Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Aerobic fitness determines whole-body fat oxidation rate during exercise in the heat

Publication: Applied Physiology, Nutrition, and Metabolism
5 November 2010

Abstract

The purpose of this study was to determine whole-body fat oxidation in endurance-trained (TR) and untrained (UNTR) subjects exercising at different intensities in the heat. On 3 occasions, 10 TR cyclists and 10 UNTR healthy subjects (peak oxygen uptake = 60 ± 6 vs. 44 ± 3 mL·kg–1·min–1; p < 0.05) exercised at 40%, 60%, and 80% peak oxygen uptake in a hot, dry environment (36 °C; 25% relative humidity). To complete the same amount of work in all 3 trials, exercise duration varied (107 ± 4, 63 ± 1, and 45 ± 0 min for 40%, 60%, and 80% peak oxygen uptake, respectively). Substrate oxidation was calculated using indirect calorimetry. Blood samples were collected at the end of exercise to determine plasma epinephrine ([EPI]plasma) and norepinephrine ([NEPI]plasma) concentrations. The maximal rate of fat oxidation was achieved at 60% peak oxygen uptake for the TR group (0.41 ± 0.01 g·min–1) and at 40% peak oxygen uptake for the UNTR group (0.28 ± 0.01 g·min–1). TR subjects oxidized absolutely (g·min–1) and relatively (% of total energy expenditure) more fat than UNTR subjects at 60% and 80% peak oxygen uptake (p < 0.05). At these exercise intensities, TR subjects also had higher [NEPI]plasma concentrations than UNTR subjects (p < 0.05). In the heat, whole-body peak fat oxidation occurs at higher relative exercise intensities in TR than in UNTR subjects (60% vs. 40% peak oxygen uptake). Moreover, TR subjects oxidize more fat than UNTR subjects when exercising at moderate to high intensities (>60% peak oxygen uptake).

Résumé

Cette étude se propose d’analyser le degré d’oxydation des gras dans tout l’organisme de sujets entraînés en endurance (TR) et de sujets non entraînés en endurance (UNTR) au cours d’exercices accomplis à différentes intensités dans un environnement chaud. En trois occasions, 10 cyclistes TR et 10 sujets UNTR en bonne santé (consommation d’oxygène de pointe = 60 ± 6 mL·kg–1·min–1 comparativement à 44 ± 3 mL·kg·–1min–1; p < 0,05) font un effort dans un environnement chaud (36  °C; 25 % HR), et ce, aux intensités suivantes : 40 %, 60 % et 80 % du consommation d’oxygène de pointe. Afin de maintenir constante la quantité de travail accompli, la durée des efforts varie comme suit : 107 ± 4 min, 63 ± 1 min et 45 ± 0 min pour les intensités respectives de 40 %, 60 % et de 80 % du consommation d’oxygène de pointe. On mesure le degré d’oxydation des gras par calorimétrie indirecte. À la fin des séances d’exercice, on prélève des échantillons sanguins pour en déterminer les concentrations plasmatiques d’épinéphrine ([EPI]plasma) et de norépinéphrine ([NEPI]plasma). On enregistre le plus haut taux d’oxydation des gras chez les TR à 60 % du consommation d’oxygène de pointe (0,41 ± 0,01 g·min–1) et, chez les UNTR, à 40 % du consommation d’oxygène de pointe (0,28 ± 0,01 g·min–1). Les sujets TR oxydent plus de gras que les sujets UNTR en valeur absolue (g·min–1) et en valeur relative (% du total d’énergie dépensée) à 60 % et 80 % du consommation d’oxygène de pointe (p < 0,05). À ces intensités d’exercice, la [NEPI]plasma chez les sujets TR est plus élevée que chez les sujets UNTR (p < 0,05). Dans un environnement chaud, l’oxydation des gras dans l’organisme se manifeste chez les sujets TR à une plus haute intensité relative : 60 % comparativement à 40 % du consommation d’oxygène de pointe chez les UNTR. De plus, les sujets TR oxydent plus de gras que les sujets UNTR au cours d’efforts d’intensité modérée à élevée (>60 % du consommation d’oxygène de pointe).

Get full access to this article

View all available purchase options and get full access to this article.

References

Achten, J., Gleeson, M., and Jeukendrup, A.E. 2002. Determination of the exercise intensity that elicits maximal fat oxidation. Med. Sci. Sports Exerc. 34(1): 92–97.
Arngrímsson, S.A., Stewart, D.J., Borrani, F., Skinner, K.A., and Cureton, K.J. 2003. Relation of heart rate to percent VO2 peak during submaximal exercise in the heat. J. Appl. Physiol. 94(3): 1162–1168.
Balady, G.J., Berra, K.A., Golding, L.A., Gordon, N.F., Mahler, D.A., Myers, J.N., and Sheldahl, L.M. 2000. ACSM’s guidelines for exercise testing and prescription. Lippincott Williams and Wilkins, Baltimore, M.D.
Bergman, B.C., and Brooks, G.A. 1999. Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J. Appl. Physiol. 86(2): 479–487.
Brouwer, E. 1957. On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat oxidized in metabolism of men and animals, from gaseous exchange (oxygen intake and carbonic acid output) and urine-N. Acta Physiol. Pharmacol. Neerl. 6(1): 795–802.
Coggan, A.R., Kohrt, W.M., Spina, R.J., Bier, D.M., and Holloszy, J.O. 1990. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J. Appl. Physiol. 68(3): 990–996.
Coggan, A.R., Spina, R.J., Kohrt, W.M., and Holloszy, J.O. 1993. Effect of prolonged exercise on muscle citrate concentration before and after endurance training in men. Am. J. Physiol. 264(2 Pt. 1): E215–E220.
Coggan, A.R., Raguso, C.A., Gastaldelli, A., Sidossis, L.S., and Yeckel, C.W. 2000. Fat metabolism during high-intensity exercise in endurance-trained and untrained men. Metabolism, 49(1): 122–128.
Del Coso, J., Hamouti, N., Aguado-Jimenez, R., and Mora-Rodriguez, R. 2009. Respiratory compensation and blood pH regulation during variable intensity exercise in trained versus untrained subjects. Eur. J. Appl. Physiol. 107(1): 83–93.
Febbraio, M.A., Snow, R.J., Stathis, C.G., Hargreaves, M., and Carey, M.F. 1994. Effect of heat stress on muscle energy metabolism during exercise. J. Appl. Physiol. 77(6): 2827–2831.
Frayn, K.N. 1983. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. 55(2): 628–634.
Friedlander, A.L., Casazza, G.A., Horning, M.A., Buddinger, T.F., and Brooks, G.A. 1998. Effects of exercise intensity and training on lipid metabolism in young women. Am. J. Physiol. 275(5 Pt. 1): E853–E863.
Greiwe, J.S., Hickner, R.C., Shah, S.D., Cryer, P.E., and Holloszy, J.O. 1999. Norepinephrine response to exercise at the same relative intensity before and after endurance exercise training. J. Appl. Physiol. 86(2): 531–535.
Hargreaves, M., Dillo, P., Angus, D., and Febbraio, M.A. 1996. Effect of fluid ingestion on muscle metabolism during prolonged exercise. J. Appl. Physiol. 80(1): 363–366.
Hjemdahl, P. 1984. Catecholamine measurements by high-performance liquid chromatography. Am. J. Physiol. 247(1 Pt. 1): E13–E20.
Hodgetts, V., Coppack, S.W., Frayn, K.N., and Hockaday, T.D. 1991. Factors controlling fat mobilization from human subcutaneous adipose tissue during exercise. J. Appl. Physiol. 71(2): 445–451.
Hulens, M., Vansant, G., Lysens, R., Claessens, A.L., and Muls, E. 2001. Exercise capacity in lean versus obese women. Scand. J. Med. Sci. Sports, 11(5): 305–309.
Jackson, A.S., and Pollock, M.L. 1978. Generalized equations for predicting body density of men. Br. J. Nutr. 40(3): 497–504.
Jackson, A.S., Pollock, M.L., and Ward, A. 1980. Generalized equations for predicting body density of women. Med. Sci. Sports Exerc. 12(3): 175–181.
Jeukendrup, A.E. 2003. Modulation of carbohydrate and fat utilization by diet, exercise and environment. Biochem. Soc. Trans. 31(Pt. 6): 1270–1273.
Jones, N.L., Heigenhauser, G.J., Kuksis, A., Matsos, C.G., Sutton, J.R., and Toews, C.J. 1980. Fat metabolism in heavy exercise. Clin. Sci. (Lond.), 59(6): 469–478.
Juel, C., Klarskov, C., Nielsen, J.J., Krustrup, P., Mohr, M., and Bangsbo, J. 2004. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 286(2): E245–E251.
Kirwan, J.P., Costill, D.L., Kuipers, H., Burrell, M.J., Fink, W.J., Kovaleski, J.E., and Fielding, R.A. 1987. Substrate utilization in leg muscle of men after heat acclimation. J. Appl. Physiol. 63(1): 31–35.
Meyer, T., Gässler, N., and Kindermann, W. 2007. Determination of “Fatmax” with 1 h cycling protocols of constant load. Appl. Physiol. Nutr. Metab. 32(2): 249–256.
Mora-Rodriguez, R., and Coyle, E.F. 2000. Effects of plasma epinephrine on fat metabolism during exercise: interactions with exercise intensity. Am. J. Physiol. 278(4): E669–E676.
Mora-Rodriguez, R., Hodgkinson, B.J., Byerley, L.O., and Coyle, E.F. 2001. Effects of β-adrenergic receptor stimulation and blockade on substrate metabolism during submaximal exercise. Am. J. Physiol. Endocrinol. Metab. 280(5): E752–E760.
Mora-Rodriguez, R., Del Coso, J., Hamouti, N., Estevez, E., and Ortega, J.F. 2010. Aerobically trained individuals have greater increases in rectal temperature than untrained ones during exercise in the heat at similar relative intensities. Eur. J. Appl. Physiol. 109(5): 973–981.
Nordby, P., Saltin, B., and Helge, J.W. 2006. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Scand. J. Med. Sci. Sports, 16(3): 209–214.
Riddell, M.C., Jamnik, V.K., Iscoe, K.E., Timmons, B.W., and Gledhill, N. 2008. Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. J. Appl. Physiol. 105(2): 742–748.
Romijn, J.A., Coyle, E.F., Hibbert, J., and Wolfe, R.R. 1992. Comparison of indirect calorimetry and a new breath 13C/12C ratio method during strenuous exercise. Am. J. Physiol. 263(1 Pt. 1): E64–E71.
Romijn, J.A., Coyle, E.F., Sidossis, L.S., Gastaldelli, A., Horowitz, J.F., Endert, E., and Wolfe, R.R. 1993. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 265(3 Pt. 1): E380–E391.
Romijn, J.A., Coyle, E.F., Sidossis, L.S., Rosenblatt, J., and Wolfe, R.R. 2000. Substrate metabolism during different exercise intensities in endurance-trained women. J. Appl. Physiol. 88(5): 1707–1714.
Roy, B.D., Green, H.J., and Burnett, M. 2000. Prolonged exercise after diuretic-induced hypohydration: effects on substrate turnover and oxidation. Am. J. Physiol. Endocrinol. Metab. 279(6): 1383–1390.
Starritt, E.C., Howlett, R.A., Heigenhauser, G.J., and Spriet, L.L. 2000. Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 278(3): E462–E468.
Stisen, A.B., Stougaard, O., Langfort, J., Helge, J.W., Sahlin, K., and Madsen, K. 2006. Maximal fat oxidation rates in endurance trained and untrained women. Eur. J. Appl. Physiol. 98(5): 497–506.
Venables, M.C., Achten, J., and Jeukendrup, A.E. 2005. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J. Appl. Physiol. 98(1): 160–167.
Wright, H.E., Selkirk, G.A., and McLellan, T.M. 2010. HPA and SAS responses to increasing core temperature during uncompensable exertional heat stress in trained and untrained males. Eur. J. Appl. Physiol. 108(5): 987–997.

Information & Authors

Information

Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 35Number 6December 2010
Pages: 741 - 748

History

Received: 8 April 2010
Accepted: 12 August 2010
Version of record online: 5 November 2010

Permissions

Request permissions for this article.

Key Words

  1. catecholamines
  2. carbohydrate oxidation
  3. indirect calorimetry
  4. cycling
  5. body composition
  6. endurance exercise

Mots-clés

  1. catécholamines
  2. oxydation des sucres
  3. calorimétrie indirecte
  4. cyclisme
  5. composition corporelle
  6. exercice d’endurance

Authors

Affiliations

Juan Del Coso
Exercise Physiology Lab at Toledo, Universidad de Castilla–La Mancha, Avda. Carlos III, s/n, Toledo, 45071, Spain.
Nassim Hamouti
Exercise Physiology Lab at Toledo, Universidad de Castilla–La Mancha, Avda. Carlos III, s/n, Toledo, 45071, Spain.
Juan Fernando Ortega
Exercise Physiology Lab at Toledo, Universidad de Castilla–La Mancha, Avda. Carlos III, s/n, Toledo, 45071, Spain.
Ricardo Mora-Rodriguez (email: [email protected])
Exercise Physiology Lab at Toledo, Universidad de Castilla–La Mancha, Avda. Carlos III, s/n, Toledo, 45071, Spain.

Notes

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Beyond the Calorie Paradigm: Taking into Account in Practice the Balance of Fat and Carbohydrate Oxidation during Exercise?
2. p -Synephrine, the main protoalkaloid of Citrus aurantium , raises fat oxidation during exercise in elite cyclists
3. Effect of ambient temperature on fat oxidation during an incremental cycling exercise test
4. The Impact of Decaffeinated Green Tea Extract on Fat Oxidation, Body Composition and Cardio-Metabolic Health in Overweight, Recreationally Active Individuals
5. Effects of p-Synephrine during Exercise: A Brief Narrative Review
6. Efecto de la distribución de la intensidad del entrenamiento sobre la composición corporal en triatletas amateur
7. Acute p‐synephrine ingestion increases fat oxidation rate during exercise

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media