 
an upper bound on the probability that your vote is decisive 
in a close election. 

A typical value of n for an election to the U.S. Congress 
is 200,000, which gives an upper bound of 1 in 10,000 of 
your vote making a difference. Another way to look at this 
is that even in the closest elections, it is not in practice 
possible to forecast the outcome to within less than about 
10,000 votes. Of course, most Congressional elections are 
not forecast to be so close, and so the probability of a tie 
is usually much lower. 

Another way to attack the problem is empirically, by av- 
eraging over past election outcomes. In the period 1900- 
1992, there were 20,597 U.S. House elections, out of which 
6 were decided by fewer than 10 votes, 49 by fewer than 
100 votes, 293 by fewer than 500 votes, and 585 by fewer 
than 1,000 votes. This suggests a frequency probability of 
about .5/20,597 that a single vote will be decisive in a ran- 
domly chosen U.S. House election. This number is of course 
much less than our upper bound of 1/10,000, because most 
of the elections were not close. 

For US.  presidential elections, a similar rough calcu- 
lation reveals that 18% of the state election results vi in 
our dataset lay between .48 and .52. This suggests for a 
state with ni voters an estimated probability of .18/(.04ni) 
for the event that vi is exactly .5 if ni is even or exactly 
.5 - .5/ni  if ni is odd. We can perform a similar calculation 
for the probability that a state is decisive in the electoral col- 
lege; of the 11 presidential elections in 1948-1988, 2 were 
close enough that switching 50 electoral votes would de- 
cide the election. This suggests for a state with ei electoral 
votes an estimated probability of about 1/2(2/11)(e i /50)  
that a vote that a decisive in a state will swing the national 
election. (The factor of 1/2 applies because we are consid- 
ering the effect of casting a vote, not the effect of switching 
a preference from one party to the other.) Multiplying the 
two factors yields a combined probability of .008ei/ni that 
an individual vote will be decisive. For example, a voter in 
a medium-sized state with 10 electoral votes and a turnout 
of 2 million would have an estimated probability of 1 in 
25 million of casting a decisive vote. This number is con- 
sistent with our estimates based on the forecasting model 
averaging over all election years. 

For the presidential elections, we present the foregoing 
approximate frequency calculations as a numerical check. 
For the substantive political analysis, we prefer the forecast- 
based estimates, because they condition on relevant infor- 
mation about the closeness of the election, the voting pat- 
tern in each state, and so forth, as discussed in Section 2.1. 

6. CONCLUDING REMARKS 

6.1 Implication for the Study of the Electoral College 
and Voting in General 

Like all other researchers, we estimate the (prospective) 
probability that a single vote will affect the outcome of the 
US.  presidential election to be very low, typically of order 
of magnitude 1 in 10 million, rising to as much as about 1 
in 1.5 million for some small states in some close elections 
(e.g., Nevada in 1960 and Alaska in 1976) and less than 1 
in 100 million for all states in landslide elections such as 
1972. 

Contrary to Banzhaf (1968) and Brams and Davis (1973, 
1974), we do not find a "bias" in favor of large states. The 
largest biases are in favor of most of the small states (be- 
cause all states receive a minimum of three electoral votes 
no matter how small their population) and against voters in 
states such as Utah, and in the District of Columbia, who 
have virtually no change of deciding the presidential elec- 
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tion, because of their atypical voting behavior, not the size 
of their states. 

Our results and general methodology are of obvious inter- 
est to candidates deciding how to allocate their campaign 
resources and states concerned about attracting the atten- 
tion of prospective presidents. In general, the probability 
of influencing the election outcome by mobilizing N sup- 
porters to vote in a single state is roughly N times the prob- 
ability that a single vote in that state will be decisive, and 
so state-by-state campaign efforts can be chosen to maxi- 
mize that probability, with the optimal decision varying as 
the campaign progresses and the election forecasts change. 
This point has been discussed by Brams and Davis (1973, 
1974). Similarly, the probability of swinging the election 
by changing the preferences of N voters in a single state is 
roughly 2 N  times the probability that a single vote in that 
state will be decisive. 

In addition, our results are of interest to rational choice 
theorists interested in the rationality of the decision of the 
individual citizen whether to vote; of course, one must also 
account for the possibility that the voter may influence 
other, nonpresidential contests at the ballot box. 

6.2 Mathematical Discussion of our Results and 
Comparison to Methods Not Based on Forecasts 

The probability of a tie in a state is on the order of 
l/ni, and the probability that a state will be decisive given 
that a tie occurs is (crudely) proportional to ei, which is 
roughly proportional to ni (except in the smallest states). 
Therefore, we expect the product of these two factors to 
be approximately constant, with a slight advantage to the 
smallest states. To illustrate, Figure 3 plots for 1992 the 
log-probability that a state will be decisive given that it is 
tied versus the log-probability that it will be tied. Most of 
the points lie close to the dotted line indicating a probability 

-6.0 -5.5 -5.0 -4.5 

log1 0 Pr (state is tied) 

Figure 3. Probability That a State Is Decisive Given Tied Versus the 
Probability That the State Is Tied for 1992 Plotted on a Log Scale. . . ., 
product of lo-'. 

0 , I I I 

10 20 30 40 50 

Electoral votes 

Electoral votes 

Figure 4. 'Same Plot as in Figure 1 for the Model With 0 Set to 1 (ie., 
State-Level Variance Inversely Proportional to Turnout). 

Many of the theoretical models in the literature (see Sec. 
1) assume that the standard deviation of vi in a state is pro- 
portional to 1 1 6 .  Our model can replicate this assumption 
by fixing the value of 0 to be exactly 1; see expression (5). 
We performed this computation to investigate whether our 
findings would change measurably with such an assump- 
tion. Figure 4 shows the results for 1992 and previous years: 
the probability that a single vote will be decisive increases 
slightly for the very largest states, but only slightly and 
not to the extent anticipated by the binomial-based models. 
This is because the forecasting model has several variance 
components, and the regional and national errors do not, of 
course, vary by state size. Our results are not as sensitive to 
the parameter 0 as one might fear. Future analysts thus may 
wish to opt for the simpler homoscedastic regression-based 
forecasts of Gelman and King (1993). 

Another possible modeling choice is the compound bi- 
nomial: modeling an expected vote outcome ui using a 
linear model as is done in this article and then modeling 
votes by a binomial distribution, nivi - Bin(ni, ui). Al- 
though this class of models seems reasonable, we do not 
adopt it because in practice, the turnout in U S .  elections 
is so large that the binomial variability is negligible com- 
pared to the forecast uncertainty in the model. For exam- 
ple, in 1992, turnout in all states was greater than 160,000, 
and ,/(.5) (.5)/l6OlOOO = .00125, as compared to statewide 
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error terms of about .03. Boscardin and Gelman (1996) 
also considered a generalization of the compound binomial 
model, fitting an error variance of the form (a: + a:/ni). 
Results were very similar to those obtained from the power- 
law variance model shown here. 

To return to more substantive concerns, we consider how 
the results would change as better information is added so 
as to increase the accuracy of the forecasts. In most states 
this will have the effect of reducing the chance of an exact 
tie; that is, adding information will bring the probability that 
one vote will be decisive even closer to 0. However, for a 
state that is close to evenly divided, the resulting probability 
will continue to increase as more information is added. In 
reality, one cannot achieve arbitrary precision in the fore- 
casts. Even for the most knowledgeable observers on the 
morning of election day, there is quite a bit of uncertainty 
in the day's outcome. 

6.3 Empirical Forecasting Versus Mathematical 
Modeling-Implications for Decision Theory and 
Public Choice 

The probability of an unlikely event, such as an indi- 
vidual's vote being decisive in a nationwide election, can 
be estimated in a straightforward fashion as a byproduct 
of any forecasting system that includes forecasting uncer- 
tainty. The results are model dependent, but the use of fore- 
casting models is a strength, because the models can be 
checked for accuracy and improved if they do not fore- 
cast well. For the case of presidential elections, we use ex- 
tensions of standard forecasting methods to determine the 
probability of a vote being decisive for each state and find 
results that make good political sense, but contradict many 
published findings in this field that are based on mathemat- 
ical models not fit to actual elections. 

An alternative approach would be to attempt to assess 
subjective probabilities directly. For example, one could 
poll individual voters to determine their perceived proba- 
bilities that the election will be a tie. However, people are 
notoriously poor at assessing probabilities that are close 
to 0 (see Kahneman, Slovic, and Tversky 1982). If inter- 
ested in the effect on campaign decisions, one could in- 
terview campaign organizations to determine their internal 
forecasts or use the prognostications of informed commen- 
tators, although political science forecasting models outper- 
form even the most eloquent media pundits. 

Decision theorists have long noted the need for estimat- 
ing subjective probabilities for expected utility calculations 
(see, e.g., Savage 1954). This is difficult when the events in 
question are so rare that they have never been observed to 
occur, and especially difficult in nonexperimental research 
where collecting more data is either infeasible or impos- 
sible. Our application demonstrates the utility of bringing 
related information to bear on improving the estimation of 
the probability of rare events. This is a useful addition to the 
tendency, at least in political science, to obtain probabilities 
through formal models with only minimal empirical input. 

the conceptual and substantive gains that can be made by 
returning to a forecasting basis for modeling uncertainties 
in decision making. 

[Received April 1996. Revised September 1997.1 
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